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ABSTRACT
Checking query equivalence is of great significance in database
systems. Prior work in automated query equivalence checking sets
the first steps in formally modeling and reasoning about query
optimization rules, but only supports a limited number of query
features. In this paper, we present Qed, a new framework for query
equivalence checking based on bag semantics. Qed uses a new for-
malism called Q-expressions that models queries using different
normal forms for efficient equivalence checking, and models fea-
tures such as integrity constraints and NULLs in a principled way
unlike prior work. Our formalism also allows us to define a new
query fragment that encompasses many real-world queries with
a complete equivalence checking algorithm, assuming a complete
first-order theory solver. Empirically, Qed can verify 299 out of 444
query pairs extracted from the Calcite framework and 979 out of
1287 query pairs extracted from CockroachDB, which is more than
2× the number of cases proven by prior state-of-the-art solver.
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1 INTRODUCTION
Query equivalence checking is widely used in databases for ensur-
ing the semantic-equivalence of query rewrites in query execution
engines [10, 11]. Although the general case is undecidable [16],
much theoretical work showed the decidability of query equiva-
lence under special fragments. For example, Cohen [9] showed
the SQL equivalence problem under bag semantics is decidable for
unions of conjunctive queries (UCQ) by constructing a decision
procedure and showing its soundness and completeness. However,
besides the restricted use of query operators, the UCQ fragment ad-
ditionally requires the filter conditions be conjunctions of equalities
or inequalities, and only field reference are allowed in projections.
We instead define a general fragment parameterized by some first-
order theory 𝑇 , where the filter conditions and projection rules are
allowed to use any expressions definable in 𝑇 . We then construct a
complete algorithm for deciding bag semantic query equivalence
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within this fragment with respect to an oracle that can decide satis-
fiability in the theory 𝑇 . When realizing the oracle using modern
SMT solvers, the complete algorithm covers a rich set of data types
and operations used in real-world queries, to be shown in Sec. 6.

More recently, automatic reasoning tools were built to tackle the
full complexity of real-world SQL queries. Cosette [6, 8] axiomatizes
queries using the theory of U-semiring and implemented the U-
expression decision procedure (UDP) [7], where the bag semantics
of a SQL query is modeled as a symbolic arithmetic expression rep-
resenting the multiplicities of elements in the query result viewed
as a bag/multiset. Equivalence checking is then performed on the
formal expressions of multiplicity (so-called U-expressions) with-
out any further knowledge of SQL, producing a machine-checkable
proof of equivalence down to the axioms of U-expressions.The UDP
algorithm works by checking for the equality of two U-expressions
after a normalization process, which unfortunately is overly reliant
on syntactic equality in many places where stronger equivalence
should be used. For example, predicates embedded in queries that
are equivalent but syntactically distinct such as [𝑎 + 𝑏 = 0] and
[𝑎 = −𝑏] would fail to unify in UDP. Additionally, UDP does not
model NULL semantics [13] and all of the related relational opera-
tors (such as outer-joins), rendering it unusable for many queries.

Meanwhile, SPES [17, 18], the current state-of-the-art solver in
terms of completeness, operates by first repeatedly applying a set of
selected query rewrite rules to put SQL queries into a normal form,
and then using an SMT solver to help check the equivalence of the
normalized queries. Formally, since SPES does not use a separate
representation like the U-expressions to model the semantics of
SQL query, the semantics of the relational operators are encoded
implicitly in the set of query rewrites for normalization, which we
must trust as axioms before accepting the new rewrites that are
checked by SPES. Moreover, their normalization rules fail to cap-
ture many interactions between different SQL features, and hence
compose poorly in practice. For example, SPES has two rewrite
rules concerning primary key constraints, which only covers self-
joins [18], but not the more common case of joining different tables
on primary keys, despite table joins and primary keys both being
supported features of SPES. Finally, SMT reasoning is not incor-
porated during normalization, making SPES still prone to pure
syntactical matching to be discussed in Sec. 6.3.

To address these shortcomings, we propose a new formalism
called Q-expressions that models the general semiring semantics
similar to U-expressions, while additionally admits an efficient
encoding to SMT formulas. We leverage the expressiveness of first-
order logic to fully model NULL semantics and various integrity
constraints, and allow unknown query operators to be captured
as uninterpreted functions. For example, our new modeling of in-
tegrity constraints (Sec. 3.3) only introduce one simple rule for each
kind of constraint, but they are designed to compose well with the
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formalism of other SQL features during equivalence checking, as
we will discuss in Sec. 6.3 when compared to prior work.

We also introduce a new equivalence checking algorithm for Q-
expressions that leverages SMT solvers in both the normalization
and unification steps (Sec. 5), and first-class support for reason-
ing with unknown query operators. SMT reasoning allows us to
systematically apply normalization and term matching rules with-
out overly relying on ad-hoc syntactical conditions, resulting in
significant improvement in completeness over prior works to be dis-
cussed in Sec. 6. Moreover, our algorithm can propagate constraints
and perform reasoning across boundary introduced by unknown
query operators, which are otherwise complete black-boxes in prior
approaches, to be illustrated with the motivating example in Sec. 2.

To summarize, using SMT solvers enables more powerful seman-
tics reasoning and expressivity compared to the purely syntactic
approaches used in UDP and some parts of SPES, while the semir-
ing formalism of query semantics forms a small yet composable
foundation for SQL reasoning, compared to the query-expression
level reasoning in SPES. We describe a new approach that combines
both formal modeling of queries and leveraging SMT solvers for
the entire pipeline of equivalence checking, capturing and vastly
improving upon prior work. In sum:
• We propose a new formalism called Q-expressions that models

queries based on semiring semantics and allows efficient encod-
ing in first-order logical formula, leveraging the reasoning power
of SMT solvers. Using Q-expressions substantially increases the
number of query features modeled compared to prior work, such
as NULL semantics, integrity constraints, and first-class support
of unknown query operators as uninterpreted symbols.
• We describe two new algorithms to decide semantic query equiv-

alence: a complete one on a new query fragment that we define,
generalizing prior theoretical results; and another general algo-
rithm for the full set of query features modeled by Q-expressions.
• We implemented our algorithms in Qed, and evaluated it using
the rewrite rules from Calcite and CockroachDB. The results
show that Qed substantially outperforms prior state-of-the-art
by proving 2× more cases in all benchmark suites.

2 OVERVIEW
In this section we use a concrete example to motivate our approach.
Consider the table 𝑅(𝑥,𝑦) with two columns 𝑥 and 𝑦, and the table
𝑆 (𝑎) with column 𝑎 which is also a primary key of 𝑆 . The following
example originates from a test case for Calcite’s optimizer [2] that
describes the following equivalence:

select x, sum(y) from R join S on x = a group by x;
select x, r from (select x, sum(y) as r from R group by x)

join S on x = a;

Informally, the outer aggregation is pushed down to the left side of
the join if the aggregating function and the group-by clause only
depends on fields from the left, and the join condition is an equality
between the grouped columns from the left with some columns that
have distinct values from the right. The key to proving equivalence
amounts to the following two points:
• The distinctness of 𝑆.𝑎 imposed by the primary key constraint

ensures the multiplicity of rows in the final results are preserved

before and after the rewrite, and the equivalence would be un-
provable otherwise. However, prior work like SPES [18] fails to
discover the distinctness as it models primary key constraints
using an incomplete set of query preprocessing rules, in which
none is applicable for this specific case.

• The group-by/aggregation clauses appear in different places be-
fore and after the rewrite. When regarding the aggregation as
uninterpreted operators with the tables aggregated over as sub-
queries applied to the aggregation, prior work [7, 18] would
perform a recursive equivalence check of the subqueries to deter-
mine the equivalence of the aggregations. However, the recursive
check fails to prove the equivalence of those seemingly different
subqueries, since originally we have the outer aggregation apply-
ing to a filtered version of table 𝑅 (filtered by the join condition
of 𝑅.𝑥 must equal to some 𝑆.𝑎); while after the transformation,
the aggregation is applied directly on 𝑅 itself.

Our approach, illustrated in Fig. 1, addresses the above challenges
and proves the validity of the rewrite naturally. To start with, both
queries are translated into Q-expressions (Sec. 3), which models
relations and queries as algebraic expressions that compute row
multiplicities, as in prior work [12]. For our two queries, we get:

𝑄1 (𝑥, 𝑟 ) = ∥
∑︁

𝑦,𝑎 [𝑥 = 𝑎] × 𝑅(𝑥,𝑦) × ∥𝑆 (𝑎)∥∥
× [𝑟 = Sum(𝜆𝑦. ∑︁𝑎 [𝑥 = 𝑎] × 𝑅(𝑥,𝑦) × ∥𝑆 (𝑎)∥)],

𝑄2 (𝑥, 𝑟 ) =
∑︁
𝑎 [𝑥 = 𝑎] × ∥∑︁𝑦 𝑅(𝑥,𝑦)∥
× [𝑟 = Sum(𝜆𝑦. 𝑅(𝑥,𝑦))] × ∥𝑆 (𝑎)∥ .

Queries 𝑄1 and 𝑄2 are modeled as functions that take in a po-
tential value of rows (here being a tuple (𝑥, 𝑟 ) as the result has
two columns) and return its multiplicities in each query’s result
(Sec. 3.2). The square bracket notation [𝑃] denotes a multiplicity of
1 or 0 depending on whether the inner predicate 𝑃 is true or false,
and when combined like [𝑃] ×𝑚, models filtering by behaving like
𝑚 when 𝑃 is true, and trivializing to the zero multiplicity when 𝑃
is false.

∑︁
𝑥 𝑓 (𝑥) denotes a (potentially) unbounded summation of

terms indexed over a variable 𝑥 , similar to the notation for denot-
ing a series mathematically. Here, forms like

∑︁
𝑎 [𝑥 = 𝑓 (𝑎)] × 𝑅(𝑎)

models projection/mapping of multisets by some function 𝑓 , by
ranging all potential values in the domain (𝑎), and only accumu-
lates the multiplicity if 𝑎 get mapped to the end value 𝑥 that we
are interested in (through the predicate [𝑥 = 𝑓 (𝑎)]). Finally, the
squash notation ∥𝑚∥ denotes 1when𝑚 ≥ 1 and 0 otherwise, which
is used to model uniqueness by effectively truncating multiplicity
to be at most 1. Specifically, the primary key constraint on 𝑆 makes
use of squash by translating 𝑆 into 𝜆𝑥. ∥𝑆 (𝑥)∥ using the rule eq. (8),
which is a complete formalism of primary key in that applying it
results in an equivalent query equivalence problem. Moreover, such
modeling is convenient for SMT solvers to reason about, as ∥𝑆 (𝑥)∥
can be simply represented as an uninterpreted predicate.

