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ABSTRACT
Index Advisor tools settle for sub-optimal index configurations
based on greedy heuristics, owing to the computational hardness
of index selection. We investigate here how this limitation can be
addressed by leveraging the computing power offered by quantum
platforms. Specifically, we present a hybrid Quantum-Classical
Index Advisor that judiciously incorporates gate-based quantum
computing within a classical index selection wrapper.

Two distinct trade-offs between solution quality and computa-
tional complexity are considered. First, index selection is modeled
as a Quadratic Unconstrained Binary Optimization problem and
solved using the popular Quantum Approximate Optimization Al-
gorithm. The obtained solution is approximate, like greedy, but
significantly better in quality while incurring only 𝑂 (log(𝐿)) com-
putations, where 𝐿 is the total number of candidate configurations.
Second, index selection is modeled as a fully enumerative search
and solved using the seminal Grover Search algorithm. A novel
quantum oracle is proposed that performs computations on data
hosted in the relative phase of a quantum superposition state, and
is encoded using only standard quantum gates. This approach iden-
tifies, with high probability, the optimal index configuration with
𝑂 (
√
𝐿) computations.

We have implemented these two designs using the Qiskit SDK
and performed proof-of-concept evaluations on both simulation
and hardware platforms. Substantive quality improvements, by a
multiplicative factor of 1.5 to 2 and approaching optimality, are ob-
tained as compared to a commercial database engine implementing
a greedy approach. Moreover, their quantum resource requirements
effectively scale linearly with problem size, an essential feature from
a feasibility perspective.
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1 INTRODUCTION
Given an SQL query workload, the creation of appropriate column
indexes has been a standard database technique formaterially reduc-
ing the workload’s execution time. In the early days, these indexes
were manually selected by DBAs. However, contemporary engines
feature automated Index Advisors (IA) that identify good configu-
rations while adhering to storage budgets; for instance, IBM’s DB2
Index Advisor [52] and Microsoft’s AutoAdmin [19].

Given their demonstrated performance impact, it is no surprise
that IA design has been an active area of research over the past
three decades in both academia and industry (e.g. [7, 12, 13, 16–
19, 21, 22, 32, 47, 48, 52, 58]), with evenmachine learning-based tech-
niques [8, 36, 38, 44] appearing in recent times. However, searching
for an optimal index configuration inherently entails exploring
a combinatorially large search space. Therefore, current advisors
typically rely on heuristic strategies, which can result in subopti-
mal index configurations. For instance, DB2 IA reduces the index
selection problem to an instance of a 0-1 Knapsack Problem [46],
and then invokes a greedy heuristic-based solver to recommend the
index configuration. The heuristic is essentially “ROI” (return on
investment) – the time benefit provided by the index normalized to
its storage footprint.

Figure 1: Suboptimality of Heuristic IA

Consider an SQL workload comprising TPC-H [50] queries Q6,
Q14, Q22, and two instances of Q17 over a 1GB TPC-H database.
Given this setup, the index selection problem instance generated by
a popular commercial database (CDB) engine is shown in Figure 1.
The problem instance comprises seven candidate indexes, their
expected time benefit wrt query response time, and storage cost
overhead. Now, for a storage budget of 140, CDB recommends a
sub-optimal index configuration {𝑖2, 𝑖5, 𝑖6} with a total benefit of
1302510, while the optimal configuration comprises indexes {𝑖2, 𝑖3}
with a benefit of 2427540. In this scenario, it is evident that around
50% of the available index benefit is lost due to a sub-optimal choice.
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As highlighted in [12], a variety of heuristics have been proposed
to bridge this gap to optimality – however, there is no guaranteed
improvement. Therefore, we take a radically different approach
here: specifically, we ask “Is it feasible to utilize the raw computa-
tional power promised by quantum platforms to find better, perhaps
even optimal, solutions?”. And the good news, as explained in the
remainder of this paper, is that it indeed appears viable, through
careful algorithmic design, to concurrently achieve excellent quality
and practical efficiency. As a case in point, the optimal configuration
for the ∼ 50 candidate indexes constructable on a TPC-H database
can be determined, with high probability, in a few hours on a quan-
tum computer (as per our estimated projection in Section 6.5.2). In
contrast, an exhaustive search would take a couple of months on
current hardware.

Our study is motivated by the growing interest in early-stage
quantum computing with 100,000-qubit machines projected within
the coming decade [28]. Even within the database community, quan-
tum computing has begun to attract attention – similar, albeit unre-
lated, studies to ours have recently been carried out for join-order
optimization [42, 49, 55] and transaction scheduling [9, 10, 29], with
promising outcomes. Finally, a call for quantum implementation of
Index Advisors was explicitly advocated in recent database vision
papers [31, 56].

Quantum Modeling Dimensions
A variety of design choices and challenges arise in porting IA to
the quantum domain. First, there are alternative computing models
– quantum annealing, which is energy-minimization-based, and
quantum circuit, which is gate-based, similar to classical circuits.
Over the past decade, the latter has gained prominence as it provides
a greater degree of design flexibility [49], and we therefore focus
on this choice in our work.

Second, we could ask whether the IA design should be purely
quantum or a hybrid that synergistically leverages classical and
quantum computing. We have chosen the latter to (a) facilitate easy
integration with contemporary DBMS engines and (b) minimize the
quantum circuit complexity to address only the hard computational
problems.

Third, quantum computers work in probabilistic space – this
means that individual results may have errors or even violate
mandatory constraints. We therefore need to devise schemes to
eliminate, with at least high confidence, these inherent problems
of quantum computation.

Fourth, whether IA should be modeled as a optimization problem
or as a search formulation. Due to the disparate trade-offs between
their solution quality and computational effort, we design and eval-
uate both options. For the former, index selection is modeled as a
Quadratic Unconstrained Binary Optimization (QUBO) problem,
and solved using the Quantum Approximate Optimization Algo-
rithm (QAOA) [24]. This approach requires 𝑂 (log(𝐿)) computa-
tions, where 𝐿 is the total number of candidate configurations, and
the recommended configurations are