Our full pipeline then picks between Alg. 3 and Alg. 6 depending
on whether the input queries are in the complete fragment to be
defined in Sec. 4. Since our example is not in that fragment, we
showcase the algorithm presented in Sec. 5. The queries 𝑄1 and 𝑄2
are first rewritten into a normal form to be described in Sec. 5.1, and
later in Sec. 5.2 have redundant summation scopes systematically
eliminated while maintaining the normal form. Those two steps
trivializemany equivalences, and in our case results in a very similar
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Queries & Constraints

Translate (Sec. 3)

Normalize (Sec. 5.1)

Stabilize (Sec. 5.2)

Unify (Sec. 5.3)

Normalize (Sec. 4.1)

Linearize (Sec. 4.2)

Unify (Sec. 4.3)

if in complete fragment (Sec. 4)

Figure 1: Overview of Qed’s equivalence checking pipeline,
starting from top to bottom. The left lane depicts the algo-
rithm in Sec. 5 that accepts general SQL queries, and the
right lane shows the complete algorithm for a specialized
fragment discussed in Sec. 4. The procedures in red boxes
would invoke an SMT solver as an oracle.

pair of Q-expressions:
𝑄1 (𝑥, 𝑟 ) = ∥

∑︁
𝑦 𝑅 (𝑥, 𝑦) × ∥𝑆 (𝑥 ) ∥ × [𝑟 = Sum(𝜆𝑦. 𝑅 (𝑥, 𝑦) × ∥𝑆 (𝑥 ) ∥ ) ] ∥

𝑄2 (𝑥, 𝑟 ) = ∥
∑︁

𝑦 𝑅 (𝑥, 𝑦) × ∥𝑆 (𝑥 ) ∥ × [𝑟 = Sum(𝜆𝑦. 𝑅 (𝑥, 𝑦) ) ] ∥

At this point, we are ready to compare the now highly-structured
pair of Q-expressions, using the unification algorithm in Sec. 5.3.
Concretely in the example, we are interested in verifying

∀𝑥, 𝑟 . 𝜙1 (𝑥, 𝑟 ) ↔ 𝜙2 (𝑥, 𝑟 ), where (1)

𝜙1 (𝑥, 𝑟 ) = ∃𝑦. 𝑅 (𝑥, 𝑦) ≠ 0 ∧ 𝑆 (𝑥 ) ≠ 0 ∧ 𝑟 = 𝑣1,

𝜙2 (𝑥, 𝑟 ) = ∃𝑦. 𝑅 (𝑥, 𝑦) ≠ 0 ∧ 𝑟 = 𝑣2 ∧ 𝑆 (𝑥 ) ≠ 0,

𝑣1 = Sum(𝜆𝑦. 𝑅 (𝑥, 𝑦) × ∥𝑆 (𝑥 ) ∥ ), 𝑣2 = Sum(𝜆𝑦. 𝑅 (𝑥, 𝑦) ) .
Notice that the two aggregations are substituted with two distinct
variables 𝑣1 and 𝑣2, and we may further extract their congruence
information by recursively checking the equivalence between

𝜆𝑦. 𝑅(𝑥,𝑦) × ∥𝑆 (𝑥)∥ and 𝜆𝑦. 𝑅(𝑥,𝑦) .

However, directly performing the recursive check will fail, since the
right side is missing the term ∥𝑆 (𝑥)∥ (or equivalently the condition
that 𝑥 occurs in table 𝑆 at least once). The key observation is that
we can automatically read off the missing condition from the Q-
expressions that we are comparing at the top-level, by asserting
𝜙1 (𝑥, 𝑟 ) ∨ 𝜙2 (𝑥, 𝑟 ) as an additional assumption when performing
the recursive check. To be made formal in eq. (15), this additional
assumption captures constraints within the ambient environment
of the subqueries, including the fact that 𝑥 does occur in table 𝑆 ,
and preserves them across recursive equivalence checks. At this
point, the two subqueries are equivalent as the following is valid:

(𝜙1 (𝑥, 𝑟 ) ∨ 𝜙2 (𝑥, 𝑟 )) → ∀𝑦. 𝑅(𝑥,𝑦) × ∥𝑆 (𝑥)∥ = 𝑅(𝑥,𝑦). (2)

Therefore, we have 𝑣1 = 𝑣2, and with that, the top-level equivalence
can be concluded as now we can check eq. (1) by validating

𝑣1 = 𝑣2 → (∀𝑥, 𝑟 . 𝜙1 (𝑥, 𝑟 ) ↔ 𝜙2 (𝑥, 𝑟 )) . (3)

We implement and evaluate this algorithm in Sec. 6 by running
it over query optimization pairs present in real-world databases,
and compare the results with similar tools.

3 SYNTAX AND SEMANTICS OF QUERIES
Before discussing Qed’s equivalence checking algorithm, we first
define the syntax of SQL handled by Qed and its semantics.

𝑄 ⩴ Table(𝑅 : 𝑆 ) Table scan on 𝑅 of schema 𝑆
| Values(𝑣1, . . . , 𝑣𝑛 ) Raw values as table
| Filter(𝑃,𝑄 ) Filter by predicate 𝑃
| Proj(𝑓 ,𝑄 ) Projection by function 𝑓

| Join(𝑄1,𝑄2 ) Cross product join
| Union(𝑄1,𝑄2 ) Union all
| Minus(𝑄1,𝑄2 ) Set minus
| Distinct(𝑄 ) Row deduplication
| GroupBy(𝑘, 𝛼 (𝑓 ),𝑄 ) Group by keys 𝑘
| QOp(𝑜, 𝑣1, . . . , 𝑣𝑛,𝑄 ) Uninterpreted query operator

𝑣,𝑃,𝑓 ⩴ 𝑥 Variable symbol
| Exists(𝑄 ) Query emptiness
| Op(𝑜, 𝑣1, . . . , 𝑣𝑛 ) Scalar operator
| HOp(𝑜, 𝑣1, . . . , 𝑣𝑛,𝑄 ) Higher-order operator

𝛼,𝑜 ∈ Operator symbols
𝐶 ⩴ 𝑅.𝑘 PrimaryKey Primary key on 𝑘

| 𝑅.𝑘 References 𝑆 Foreign key on 𝑘 to table 𝑆
| 𝑅 Checks 𝑃 Satisfies predicate 𝑃

Figure 2: Syntax for supported query expressions (𝑄), scalar
expressions (𝑣 , 𝑃 , 𝑓 ), and integrity constraints (𝐶).

3.1 Query syntax
Qed assumes that the input queries to be checked for equivalence
are written using the grammar shown in Fig. 2, intended to capture
the bag semantics of SQL queries that we model in Sec. 3.2. In
addition to query expressions, we define scalar expressions in the
syntax that is allowed to appear as condition to filter, expressions
to project, or arguments to Values. Moreover, Qed also supports
integrity constraints on tables to be discussed in Sec. 3.3.

Inspired by relational algebra, a query𝑄 can be constructed from
different query operators, starting from table scan Table(𝑅 : 𝑆)
that scans a named table with name 𝑅 containing rows of type
𝑆 , or Values(𝑣1, . . . , 𝑣𝑛) that explicitly constructs a table with the
rows 𝑣1, …, 𝑣𝑛 . Filter(𝑃,𝑄) only keeps the rows in the subquery
𝑄 that satisfies the predicate 𝑃 , and Proj(𝑓 ,𝑄) transforms every
row 𝑟 of 𝑄 into 𝑓 (𝑟 ). Join(𝑄1, 𝑄2) forms the cross product of two
queries, and Union(𝑄1, 𝑄2) is concatenation, i.e., having all rows
in 𝑄1 followed by those in 𝑄2 and preserving any duplication. For
Minus(𝑄1, 𝑄2), it keeps any row in 𝑄1 that is not present in 𝑄2
and removes duplicated rows; the Distinct operator also eliminates
duplicated rows. 1 We use the squash operator ∥·∥, which truncates
multiplicities up to 1 as later defined in eq. (4), to formally express
row deduplication.

Qed models group-by (GroupBy(k, 𝛼(f), Q)) explicitly. For query
𝑄 that produces rows of type 𝑆 , we group by some key function
𝑘 : 𝑆 → 𝐾 that partitions rows in 𝑄 into groups, where each group
is a bag of rows that share the same key. Each group is transformed
by applying their rows with 𝑓 : 𝑆 → 𝑉 , forming a bag of 𝑉 , and
aggregated by the function 𝛼 to create a bag of values (now of type
𝑉 ) returning a scalar representing the aggregated value.

Other remaining SQL operators can be expressed using the gen-
eral uninterpreted query operator, QOp. For example, to express
limiting the result of𝑄 to𝑛 rows, one can useQOp(Limit, 𝑛,𝑄). Sim-
ilarly, compound scalar expressions are built withOp andHOp. For

1We model set minus, but not the multiset/bag minus, which would be captured as an
uninterpreted query operator, similarly, set intersection is expressible, but not multiset
intersection. Supporting the bag variants requires some ordering/monus operator at
the semiring level, which we don’t introduce in our formalism.
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example, the SQL syntax 𝑎 And 𝑏 can be encoded as Op(And, 𝑎, 𝑏),
and the SQL syntax 𝑎 In 𝑄 (involving a subquery 𝑄) can be en-
coded as HOp(In, 𝑎,𝑄). Generally, we can give semantics to scalar
expressions involving Op and HOp if it can be encoded in SMT
solvers (details in Sec. 3.2), or otherwise we would treat them as
uninterpreted symbols.

3.2 Query semantics
The semantics of a query is defined by the table it produces, and
a table of schema 𝑆 is regarded as a multiset of rows of type 𝑆 .
Following the semiring semantics [12], we interpret such multiset
as a function 𝑆 → N̄ taking in some 𝑠 ∈ 𝑆 and returning the
multiplicity of 𝑠 in the multiset, where N̄ is the set of extended
natural numbers (N ∪ {∞}). We define:

∞ + 𝑎 = ∞, 0 ×∞ = 0, 𝑎 ×∞ = ∞ if 𝑎 ≠ 0,∑︂
𝑠

𝑓 (𝑠) =
{︃
𝑓 (𝑠1) + · · · + 𝑓 (𝑠𝑛) if 𝑓 has finite support {𝑠1, . . . , 𝑠𝑛}
∞ otherwise

,

[𝑃] =
{︃1 if 𝑃 is true
0 otherwise

, ∥𝑎∥ = [𝑎 ≠ 0] ¬𝑎 = [𝑎 = 0],

(4)
with + and × being the usual operation when acting on finite num-
bers, and the support of 𝑓 is defined to be {𝑥 | 𝑓 (𝑥) ≠ 0}.Thismakes
N̄ a model of U-semiring as introduced by [7], and additionally has
an efficient encoding in SMT solvers as shown later in Sec. 5.3.
We refer to expressions of type N̄ as Q-expressions. Formally, the
semantics of a query 𝑄 denoted as J𝑄K, is given inductively as:

JTable(𝑅 : 𝑆 )K = 𝜆𝑥. 𝑅 (𝑥 )
JValues(𝑣1, . . . , 𝑣𝑛 )K = 𝜆𝑥. [𝑥 = 𝑣1 ] + · · · + [𝑥 = 𝑣𝑛 ]

JFilter(𝑃,𝑄 )K = 𝜆𝑥. [J𝑃K(𝑥 ) = True] × J𝑄K(𝑥 )
JProj(𝑓 ,𝑄 )K = 𝜆𝑥.

∑︁
𝑠 [𝑥 = J𝑓 K(𝑠 ) ] × J𝑄K(𝑠 )

JJoin(𝑄1,𝑄2 )K = 𝜆𝑥1, 𝑥2 . J𝑄1K(𝑥1 ) × J𝑄2K(𝑥2 )
JUnion(𝑄1,𝑄2 )K = 𝜆𝑥. J𝑄1K(𝑥 ) + J𝑄2K(𝑥 )

JGroupBy(𝑘, 𝛼 (𝑓 ),𝑄 )K = 𝜆𝑥, 𝑦. ∥∑︁𝑠 [𝑥 = J𝑘K(𝑠 ) ] × J𝑄K(𝑠 ) ∥
× [𝑦 = HOp(𝛼, 𝜆𝑦′ . ∑︁𝑠J𝑄K(𝑠 )
× [𝑥 = J𝑘K(𝑠 ) ∧ 𝑦′ = J𝑓 K(𝑠 ) ] ) ]

JDistinct(𝑄 )K = 𝜆𝑥. ∥J𝑄K(𝑥 ) ∥
JMinus(𝑄1,𝑄2 )K = 𝜆𝑥. ∥𝑄1 (𝑥 ) × ¬𝑄2 (𝑥 ) ∥

JQOp(𝑜, 𝑣1, . . . , 𝑣𝑛,𝑄 )K = 𝜆𝑥. QOp(𝑜, 𝑣1, . . . , 𝑣𝑛, J𝑄K) (𝑥 )

(5)

Moreover, the semantics of scalar expressions is defined as:

JExists(𝑄)K = ∥∑︁𝑠J𝑄K(𝑠)∥
JOp(𝑜, 𝑣1, . . . , 𝑣𝑛)K = Op(𝑜, J𝑣1K, . . . , J𝑣𝑛K)

JHOp(𝑜, 𝑣1, . . . , 𝑣𝑛, 𝑄)K = HOp(𝑜, J𝑣1K, . . . , J𝑣𝑛K, J𝑄K).

To keep track of context information, we sometimes annotate ex-
pression 𝑄 as Γ | Δ | Φ ⊢ 𝑄 , where Γ and Δ are respectively the list
of table symbols and other uninterpreted symbols that 𝑄 may refer
to, and Φ is a predicate over Γ and Δ that would be satisfied. For
a pair of queries of the same schema under the same context, we
define the query equivalence problem Γ | Δ | Φ ⊢ 𝑄1

?
= 𝑄2 to be

the problem of deciding equality of the Q-expressions

Γ | Δ, 𝑠 | Φ ⊢ J𝑄1K(𝑠) = J𝑄2K(𝑠) .

That is, for all instantiations of the tables in Γ and variables in Δ
such that Φ is satisfied, and any possible row 𝑠 , the multiplicity of 𝑠
in𝑄1 is the same as that of 𝑠 in𝑄2. For brevity, in the following we
omit context annotations when they can be inferred.

3.3 Integrity constraints
SQL allows user to define three types of integrity constraints within
CREATE TABLE clauses, namely the primary key (uniqueness), the
foreign key, and user-defined check constraints. Qed models such
constraints by rewriting the Q-expressions as well as their surround-
ing context, such that checking the equality of those Q-expressions
are equivalent before and after applying the rewrites.
Primary key constraints. If table 𝑅 has schema 𝐾 × 𝑆 , where there is
a column 𝑘 of type 𝐾 being the primary key of 𝑅, then there exists
a function 𝑓 : 𝐾 → 𝑆 representing the functional dependency of
the non-key columns on the key columns, over the subset of 𝐾 that
is contained in 𝑅. Conversely, any subset of 𝐾 combined with a
function 𝑓 : 𝐾 → 𝑆 induces a table 𝑅 with primary key on 𝐾 . In
fact, for any logical predicate 𝑃 over a table, we have that

∀𝑅 with primary key 𝑘. 𝑃 (𝑅)
⇐⇒ ∀𝑅′, 𝑓𝑅 . 𝑃 (𝜆𝑘, 𝑠. ∥𝑅′ (𝑘)∥ × [𝑠 = 𝑓𝑅 (𝑘)]).

(6)

This means that for table 𝑅 with a primary key 𝑘 , we can rewrite

𝑅 ⊢ 𝑅 ⇝ 𝑅′ | 𝑓𝑅 ⊢ 𝜆𝑘, 𝑠. ∥𝑅′ (𝑘)∥ × [𝑠 = 𝑓𝑅 (𝑘)] . (7)

Note that we change from having the table symbol 𝑅 (of schema
𝐾 × 𝑆) to another table symbol 𝑅′ (of schema 𝐾 ) in the context, and
substitute 𝑅 with an equivalent relation containing 𝑅′ in the body.
When 𝑘 is the only column in 𝑅 we can regard the non-key columns
being of the unit type and trivializing the functional dependency
𝑓𝑅 . Hence, the above rule simplifies to:

𝑅 ⊢ 𝑅 ⇝ 𝑅 ⊢ 𝜆𝑘. ∥𝑅(𝑘)∥ . (8)

Compared to modeling primary keys through rewrite rules on the
query syntax as in SPES [18], which fails to capture the full seman-
tics, our approach is complete as shown in eq. (6). Moreover, eq. (7)
only introduces new uninterpreted symbols that is easily encoded
and reasoned by SMT solvers, in comparison to maintaining an
extra group of special query rewrite rules that may or may not be
captured by the normal forms as presented in SPES.
Foreign key constraints. Consider 𝑅 is a table of schema 𝐾 ×𝐴 with
a primary key on 𝐾 , and 𝑆 being a table of schema 𝐵 × 𝐾 with a
foreign key of type 𝐾 referencing to keys in 𝑅. This means that for
any (𝑏, 𝑘) in 𝑆 , there exist exactly one 𝑎 ∈ 𝐴 such that (𝑘, 𝑎) occurs
exactly once in 𝑅, which is captured by the following equality:

∀𝑏, 𝑘. 𝑆 (𝑏, 𝑘) = 𝑆 (𝑏, 𝑘) ×∑︁𝑎∈𝐴 𝑅(𝑘, 𝑎) = 𝑆 (𝑏, 𝑘) × ∥𝑅′ (𝑘)∥ .

This rule is employed eagerly in UDP [7], but if 𝑅 additionally has
a foreign key constraint referring back to 𝑆 , such process would
not terminate due to the cyclical reference.

We resolve the non-termination of rewrites by encoding the for-
eign key constraint as a single global logical formula, allowing SMT
solvers to lazily unfold the consequences as needed. Concretely,
the above intuition can be expressed as:

𝑆 ⊢ 𝑆 ⇝ 𝑆, 𝑅′ | ∀𝑏, 𝑘. ∥𝑆 (𝑏, 𝑘)∥ → ∥𝑅′ (𝑘)∥ ⊢ 𝑆. (9)
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As a derived rule, when 𝑆 has both the primary key constraint and a
foreign key constraint, we can apply both eqs. (7) and (9) to obtain

𝑆 ⊢ 𝑆 ⇝ 𝑆 ′, 𝑅′ | ∀𝑏. ∥𝑆 ′ (𝑏)∥ → ∥𝑅′ (𝑓𝑆 (𝑏))∥ ⊢ 𝑆.
Check constraints. Suppose on a table 𝑅 of schema 𝑆 , we have a
check constraint𝐶 expressed as a logical predicate using the syntax
for scalar expressions in Fig. 2 over 𝑆 . The check constraint ensures
all rows in 𝑅 satisfy 𝐶 , hence gives the rewrite rule:

𝑆 ⊢ 𝑆 ⇝ 𝑆 | ∀𝑠 . ∥𝑅(𝑠)∥ → 𝐶 (𝑠) ⊢ 𝑆.

3.4 NULL semantics
Since NULL values are allowed to occur under any typing context
in SQL, we equip every type 𝑇 with a distinguished value Null𝑇 .
For elementary types such as Integer and Boolean, we do this
systematically by lifting them to the option type Option(𝑇 ) in the
semantics, using the additional element as the distinguished NULL
value. Such translation is supported by modern SMT solvers as the
option types and can be defined as custom algebraic data types.
In general, for an 𝑛-ary primitive operation 𝑓 that is well-defined
on non-NULL values, the behavior of Op(𝑓 , 𝑎1, . . . , 𝑎𝑛) is extended
to return NULL exactly when some 𝑎𝑖 is NULL. Hence, we can
systematically lift many primitive operations such as + and × that
occurs in the surface syntax into the corresponding operations that
also operates on nullable values.

The above rule, however, has a few exceptions [14]. For the SQL
Boolean operations And and Or, we follow three-value logic:

𝑎 And 𝑏 ≔ ite(𝑎 = Null,

ite(𝑏 = True,Null, 𝑏),
ite(𝑎 = True, 𝑏, 𝑎)),

𝑎 Or 𝑏 ≔ ite(𝑎 = Null,

ite(𝑏 = False,Null, 𝑏),
ite(𝑎 = False, 𝑏, 𝑎)),

where ite denotes the if-then-else construct. Another special case
is the Some operator, appearing in SQL as 𝑎 ⟨cmp⟩ Some 𝑄 , which
checks if there is some row 𝑟 in the subquery 𝑄 that compares
with 𝑎 using the comparison operator 𝑎 ⟨cmp⟩ 𝑟 . The usual 𝑎 In 𝑄
construct is just the special case when ⟨cmp⟩ is the SQL equality
operator. However, complications arise when 𝑎 itself is NULL or
when 𝑅 contains NULL values, and we use the following definition:
𝑎 ⟨cmp⟩ Some𝑄 ≔ ite(∃𝑥 . ∥𝑄 (𝑥)∥ ∧ (𝑥 ⟨cmp⟩ 𝑎) = True, True,

ite(∃𝑥 . ∥𝑄 (𝑥)∥ ∧ (𝑥 ⟨cmp⟩ 𝑎) = Null,Null, False)) .
In aggregations, the difference in NULL value processing (the

COUNT(*) vs. COUNT(k) functions) is modeled by optionally apply-
ing a non-NULL filter before applying the aggregating function.

4 EQUIVALENCE CHECKING ALGORITHM
FOR THE COMPLETE QUERY FRAGMENT

We first describe an algorithm that decides on bag-semantic equiva-
lence of queries for fragment we define below. Unlike prior work [9]
that focuses on UCQ, we define a new fragment that additionally
allows scalar expressions from some first-order theory 𝑇 , instead
of confining to only = and ∧ in UCQ. Although it is restricted com-
pared to the full query syntax given in Sec. 3, we find a substantial
number of real-world query pairs fall into this fragment as we will
discuss in Sec. 6. Assuming the existence of on oracle O that can
decide the satisfiability problem of 𝑇 (e.g., an ideal SMT solver), we
describe a complete query equivalence checking algorithm where

the structure of the new fragment is captured by introducing the
scoped and linearized normal form (SNF and LNF, see Secs. 4.1
and 4.2), we define a complete unification algorithm (Alg. 3) on
LNFs below, and prove its completeness in Sec. 4.4.2

Concretely, we define our complete fragment as follows.

Definition 1. For some first-order theory 𝑇 , we define the query
fragment F𝑇 composed of Table, Values, Filter, Proj, Join, and Union
operators defined in Fig. 2, where all the involved values 𝑣𝑖 , projection
expressions 𝑓 , and filter conditions 𝑃 are definable in the theory 𝑇 .
We also allow primary key constraints on the tables involved.

As mentioned, we assume the existence of an oracle O𝑇 for F𝑇
where O𝑇 can decide any satisfiability problem in 𝑇 . Equivalently,
for any context Γ and formula 𝜙 in 𝑇 under the context Γ, we
can check if 𝜙 holds under all possible instantiation of the context
Γ, denoted Γ ⊢O𝑇 𝜙 , by querying the oracle O𝑇 whether ¬𝜙 is
unsatisfiable with uninterpreted symbols from Γ. Our method is
generic over the underlying theory 𝑇 , hence the user can choose
any theory 𝑇 and its solver. Here we fix a theory 𝑇 (decidable by
some oracle O) with the following assumptions:

(1) The theory 𝑇 contains at least the equality logic with unin-
terpreted function and predicate.

(2) For every sort 𝑆 in the theory 𝑇 , a total order < on 𝑆 is
definable in the oracle.

(3) The oracle also supports reasoning with natural number
addition +, and the if-then-else construct ite.

These assumptions are satisfied by modern solvers such as SMT.
With this background, we describe an algorithm that completely
decides the query equivalence problem in F with the oracle O.

4.1 Normalization
The queries in the fragment F can be normalized in a way that
we can exploit during equivalence check. Hence our first step is to
rewrite any Q-expression J𝑄K obtained from some query 𝑄 ∈ F
into the following normal form.

Definition 2. An Q-expression𝑈 under some context Γ | Δ is in
scoped normal form (SNF) when it is the sum of 𝑛 normal terms

Γ | Δ ⊢ 𝑈 = 𝑇1 + · · · +𝑇𝑛,

where a normal term 𝑇 is in the form of𝑚 nested summations

Γ | Δ ⊢ 𝑇 =
∑︂

𝑅
𝑘1
1 (𝑠1 )

· · ·
∑︂

𝑅
𝑘𝑚
𝑚 (𝑠𝑚 )

[𝑃], (10)

Here 𝑃 , called the body of 𝑇 and denoted Bdy𝑇 , is a predicate under
the context Δ, 𝑠1, . . . , 𝑠𝑚 , i.e., it does not contain any table variables.
We use the notation∑︂
𝑅0 (𝑠 )

𝑈 ≔
∑︂
𝑠

∥𝑅(𝑠)∥ ×𝑈 ,
∑︂
𝑅𝑘 (𝑠 )

𝑈 ≔
∑︂
𝑠

𝑅(𝑠) × · · · × 𝑅(𝑠)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑘 times

×𝑈

to signify every variable introduced by a summation is always applied
to some table variable 𝑅 for some 𝑘 number of times, with the special
case of having ∥𝑅(𝑠)∥ when 𝑘 = 0.

2The completeness of Alg. 3 relies on the oracle O being complete, but even when O
can only incompletely solve satisfiability problems, Alg. 3 would still be sound.
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Additionally, we impose an ordering of the table variables in Γ,
which gives Γ = 𝑅1, 𝑅2, . . ., and require the summations in𝑇 introduce
variables applied to 𝑅𝑖 before those applied to 𝑅 𝑗 whenever 𝑖 < 𝑗 .

Since SNF is highly stylized, we define some additional opera-
tions that would be helpful for equivalence checking later.
• For a normal term 𝑇 , we use Scp𝑇 to denote the entire scope of
𝑇 , namely the list of all variables introduced by the summations
in 𝑇 (e.g., in Eq. (10), Scp𝑇 = 𝑠1, . . . , 𝑠𝑚).

• Furthermore, for a table variable 𝑅 in 𝑇 , we let Scp𝑅 𝑇 be the
sub-list of Scp𝑇 that contains only the summation variables that
are applied to 𝑅 when introduced by the summations in eq. (10).

• Similarly, we define Rel𝑇 (the relational scope of𝑇 ) to be the list
of table variables applied with summation variables (including
their power) introduced by the summations in 𝑇 , and Rel′𝑇 to
be the list of variables without the power (e.g., in (10), Rel𝑇 =

𝑅
𝑘1
1 , . . . , 𝑅

𝑘𝑚
𝑚 and Rel′𝑇 = 𝑅1, . . . , 𝑅𝑚).

For some 𝑅 and distinct 𝑠, 𝑠′ ∈ Scp𝑅 𝑇 , the notation 𝑇 [𝑠′/𝑠]
represents the new normal term based on 𝑇 but with:
• All occurrences of 𝑠 in Bdy𝑇 substituted with 𝑠′.
• The summation over 𝑠 by 𝑅𝑘 (𝑠) merged with that over 𝑠′ by
𝑅𝑙 (𝑠′) to form one summation over 𝑠′ by 𝑅𝑘+𝑙 (𝑠′).

And for a normal term Γ | Δ ⊢ 𝑇 , the notation𝑇 [𝑃] with Δ, Scp𝑇 ⊢
𝑃 being a predicate, represents the new normal term based on 𝑇
but with the body changed to 𝑃 .

Now we show that for all 𝑄 ∈ F , the Q-expression J𝑄K can
always be rewritten into the normal form. We proceed by induction
on a strengthened hypothesis: For Γ | Δ, 𝑥 ⊢ J𝑄K(𝑥), we can write
it as the sum of normal terms where each is of the form

Γ | Δ, 𝑥 ⊢ 𝑇 =
∑︂

𝑅
𝑘1
1 (𝑠1 )

· · ·
∑︂

𝑅
𝑘𝑚
𝑚 (𝑠𝑚 )

[𝑥 = 𝑓 (𝑠1, . . . , 𝑠𝑚) ∧ 𝑃],

and 𝑃 does not contain 𝑥 . The proof is given by construction in
Alg. 1. For the base cases, Table is already a normal term (line 3),
and similarly with Values (line 5). Inductively, Filter pushes down
its condition 𝑃 into each term with conjunction (line 7), and Proj
pushes down the projection function 𝑓 into each term with post-
composition, without introducing additional summation scopes
(line 10). For the binary operator Join, every term in the first SNF
is combined with every term in the other SNF by merging their
summation scopes and conjoining their bodies (line 13). Finally,
Unioning SNFs are simply concatenation of their terms (line 17).

4.2 Linearization
Deciding the equivalence of two SNF formulas can be reduced down
to comparing their normal terms, but equivalence checking of nor-
mal terms requires fixing an order for their respective summation
variables. For example, the terms

𝑅 | 𝑥 ⊢ 𝑇1 =
∑︁
𝑅 (𝑠1 )

∑︁
𝑅 (𝑠2 ) [𝑥 = 𝑠1],

𝑅 | 𝑥 ⊢ 𝑇2 =
∑︁
𝑅 (𝑠1 )

∑︁
𝑅 (𝑠2 ) [𝑥 = 𝑠2],

are identical if we (rightfully) swap the summation variables 𝑠1 and
𝑠2 in 𝑇2 for direct comparison. But 𝑇1 and 𝑇2 are not the same in
the sense of checking

𝑅 | 𝑥 ⊢ ∀𝑠1, 𝑠2 . [𝑥 = 𝑠1] ↔ [𝑥 = 𝑠2] .

Algorithm 1 Normalizing query to scoped normal form
Require: 𝑄 ∈ F
1: function snf(𝑄)
2: 𝑈 ←0
3: if𝑄 is of the form Table(𝑅) then
4: return 𝑅 | 𝑥 ⊢ ∑︁𝑅 (𝑠 ) [𝑥 = 𝑠 ]
5: else if𝑄 is of the form Values(𝑣1, . . . , 𝑣𝑛 ) then
6: return 𝑥 ⊢ [𝑥 = 𝑣1 ] + · · · + [𝑥 = 𝑣𝑛 ]
7: else if𝑄 is of the form Filter(𝑃,𝑄 ′ ) then
8: for all term𝑇 of snf(𝑄 ′ ) do
9: 𝑈 ←𝑈 +𝑇 [Bdy𝑇 ∧ 𝑃 ]
10: else if𝑄 is of the form Proj(𝑓 ,𝑄 ′ ) then
11: for all term 𝑦 ⊢ ∑︁

𝑅𝑘 (𝑠 )
[𝑦 = 𝑔 (𝑠 ) ∧ 𝑃 ] of snf(𝑄 ′ ) do

12: 𝑈 ←𝑈 + 𝑥 ⊢ ∑︁
𝑅𝑘 (𝑠 )

[𝑥 = 𝑓 (𝑔 (𝑠 ) ) ∧ 𝑃 ]
13: else if𝑄 is of the form Join(𝑄1,𝑄2 ) then
14: for all term 𝑥 ⊢∑︁𝑆 [𝑥 = 𝑓 ∧ 𝑃 ] of snf(𝑄1 ) do
15: for all term 𝑥 ′ ⊢∑︁𝑆 ′ [𝑥 ′ = 𝑓 ′ ∧ 𝑃 ′ ] of snf(𝑄2 ) do
16: 𝑈 ←𝑈 + 𝑥, 𝑥 ′ ⊢ ∑︁𝑆,𝑆 ′ [ (𝑥, 𝑥 ′ ) = (𝑓 , 𝑓 ′ ) ∧ 𝑃 ∧ 𝑃 ′ ]
17: else if𝑄 is of the form Union(𝑄1,𝑄2 ) then
18: return snf(𝑄1 ) + snf(𝑄2 )
19: return𝑈

This is because that variables in Scp𝑅 𝑇1 or Scp𝑅 𝑇2 can be equiv-
alently introduced in any order, while when comparing normal
terms by their body, we enforce an ordering of scope by putting
both sides under the same universal quantifier.

Another problematic case comes from redundant variables:

𝑅 | 𝑥 ⊢ 𝑇1 =
∑︁
𝑅 (𝑠1 )

∑︁
𝑅 (𝑠2 ) [(𝑥 = 𝑠2) ∧ (𝑠1 = 𝑠2)],

𝑅 | 𝑥 ⊢ 𝑇2 =
∑︁
𝑅2 (𝑠1 ) [𝑥 = 𝑠1],

where in𝑇1 we can avoid 𝑠2 by removing the scope and substituting
all occurrences of 𝑠2 with 𝑠1 to obtain an identical term to 𝑇2. But
it is hard to check the equivalence of 𝑇1 and 𝑇2 as is due to their
mismatching summation scope. In general, our semiring semantics
over N̄ admits the following for eliminating summation:∑︂

𝑥

[𝑥 = 𝑎] × 𝑓 (𝑥) = 𝑓 (𝑎) (11)

Our solution is to fix variable ordering and eliminate redundancy
in normal terms via linearization.

Definition 3. A Q-expression 𝑈 is in linearized normal form
(LNF) if it is in SNF and that for all normal term 𝑇 in 𝑈 and distinct
table variable 𝑅 in𝑇 , Bdy𝑇 implies the variables Scp𝑅 𝑇 are pairwise-
distinct and form a linearly ordered chain.

Such property effectively fixes the ordering of Scp𝑅 𝑇 for any
𝑅 in 𝑇 , and since we have already fixed the ordering of distinct
table variables, the entire scope Scp𝑇 now have a well-defined total
order of summation variables.

The procedure to rewrite an SNF𝑈 into an equivalent and LNF is
presented in Alg. 2, where Lin(𝑋 ) enumerates all possible relations
between the variables in set 𝑋 using the total order < or equality.
Concretely, if 𝑋 = {𝑎,𝑏, 𝑐}, then we have

Lin({𝑎,𝑏, 𝑐})
= {𝑎 < 𝑏 < 𝑐, 𝑎 < 𝑐 < 𝑏, 𝑏 < 𝑎 < 𝑐, 𝑏 < 𝑐 < 𝑎, 𝑐 < 𝑎 < 𝑏, 𝑐 < 𝑏 < 𝑎}
∪ {𝑎 < 𝑏 = 𝑐, 𝑏 = 𝑐 < 𝑎, 𝑎 = 𝑏 < 𝑐, 𝑐 < 𝑎 = 𝑏, 𝑎 = 𝑐 < 𝑏, 𝑏 < 𝑎 = 𝑐}
∪ {𝑎 = 𝑏 = 𝑐}.
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Algorithm 2 Linearizing the normal form
Require: Γ | Δ ⊢ 𝑈 in SNF
1: function lin(𝑈 )
2: 𝑈 ′ ←0
3: for all term𝑇 of𝑈 do
4: 𝑅1, . . . , 𝑅𝑛 ←table symbols appear in𝑇
5: for all (𝐶1, . . . ,𝐶𝑛 ) ∈ Lin(Scp𝑅1

𝑇 ) × · · · × Lin(Scp𝑅𝑛 𝑇 ) do
6: 𝑇 ′ ←𝑇 [𝐶1 ∧ · · · ∧𝐶𝑛 ∧ Bdy𝑇 ]
7: for all 𝑖 ∈ {1, . . . , 𝑛} do
8: 𝑠1, . . . , 𝑠𝑚 ←Scp𝑅𝑖 𝑇

′

9: for all 0 < 𝑗 < 𝑘 ≤ 𝑚 do
10: if Δ, Scp𝑇 ′ ⊢O Bdy𝑇 ′ → 𝑠 𝑗 = 𝑠𝑘 then
11: 𝑇 ′ ←𝑇 ′ [𝑠 𝑗 /𝑠𝑘 ]
12: Reorder variables in Scp𝑇 ′ based on𝐶1, . . . ,𝐶𝑛

13: 𝑈 ′ ←𝑈 ′ +𝑇 ′
14: return𝑈 ′

Every normal term is expanded on the possible cases given by Lin
on the set of summation variables applied to the same table vari-
able (line 5). For example, expanding a term with two summation
variables

∑︁
𝑅 (𝑎)

∑︁
𝑅 (𝑏 ) [𝑃] gives∑︁

𝑅 (𝑎)
∑︁
𝑅 (𝑏 ) [(𝑎 < 𝑏) ∧ 𝑃] +∑︁𝑅 (𝑎)

∑︁
𝑅 (𝑏 ) [(𝑎 > 𝑏) ∧ 𝑃]

+∑︁𝑅 (𝑎)
∑︁
𝑅 (𝑏 ) [(𝑎 = 𝑏) ∧ 𝑃] .

After expansion, we can eliminate redundant summation variables
in each term 𝑇 (line 10) by substitution 𝑇 [𝑠′/𝑠] whenever any pair
of variables 𝑠 and 𝑠′ are equal (implied by Bdy𝑇 ). At this point in
each term, all variables applied to the same table symbol should
form a totally-ordered chain by <, and we can rearrange them in
the strictly ascending order.

4.3 Unification
We finally check for equivalence of two LNF expressions using
Alg. 3. To do so, we first attempt to merge terms in each LNF. For
example, consider the following two LNFs

𝑅 | 𝑃, 𝑥 ⊢ ∑︁𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ 𝑃 (𝑠)] +∑︁𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ ¬𝑃 (𝑠)],
𝑅 | 𝑃, 𝑥 ⊢ ∑︁𝑅 (𝑠 ) [𝑥 = 𝑠] .

The two LNFs are equivalent since∑︁
𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ 𝑃 (𝑠)] +∑︁𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ ¬𝑃 (𝑠)]

=
∑︁
𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ 𝑃 (𝑠)] + [(𝑥 = 𝑠) ∧ ¬𝑃 (𝑠)]

=
∑︁
𝑅 (𝑠 ) [(𝑥 = 𝑠) ∧ (𝑃 (𝑠) ∨ ¬𝑃 (𝑠))] = ∑︁

𝑅 (𝑠 ) [𝑥 = 𝑠] .

In general, we group terms by their relational scope (as given by
Rel𝑇 ) on each side (line 4 and 5), and for some group of terms with
the scope 𝑅𝑘 (𝑠), we then have the equivalence problem∑︁

𝑅𝑘 (𝑠 ) [𝑃1] + · · · + [𝑃𝑛]
?
=
∑︁
𝑅𝑘 (𝑠 ) [𝑃

′
1] + · · · + [𝑃

′
𝑚],

which can be checked by the oracle by comparing the bodies over
all possible instantiation of the variables 𝑠 , i.e.,

𝑠 ⊢O [𝑃1] + · · · + [𝑃𝑛]
?
= [𝑃 ′1] + · · · + [𝑃

′
𝑚] .

The [·] and + operator can be modeled using the 𝑖𝑡𝑒 construct and
addition on natural numbers in the oracle. Hence, we can finish the
equivalence check with the unification procedure in Alg. 3.

Algorithm 3 Unifying LNF pair
Require: Γ | Δ ⊢ 𝑈1,𝑈2 in LNF
1: function unify(𝑈1,𝑈2)
2: for all distinct relational scope 𝑆 appeared in𝑈1 or𝑈2 do
3: 𝑠 ←summation variables in 𝑆

4:
∑︁

𝑆 [𝑃1 ], . . . ,
∑︁

𝑆 [𝑃𝑛 ] ←terms𝑇 of𝑈1 where Rel𝑇 = 𝑆

5:
∑︁

𝑆 [𝑃 ′1 ], . . . ,
∑︁

𝑆 [𝑃 ′𝑚 ] ←terms𝑇 ′ of𝑈2 where Rel𝑇 ′ = 𝑆

6: if Δ, 𝑠 ⊬O [𝑃1 ] + · · · + [𝑃𝑛 ] = [𝑃 ′1 ] + · · · + [𝑃 ′𝑚 ] then
7: return False
8: return True

4.4 Completeness of decision procedure
Theorem. For a pair of queries under the same context Γ | Δ |

Φ ⊢ 𝑄1, 𝑄2, our equivalence deciding algorithm described above is
complete. In other words:

J𝑄1K = J𝑄2K→ unify(linear(norm(𝑄1), linear(norm(𝑄2)) .

Proof. We prove by the contrapositive. Let 𝑠 ⊢ 𝑈1 and 𝑠 ⊢ 𝑈2 be
the LNFs of 𝑠 ⊢ J𝑄1K(𝑠) and 𝑠 ⊢ J𝑄2K(𝑠) respectively, and we wish
to show𝑈1 ≠ 𝑈2. During unification, we group the terms of𝑈1 and
𝑈2 by their relational scope, and perform group-wise comparison.
Hence, for any relational scope 𝑆 , there is a pair of groups of terms

𝐺𝑆 = {𝑇 ∈ 𝑈1 | Rel𝑇 = 𝑆}, 𝐺 ′𝑆 = {𝑇 ′ ∈ 𝑈2 | Rel𝑇 ′ = 𝑆},
that is checked for equality between (⊕ denoting n-ary plus +)

𝐵𝑆 =
⨁︁

𝑇 ∈𝐺𝑆
[Bdy𝑇 ], 𝐵′

𝑆
=
⨁︁

𝑇 ′∈𝐺 ′
𝑆
[Bdy𝑇 ′]

as described in Line 6 of Alg. 3. By the assumption, some pairs of
groups failed such equality check, and among which we pick one
with a relational scope 𝑆∗ that has the minimal number of variables.
For all the other groups that are equal, we can safely ignore them
going forward as they can be canceled out equally on both sides.
Additionally, we use 𝑆∗′ be the same scope as 𝑆∗ but with the power
on table variables ignored (i.e., 𝑆∗′ = Rel′𝑇 for some 𝑇 ∈ 𝐺𝑆∗ ), and
𝑆∗
𝑅
for the variables in 𝑆∗ that are applied to some table symbol 𝑅

(i.e., 𝑆∗
𝑅
= Rel𝑅 𝑇 for some 𝑇 ∈ 𝐺𝑆∗ ).

We now construct an instance of Δ and a family of instances of
Γ based on 𝑆∗ and later show at least one such instantiation leads
to the desired conclusion 𝑈1 ≠ 𝑈2. First, since the pair of groups
from 𝑆∗ failed the equality check during unification, there must
exist some instantiation 𝛿 of Δ and 𝜎 of the summation variables
in 𝑆∗ under which the bodies of the group are different

𝐵𝑆∗ [𝛿, 𝜎] ≠ 𝐵′𝑆∗ [𝛿, 𝜎] . (12)

The instantiation 𝜎 can be regarded as a sequence of values, where
the 𝑖-th value is the instantiation of the 𝑖-th summation variable
in 𝑆∗. Moreover, we use 𝜎𝑅 to denote the subsequence of 𝜎 which
form the instantiation of the variables in 𝑆∗ that are applied to 𝑅.

Now suppose there are𝑚 values in the sequence 𝜎 , and we will
construct a family of instances of Γ over the set𝑁 = N𝑚 . Concretely,
over the index 𝑛 ∈ 𝑁 we construct an instantiation 𝛾 of Γ, namely
for each table variable 𝑅 ∈ Γ, let

𝛾𝑅 (𝑠) =
{︃
𝑛𝑖 if 𝑠 ∈ 𝜎𝑅 and 𝑠 is the 𝑖-th element of 𝜎
0 otherwise

,

where 𝑛𝑖 denotes the 𝑖-th component of 𝑛. Such instance of 𝑅 is
well-defined, since the LNF already ensures the values in 𝜎𝑅 to be
pairwise distinct, which guarantees 𝛾𝑅 to be a well-formed function.
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Under the constructed context instantiations 𝛿 and 𝛾 , we may
evaluate the LNF of both sides, 𝑈1 and 𝑈2. Many terms in both
sides will evaluate to zero, and we claim that the remaining terms
that are non-zero will have a relational scope similar to 𝑆 , in that
for any 𝑇 ≠ 0, we have Rel′𝑇 = 𝑆∗′. Otherwise for some term
𝑇 ≠ 0 with Rel′𝑇 ≠ 𝑆∗′, there must exist some table variable 𝑅
such that Scp𝑅 𝑇 is longer than 𝑆∗

𝑅
, since we have chosen 𝑆∗ to have

the minimal number of variables. Since 𝑇 is in LNF, there must
be some 𝑠 ∈ Scp𝑅 𝑇 where Bdy𝑇 implies 𝑠 is always distinct from
the values in 𝜎𝑅 . But since 𝑠 is applied to 𝑅 in the term, and the
instantiation 𝛾𝑅 vanishes at all points beyond those of 𝜎𝑅 , the term
𝑇 ′ must also vanish under the evaluation.

Finally, we inspect the remaining non-zero terms, which all
belong to groups with a scope similar to 𝑆∗ as shown above. For
any such group𝐺𝑆 in𝑈1 (or similarly in𝑈2), the variable and table
variable introduced by the 𝑖-th summation 𝑅𝑘𝑖

𝑖
(𝑠𝑖 ) ∈ 𝑆 evaluates to

𝛾
𝑘𝑖
𝑅𝑖
(𝜎𝑖 ) = 𝑛𝑘𝑖𝑖 . And as we have a total order of variables (ensured

by LNF), the entire group evaluates to a monomial over the 𝑛𝑖 ’s

𝐺𝑆 [𝛿, 𝜎,𝛾] = 𝐵𝑆 [𝛿, 𝜎] × 𝑛𝑘11 × · · · × 𝑛
𝑘𝑚
𝑚 .

Therefore, the remaining terms in𝑈1 (and similarly in𝑈2) evaluates
to a polynomial 𝑃1 (and similarly 𝑃2) over the variables 𝑛1, . . . , 𝑛𝑚 ,
where each term in 𝑃1 comes from a remaining group𝐺𝑆 in𝑈1 with
the coefficient being its body 𝐵𝑆 [𝛿, 𝜎] and the powers of variables
given by the scope of the group, 𝑆 . Two polynomials over variables
of natural numbers are equal if and only if all monomials of a certain
power have the same coefficient on both sides. However, since the
monomial corresponds to 𝑆∗ have different coefficients as assumed
in eq. (12), in the family of instantiation 𝛾 over 𝑁 , there must be
some instantiation for which 𝑃1 ≠ 𝑃2, and hence𝑈1 ≠ 𝑈2. □

5 A GENERAL CHECKING ALGORITHM
While the procedure described above is complete (modulo a com-
plete solver for the chosen theory 𝑇 ), it can only handle a subset of
queries defined in Sec. 3. We now describe an incomplete checking
algorithm for our formalism that consists of two stages: first, we
normalize arbitrarily formed Q-expressions into a normal form
(Secs. 5.1 and 5.2), and then attempt to unify them (Sec. 5.3). The
normal form here is weaker than those defined in Secs. 4.1 and 4.2,
since we are working with a more general query fragment that
is less structured than the fragment in Sec. 4.1. Even though it
is incomplete, the wide range of input queries and good runtime
characteristic in the common cases make it performs exceptionally
well as we show in Sec. 6.

Similar to Sec. 4, we would assume the existence of an oracle
O, but here with only the power of incompletely deciding the satis-
fiability problem of the logical theories in interest. That is, when
checking a logical formula with free variables, O may give three
results: satisfiable, not satisfiable, or unknown. And as presented
later in Sec. 6, SMT solvers serve the role of the oracle O in Qed’s
implementation. We use the notation

Γ | Δ | Φ ⊢O 𝑃

to denote whether in O, checking the formula Φ ∧ ¬𝑃 with unin-
terpreted symbols from Γ and Δ returns the “not satisfiable” result.

Algorithm 4 Converting to sum–product normal form
Require: Q-expression Γ | Δ | Φ ⊢ 𝑈
1: function spnf(𝑈 )
2: 𝑈 ′ ←0
3: if𝑈 is of the form𝑈1 +𝑈2 then
4: return spnf(𝑈1 ) + spnf(𝑈2 )
5: else if𝑈 is of the form𝑈1 ×𝑈2 then
6: for all term

∑︁
𝑠1 [𝐿1 ] × 𝑉1 of spnf(𝑈1 ) do

7: for all term
∑︁

𝑠2 [𝐿2 ] × 𝑉2 of spnf(𝑈2 ) do
8: 𝑈 ′ ←𝑈 ′ +∑︁𝑠1,𝑠2 [𝐿1 ∧ 𝐿2 ] × 𝑉1 × 𝑉2
9: else if𝑈 is of the form

∑︁
𝑠 𝑉 then

10: for all term𝑇 of spnf(𝑉 ) do
11: 𝑈 ′ ←𝑈 ′ +∑︁𝑠 𝑇

12: else if𝑈 is of the form ∥𝑉 ∥ then return [spnf(𝑉 ) ≠ 0]
13: else if𝑈 is of the form ¬𝑉 then return [spnf(𝑉 ) = 0]
14: else return𝑈

15: return𝑈 ′

5.1 Normalization
As × and

∑︁
distributes over +, and ∑︁

commutes with ×, all Q-
expressions can be normalized as follows, allowing the equalities
generated by those rules become trivially provable.

Definition 4. An Q-expression𝑈 under some context Γ | Δ | Φ
is in sum-product normal form (SPNF) when it is the sum of some 𝑛
sum–product normal terms

Γ | Δ | Φ ⊢ 𝑈 = 𝑇1 + · · · +𝑇𝑛,
where a sum-product normal term 𝑇 is some𝑚 nested summations

Γ | Δ | Φ ⊢ 𝑇 =
∑︂

𝑠1,...,𝑠𝑚

[𝐿] ×𝑉 .

Here 𝐿 is any first-order logical formula, and 𝑉 is the product of
some 𝑘 applications of some table variable 𝑅 (or uninterpreted query
operator QOp(𝑜, 𝑣1, . . . , 𝑣𝑛, 𝑄)) with some expression, namely

Γ | Δ, 𝑠1, . . . , 𝑠𝑚 | Φ ⊢ 𝑉 = 𝑅1 (𝑒1) × · · · × 𝑅𝑘 (𝑒𝑘 ).
Since an Q-expression in SPNF is always the finite sum of normal
terms, we use the convention of regarding SPNFs as lists of normal
terms in the presentation of algorithms.

Compared to SNF introduced in Sec. 4.1, SPNF allows any Q-
expressions to be normalized into it. Moreover, SPNF is less struc-
tured in that table variables are now free to occur anywhere in the
body ([𝐿] ×𝑉 ) of terms

∑︁
𝑠 [𝐿] ×𝑉 , whereas in SNF, table variables

are only allowed to be applied with a fresh summation variable.
Alg. 4 describes a one-pass normalization procedure by recursion
on the structure of Q-expressions. For example, the Q-expression:

𝑅(𝑥) × (∑︁𝑦 (𝑆 (𝑦) + 𝑅(𝑦)) +
∑︁
𝑧 ∥𝑆 (𝑧)∥ × [𝑃 (𝑧)])

would be normalized into∑︁
𝑦 𝑅(𝑥) × 𝑆 (𝑦) +

∑︁
𝑦 𝑅(𝑥) × 𝑅(𝑦)

+∑︁𝑧 [𝑆 (𝑧) ≠ 0] × 𝑅(𝑥) +∑︁𝑧 [𝑃 (𝑧)] × 𝑅(𝑥).
One may notice that the form [𝑈 ≠ 0] generated when we

encounter a squash operator ∥·∥ (and similarly for the negation
¬), would make a Q-expression𝑈 present in a logical formula. As
presented later, we would include such logical formula in the satis-
fiability problem for the oracle O, seemingly requiring O to already
have the power of deciding equality in the theory of Q-expressions,
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Algorithm 5 SPNF Stabilization
Require: Q-expression in SPNF Γ | Δ | Φ ⊢ 𝑈
1: function stable(𝑈 )
2: 𝑈 ′ ←0
3: for all term

∑︁
𝑠 [𝐿] × 𝑉 of𝑈 do

4: 𝑠′ ←𝑠 , 𝐿′ ←𝐿,𝑉 ′ ←𝑉

5: for all variable 𝑠𝑖 ∈ 𝑠 do
6: 𝑠′′ ← 𝑠′ \ 𝑠𝑖 ⊲ Remove 𝑠𝑖 from the variable list 𝑠′

7: ⊲ Eliminate 𝑠𝑖 if a dependency over others is found. ⊳

8: if ∃(Δ ⊢ 𝑓 ) . Γ | Δ, 𝑠′ | Φ ⊢O 𝐿′ → 𝑓 (𝑠′′ ) = 𝑠𝑖 then
9: 𝑠′ ← 𝑠′′ , 𝐿′ ←𝐿′ [ 𝑓 (𝑠′′ )/𝑠𝑖 ],𝑉 ′ ←𝑉 ′ [ 𝑓 (𝑠′′ )/𝑠𝑖 ]
10: 𝑈 ′ ←𝑈 ′ +∑︁

𝑠′ [𝐿
′ ] × 𝑉 ′

11: return𝑈 ′

and defeating the point of our own equivalence checking algorithm!
Instead, using the following rewrites,

𝑈1 +𝑈2 ≠ 0 ⇝ 𝑈1 ≠ 0 ∨𝑈2 ≠ 0, ∥𝑈 ∥ ≠ 0 ⇝ 𝑈 ≠ 0,

𝑈1 ×𝑈2 ≠ 0 ⇝ 𝑈1 ≠ 0 ∧𝑈2 ≠ 0, [𝑃] ≠ 0 ⇝ 𝑃,∑︁
𝑠 𝑈 ≠ 0 ⇝ ∃𝑠 . 𝑈 ≠ 0,

the form 𝑈 ≠ 0 (or similarly 𝑈 = 0) can be translated into a Q-
expression-free first-order logical formula. In this way, any remain-
ing Q-expressions would only appear in the form of fully applied
table symbols or uninterpreted query operators, e.g.,

𝑅(𝑎) ≠ 0 or QOp(𝑣1, . . . , 𝑣𝑛, 𝑄) (𝑎) ≠ 0,

which is further encoded in the manner described in Sec. 5.3.

5.2 Stabilization
After converting to SPNF, we need an additional procedure before
we can check for equivalence. Consider the rule of composing two
consecutive projections into one, which results in the following:

𝑅 | 𝑥 ⊢ ∑︁𝑦,𝑧 [𝑥 = 𝑓 (𝑦)∧𝑦 = 𝑔(𝑧)]×𝑅(𝑧) ?
=
∑︁
𝑧 [𝑥 = 𝑓 (𝑔(𝑧))]×𝑅(𝑧) .

(13)
While the two expressions differ in their summation scopes, the
summation variable 𝑦 on the left can be expressed in terms of other
variables as 𝑔(𝑧), making the summation over 𝑦 unnecessary by
applying eq. (11). In general, for a normal term like

∑︁
𝑥 [𝐿] ×𝑉 , we

are interested in any potential equalities (between each summation
variable 𝑥𝑖 and some independent expression) 𝑃 that are implied by
𝐿, since [𝐿] = [𝑃 ∧ 𝐿] = [𝑃] × [𝐿] whenever 𝐿 → 𝑃 . Unlike prior
work [7], this allows us to discover variable dependencies beyond
those present in the syntactic level, resulting in more unaligned
summations being reduced to have aligned scope. We call this
process the stabilization of SPNF as shown in Alg. 5.

Every variable 𝑠𝑖 of a term is checked for redundancy by search-
ing for some functional dependency 𝑓 over the set of variables 𝑠′′

that are not yet eliminated (line 8). We have devised two ways to
find such 𝑓 . First is to use synthesis tools such as Syntax-Guided
Synthesis (SyGuS) [1] to directly synthesize 𝑓 . Another way is to
first obtain the congruence classes of all the expressions involved
in the term by calling SMT solvers, where each class contains a
subset of the terms that are equal to each other, and based on which
we can analyze the congruence classes to find expressions that are
equal to 𝑠𝑖 and get a suitable 𝑓 . In our example (eq. (13)), for the
left-hand side we ask the SMT solver for the congruence classes
of 𝑥 , 𝑦, 𝑧, 𝑓 (𝑦), and 𝑔(𝑧) to get the groups {𝑥, 𝑓 (𝑦)}, {𝑦,𝑔(𝑧)}, {𝑧},

which can be used to discover the dependency 𝑦 = 𝑔(𝑧) and elimi-
nate the variable 𝑦. For the right-hand side, the congruence classes
are {𝑥, 𝑓 (𝑔(𝑧))} and {𝑧}, and since the summation variable 𝑧 is the
only member of its class, no elimination is performed.

The second strategy can theoretically miss cases if the solution is
absent as an expression already in the term. For example, given the
condition [𝑥 + 3 = 10], querying the SMT solver for the congruence
information of 𝑥 , 3, 𝑥+3, and 10will return that 𝑥 is the onlymember
of its congruence class, and thus 𝑥 will not be eliminated when it is
a summation variable, despite having a true dependency 𝑥 = 7 that
may be discovered by a SyGuS solver. In practice, however, we find
both approaches equally powerful in our evaluation and choose the
latter for implementation ease.

5.3 Unification
Once we normalize and stabilize the Q-expressions to SPNF, we
implement equivalence checking using Alg. 6. The core of the uni-
fication algorithm is the equality checking between two normal
terms and recursively handling the higher-order query and scalar
expressions as defined in the termEq function in Alg. 6. Before that,
we need to reduce the problem of comparing two SPNFs𝑈1 and𝑈2
down to comparing normal terms. We first eliminate terms that are
empty by checking if their body contains a trivially false predicate
(line 2 and 4). The commutativity of + is then accommodated by
performing pairwise comparisons for the terms in 𝑈1 and 𝑈2, and
cancelling out equated terms (line 7) to ensure a bijection between
terms of 𝑈1 and 𝑈2. Now we are ready to consider the equality
between two normal terms

∑︁
𝑠1 [𝐿1] ×𝑉1 and

∑︁
𝑠2 [𝐿2] ×𝑉2 where

𝑠1 and 𝑠2 are of the same length.

5.3.1 Summation scope permutation. For two summations sharing
the exact same summation variables, their equality can be checked
by comparing their bodies, i.e.,

(∀𝑠 . 𝑓 (𝑠) = 𝑔(𝑠)) → ∑︁
𝑠 𝑓 (𝑠) =

∑︁
𝑠 𝑔(𝑠). (14)

But here we have two distinct sets of summation variables 𝑠1 and 𝑠2
when comparing the normal terms, and commuting the summation
variables of a summation does not change its semantics. Hence,
before we align the scope of the normal terms and check for the
universal quantification as in (14), we need to enumerate all possible
permutations of 𝑠2 over 𝑠1. For a certain permutation 𝜎 , we can
apply that to the right-hand term and reduce the term equality
down to equality of term bodies:

Γ | Δ, 𝑠1 | Φ ⊢O [𝐿1] ×𝑉1 = [𝐿2 [𝜎]] ×𝑉2 [𝜎] . (15)

There can be a lot of permutations if there are many summation
variables. In practice, we set an upper limit of 24 permutation at-
tempts in the implementation, and empirically only about 2% of
cases in our evaluation dataset in Sec. 6 would go past the first
trivial permutation to find a match.

Linearization described in Sec. 4.2 is similar to scope permuta-
tion, but the more structured SNF in the complete fragment allows
us to explore fewer permutations. On the other hand, delaying
permutation down to term matching as we do here avoids the up-
front cost of eager linear expansion in Alg. 2, and the high bias
towards the trivial permutation in real-world query pairs make this
approach performs much faster in practice.
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5.3.2 Recursive equivalence check. We denote the goal of compar-
ing the body of the normal terms as

Γ | Δ | Φ ⊢ [𝐿1] ×𝑉1 = [𝐿2] ×𝑉2 (16)

However, as we may have higher-order operators (introduced by
QOp andHOp) that contains functions returning N̄ as their operands,
we cannot directly translate such construct into a first-order logic
formula. Instead, we first substitute every higher-order query ex-
pression such as QOp(𝑜, 𝑣1, . . . , 𝑣𝑛, 𝑄) with a fresh table variable
𝑅, and every such scalar expression HOp(𝑜, 𝑣1, . . . , 𝑣𝑛, 𝑄) with a
fresh variable 𝑥 . A priori, two syntactically different expressions
such as QOp(𝑜, 𝑣1, . . . , 𝑣𝑛, 𝜆𝑥 . 𝑊 ) and QOp(𝑜′, 𝑣 ′1, . . . , 𝑣

′
𝑛, 𝜆𝑥 . 𝑊

′)
would be assigned two different fresh variables 𝑅 and 𝑅′, but we
recover any congruence information like ∀𝑥 . 𝑅(𝑥) = 𝑅′ (𝑥) if we
can determine that 𝑜 and 𝑜′ are the same operator, the scalar argu-
ments 𝑣𝑖 and 𝑣 ′𝑖 match, and recursively, the Q-expressions𝑊 and
𝑊 ′ are equal.

To obtain the congruence information about the freshly intro-
duced variables, the recursive equivalence check of𝑊 and𝑊 ′ can
be soundly taken under the additional assumption 𝐿′1 ∨ 𝐿

′
2 in line

22 of Alg. 6. Intuitively, we would otherwise have ¬𝐿′1 ∧ ¬𝐿
′
2, in

which both [𝐿′1] and [𝐿
′
2] will be trivially zero, and so the two terms

([𝐿′1]×𝑉
′
1 and [𝐿′2]×𝑉

′
2 in line 23) would be trivially equal no matter

what the congruence information of the fresh variables would have
been. This allows us to automatically pass down certain conditions
when checking for equivalence of the sub-queries embedded inside
higher-order operators, which can be essential as illustrated earlier
in the motivating example of Sec. 2. Concretely in eq. (1), we first
introduce fresh variables for the aggregation functions:

𝑣1 = Sum(𝜆𝑦. 𝑅(𝑥,𝑦) × [𝑆 (𝑥) ≠ 0]), 𝑣2 = Sum(𝜆𝑦. 𝑅(𝑥,𝑦)),
turning the two terms into 𝑇 ′1 = [𝐿′1] and 𝑇

′
2 = [𝐿′2] with

𝐿′1 = ∃𝑦. 𝑅(𝑥,𝑦) ≠ 0 ∧ 𝑆 (𝑥) ≠ 0 ∧ 𝑟 = 𝑣1,
𝐿′2 = ∃𝑦. 𝑅(𝑥,𝑦) ≠ 0 ∧ 𝑟 = 𝑣2 ∧ 𝑆 (𝑥) ≠ 0.

The equivalence between 𝑇 ′1 and 𝑇 ′2 reduces to the problem of

deciding 𝑣1
?
= 𝑣2, which is checked by recursively comparing

𝑅(𝑥,𝑦) × [𝑆 (𝑥) ≠ 0] and 𝑅(𝑥,𝑦). Although they seemingly dif-
fer by the part [𝑆 (𝑥) ≠ 0], our technique allows us to made the
assumption 𝐿′1 ∨ 𝐿

′
2 (which contains the missing piece 𝑆 (𝑥) ≠ 0)

while doing the recursive comparison, under which we can con-
clude 𝑣1 = 𝑣2, and thus prove the equivalence. Formally, to verify
eq. (16) it is enough to check the following two clauses:

Γ′ | Δ′ | Φ∧ (𝐿′1∨𝐿
′
2) ⊢ 𝐶, Γ′ | Δ′ | Φ∧𝐶 ⊢ [𝐿′1] ×𝑉

′
1 = [𝐿′2] ×𝑉

′
2

(17)
Here 𝐿′1 is 𝐿1 with all higher-order operators substituted to fresh
variables, and so are 𝐿′2, 𝑉

′
1 , and 𝑉

′
2 . The context Γ′ denotes the

context extended from Γ with the newly introduced table variables,
and similarly Δ′ from Δ for the scalar variables. The proposition
𝐶 denotes the congruence information about the fresh variables
obtained through recursive equivalence checking.

5.3.3 Encoding term equivalence. Based on our semantics, for any
table 𝑅 of schema 𝑆 in the context Γ′, we should be ranging over all
of 𝑆 → N̄ when checking for the equivalence in eq. (17). However,
to better reflect real-world usage, we require that any such table
𝑅 contain any value 𝑠 : 𝑆 only finitely many times, i.e., can be

Algorithm 6 Unifying SPNFs
Require: Γ | Δ | Φ ⊢ 𝑈1,𝑈2 are SPNFs under the same context.
1: function unify(𝑈1,𝑈2)
2: for all term𝑇 of the form

∑︁
𝑠 [𝐿]×𝑉 of𝑈1 do

3: if Γ | Δ, 𝑠 | Φ ⊢O ¬(𝐿 ∧ ∥𝑉 ∥ ) then Remove𝑇 from𝑈1

4: for all term𝑇 of the form
∑︁

𝑠 [𝐿]×𝑉 of𝑈2 do
5: if Γ | Δ, 𝑠 | Φ ⊢O ¬(𝐿 ∧ ∥𝑉 ∥ ) then Remove𝑇 from𝑈2

6: if𝑈1 and𝑈2 have different length then return Unknown
7: for all term𝑇1 of𝑈1 do
8: 𝑀 ←False
9: for all term𝑇2 of𝑈2 do
10: if termEq(Γ | Δ | Φ ⊢ 𝑇1

?
= 𝑇2) then

11: Remove𝑇2 from𝑈2

12: 𝑀 ←True
13: break
14: if ¬𝑀 then return Unknown
15: return True
16: function termEq(Γ | Δ | Φ ⊢ ∑︁𝑠1 [𝐿1 ] × 𝑉1

?
=
∑︁

𝑠2 [𝐿2 ] × 𝑉2)
17: if 𝑠1 and 𝑠2 have different length then return False
18: for all bijective substitution 𝜎 of 𝑠2 with 𝑠1 do
19: 𝐿2,𝑉2 ←𝐿2 [𝜎 ],𝑉2 [𝜎 ] ⊲ Apply substitution 𝜎 to 𝐿2,𝑉2
20: 𝐿′1,𝑉

′
1 , 𝐿
′
2,𝑉

′
2 ←𝐿1,𝑉1, 𝐿2,𝑉2 with higher-order operators sub-

stituted with fresh variables.
21: Γ′ , Δ′ ←Γ, Δ extended with the fresh variables.
22: 𝐶←congruence relation of the fresh variables through recursive

unify under Γ′ | Δ′, 𝑠1 | Φ ∧ (𝐿′1 ∨ 𝐿′2 )
23: if Γ′ | Δ′, 𝑠1 | Φ ∧𝐶 ⊢O [𝐿′1 ] × 𝑉 ′1 = [𝐿′2 ] × 𝑉 ′2 then
24: return True
25: return False
26: function equiv(𝑄1,𝑄2)
27: return unify(stable(spnf(J𝑄1K)), stable(spnf(J𝑄2K)))

restricted to a function of type 𝑆 → N. With this assumption, we
can eliminate all sources of infinity when comparing the bodies in
(17), since [𝐿′1] and [𝐿

′
2] are always finite, and both 𝑈 ′1 and 𝑈

′
2 are

products of fully applied tables 𝑅(𝑠), which we now assume to be
always finite. This allows us to regard each body as an expression
of type N, and the ×, [·], ∥·∥, and ¬ operators can be restricted to
only operate on finite multiplicities. Any oracle O supporting the
Peano arithmetic can be used to reason about the equality in (17)
since we can now directly encode the summation bodies.

Finally, the equivalence checking procedure equiv (line 26) is the
composition of SPNF normalization, stabilization, and unification.

6 EVALUATION
We implemented the algorithm presented in Secs. 4 and 5 in 2,520
lines of Rust, with cvc5 and z3 as the backend SMT solver. Qed
sends the SMT formulas to cvc5 and z3 in parallel and waits for
whichever returns first. Qed dispatches multiple SMT formulas as
presented in Algs. 3 and 5, and has a user-configurable timeout for
every request to the solvers with a 60 seconds default in all the
following experiments.

6.1 Test cases
To compare with other state-of-the-art solvers, we first run Qed on
a benchmark suite initially compiled to evaluate the UDP implemen-
tation [7], and later also run by EQUITAS [17] and SPES [18]. This
benchmark suite consists of 232 query pairs that are extracted from
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a previous version of the Calcite framework [2]. Each of these query
pairs comes from a specific test case for the query rewrite engine
in Calcite, which has an input query and a corresponding expected
rewritten query, all using the same table schema information.

Among the 232 collected query pairs, 23 pairs are identical and
hence trivial to prove. To obtain query pairs of higher quality, we
prepare another suite extracted from a newer version of Calcite
(v1.32.0) and filter out any trivial pairs. This new benchmark suite
contains 444 query pairs, and we rerun the previous state-of-the-art
solver SPES on this new suite for comparison. The new suite is not
run on older tools like EQUITAS since we believe SPES is more
powerful than the older tools.

To gain more insights on the performance of Qed in comparison
with SPES, we further extracted 1,287 non-trivial pairs of queries
from CockroachDB (v23.1.3) [15]. Each of these query pairs also
comes from a test case for the rewrite engine in CockroachDB. As
a proxy for query complexity, the queries in the new Calcite test
suite contain 5.6 query operators on average (as defined in Sec. 3.1),
with a standard deviation of 2.9. For those from CockroachDB, the
average is 5.3 and the standard deviation is 2.3.

As shown in Table 1, Qed can successfully prove substantially
more cases compared to SPES, in both the old and new benchmark
suites. As shown, 33% of the provable Calcite cases lies within the
complete fragment, while 67% does so for CockroachDB.This shows
the benefit of having both decision procedures in Qed to increase
coverage. Compared to UDP, the only other implementation that
is also based on a semiring formalism, Qed can prove 3.32× more
cases and prove each case 67% faster on average.

We further analyzed the detailed breakdown of Qed runtime in
Table 2. For the 299 query pairs where Qed successfully verified in
the new Calcite test suite, on average Qed spends 0.83s with SMT
solvers to eliminate redundant summation variables (Alg. 5) and
0.03s with SMT solvers to check term equivalence (Alg. 6), while
in total Qed spends 0.88s on average for each of these query pairs,
as shown in Table 1. Hence the majority of runtime is consumed
by SMT solvers, and the overhead of Qed is minimal. The same
observation holds for the CockroachDB test suite, where 0.31s are
spent to eliminate redundant variables and 0.03s are spent to check
term equivalence within the 0.35s average total runtime for Qed.

We also note that all test cases provable by SPES are also provable
by QED, and we further breakdown the provable cases of QED by
whether they are also provable by SPES. For the subset of new
Calcite test suite where both Qed and SPES can successfully verify,
on average Qed spent 1.53s and SPES spends 0.99s. For the subset of
CockroachDB where both can successfully verify, on average Qed
spent 0.16s and SPES spends 0.03s. Over the full distribution in Fig. 3,
QED does perform slower than SPES on the commonly provable
cases, although the slowdown is within one order of magnitude.

6.2 Failure breakdown
We analyzed the cases where Qed fails to prove equivalence and
tabulated them in Table 3.

• Custom operators.Weonlymodeled common operators for SQL in
Qed, and some test cases use operators that are not modeled. For
example, Qed fails to prove the equivalence of some query pairs

Table 1: Comparison of automated SQL query checkers.The data for
UDP andEQUITAS are respectively taken from [7] and [17]. Numbers
in parenthesis are standard deviations. For Qed, we give both the
number of provable cases within Sec. 4 (Qed′) and the number of
provable cases within the full semantics from Sec. 3 (Qed).

Test Suite Tool
Name Stat UDP EQUITAS SPES Qed′ Qed

Calcite - Old Provable (#) 34 67 95 49 147
(232 total) Avg. Time (s) 4.16 0.19 0.04 (0.02) 0.18 (0.23) 1.39 (12.0)

Calcite - New Provable (#) – – 121 98 299
(444 total) Avg. Time (s) 0.99 (10.3) 0.24 (0.32) 0.88 (8.21)

CockroachDB Provable (#) – – 325 656 979
(1287 total) Avg. Time (s) 0.02 (0.02) 0.29 (1.63) 0.35 (2.26)

Table 2: Breakdown of Qed average runtime. Numbers in parenthe-
sis are standard deviations. We list the average time Qed spent on
SMT solvers (STBL when used in Alg. 5 and UNI when used in Alg. 6),
the average total runtime for Qed on test cases where SPES fails
(New), and that on test cases where SPES can also prove (Shared).

Test Suite Qed SPESSTBL UNI New Shared
Calcite - Old 1.34 0.03 0.74 2.3 0.04
Avg. Time (s) (12.0) (0.05) (0.68) (16.5) (0.02)
Calcite - New 0.83 0.03 0.71 1.53 0.99
Avg. Time (s) (8.2) (0.05) (0.7) (12.9) (10.3)
CockroachDB 0.31 0.03 0.14 0.16 0.03
Avg. Time (s) (2.25) (0.03) (0.16) (0.67) (0.02)

Figure 3:The cumulative distribution of runtime for provable
cases by SPES and Qed. For a given time 𝑡 , the corresponding
case count is the number of cases proved under 𝑡 by each tool.
QED* denotes the runtime of QED, but restricted to only the
cases that are also provable by SPES.

Table 3: Breakdown of cases where Qed fails to verify in
Calcite and CockroachDB.

Category Calcite CockroachDB
Aggregates 96 27

Custom operators 25 152
List semantic 18 103

Typing 6 26

involving the SEARCH operator in Calcite, which determines if
a value is in certain ranges, but we only treat it uninterpreted.

• List semantics. We use bag semantics to model queries, hence
Qed currently does not support queries that make use of the
ordering semantics of Limit, Offset, or Order By.

• Aggregates. Our normal form aims to handle the unbounded
summations used by common SQL operators, but this design has
limited support for aggregations. We only treat the aggregations
as higher order operators without further assumptions, but this
does not capture the exact semantics of aggregations, and Qed
fails to prove some cases as a result.
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• Typing. Type casting is common in database systems, but SMT
solvers do not currently reason about type casting. We can only
interpret explicit type casting (e.g., int to float) as uninter-
preted functions, while the implicit type casting will lead to
error in Qed due to type mismatch.

6.3 Illustrative cases
Besides the motivating example we give in Sec. 2, we select two
more examples from the test cases that are illustrative to compare
the respective approach of Qed and SPES.

6.3.1 Join Push Transitive Predicates. One Calcite case that SPES
fails but is provable using Qed involves the Join Push Transitive
Predicates rule [4].This rule identifies the constant constraint across
joins and propagate the constraint to the inputs of the join. Q2 below
is the result of applying this rule on Q1. They are equivalent if we
have two tables 𝑅(𝑎) and 𝑆 (𝑏):
Q1: select ∗ from (select ∗ from R where R.a = 42) as X

left join S on X.a = S.b;
Q2: select ∗ from (select ∗ from R where R.a = 42)

left join (select ∗ from S where S.b = 42) on TRUE;

The equivalence of the two queries are easy to verify for Qed
once they are stabilized using Alg. 5, but SPES fails to prove it as
one of its normalization rules unsoundly rewrites the left join in
Q2 into a cross join when it sees the join condition is TRUE, which
then results in two semantically different normal forms.

6.3.2 Project Join Join Remove. Another case that SPES fails but
Qed can prove is from the Calcite Project’s Join Join Remove rule
[5]. This rule removes a join on unique key if possible. Q2 below
is the result of applying this rule on Q1. They are equivalent if we
have two tables 𝑅(𝑎) and 𝑆 (𝑘), where 𝑘 in table 𝑆 (𝑘) is unique:
Q1: select R.a from R

inner join S as S1 on R.a = S1.k
inner join S as S2 on R.a = S2.k;

Q2: select R.a from R inner join S on R.a = S.k;

Following our formalism for primary keys (eq. (8)), Qed restricts
the multiplicity of 𝑆 (𝑘) to at most one by using ∥𝑆 (𝑘)∥, and it
reduces the two queries above to the following expressions:
𝑄1 (𝑎) =

∑︁
𝑘 𝑅(𝑎) × ∥𝑆 (𝑘)∥ × [𝑎 = 𝑘],

𝑄2 (𝑎) =
∑︁
𝑘1,𝑘2 𝑅(𝑎) × ∥𝑆 (𝑘1)∥ × ∥𝑆 (𝑘2)∥ × [𝑎 = 𝑘1] × [𝑎 = 𝑘2] .

Then, during stabilization (in Sec. 5.2), we can systematically de-
termine (using Alg. 5) the congruence classes of all the variables
involved, and replace the unnecessary bounded summation vari-
ables 𝑘 , 𝑘1, and 𝑘2 with 𝑎:

𝑄1 (𝑎) = 𝑅(𝑎) × ∥𝑆 (𝑎)∥ × [𝑎 = 𝑎],
𝑄2 (𝑎) = 𝑅(𝑎) × ∥𝑆 (𝑎)∥ × ∥𝑆 (𝑎)∥ × [𝑎 = 𝑎] × [𝑎 = 𝑎] .

Finally Qed decides that these expressions are equivalent, since the
SMT solver suggests that for all 𝑅, 𝑆 , and 𝑎, we have:

𝑅(𝑎) × [𝑆 (𝑎) ≠ 0 ∧ 𝑎 = 𝑎]
= 𝑅(𝑎) × [𝑆 (𝑎) ≠ 0 ∧ 𝑆 (𝑎) ≠ 0 ∧ 𝑎 = 𝑎 ∧ 𝑎 = 𝑎] .

For SPES, although it has a normalization rule that removes
redundant self-joins on primary keys, it fails in this case since this

is not directly a self-join in the naive join order, i.e., (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑆
instead of 𝑅 ⊲⊳ (𝑆 ⊲⊳ 𝑆), and it cannot infer 𝑆1 .𝑘 = 𝑆2 .𝑘 from the
given join conditions 𝑅.𝑎 = 𝑆1 .𝑘 and 𝑅.𝑎 = 𝑆2 .𝑘 . In contrast, we
only provide the semantics of primary keys and joins separately
in Sec. 3, yet Qed is able to reason with cases when both features
are involved. This is mainly due to Qed lowering SQL semantics
down to the algebraic properties of Q-expressions and first-order
logical formula, allowing our formalism of different SQL features
to compose much better and be systematically reasoned about.

7 RELATEDWORK
Formalization of SQL semantics. Our modeling of SQL seman-
tics is closely related to the theory of U-semiring, which is used
in prior work [7], and the previously state-of-the-art tool SPES
[18]. We extend this formalism with better handling of integrity
constraints and Null values in Qed (Sec. 3). Cosette [8] formalized
K-relations in the Coq proof assistant with Homotopy Type Theory.
Later work implemented additional SQL features in Coq to extend
this approach, such as the support for NULL values [3, 14]. In com-
parison, our approach has better coverage of SQL feature, and the
Q-expression formalism is designed to enable efficient encoding in
modern SMT solvers.
SQL equivalence checking. Although general query equivalence
is undecidable [16], substantial efforts have been made to develop
equivalence checkers on fragments of SQL where the problem is
decidable. Cosette [8] utilizes tactics in the Coq proof assistant
to automatically generate proofs of query equivalence. UDP [7]
normalizes the queries on the U-semiring level and then performs
syntactical equivalence check. SPES [18] normalizes the queries
on the relational level and then utilizes the SMT solver to verify
the equivalence. Qed uses the Q-expression formalization and SMT
solvers for equivalence checking. In comparison, Qed has the most
sophisticated equivalence pipeline demonstrates the highest fidelity
in supporting real-world query pairs.
Query optimizers. Query optimization engines, such as the ones
we obtain the evaluation test suite from [2, 15], makes use of query
equivalence as their foundation. Although verifying the correctness
of query transformation is not the goal, query optimizers apply
query rewrites heavily. And if one regard their code base as trusted,
a simple verifier can make use of those query optimizers for the
normalization process.

8 CONCLUSION
We presented Qed, a new solver for checking SQL equivalence. Qed
applies a novel algorithm that normalizes SQL queries in stages,
and we devised a fragment of SQL where equivalence can fully be
determined by Qed along with a general checking algorithm. We
tested Qed on real-world queries and show that Qed can verify 2×
more cases than the previous state-of-the-art tool.
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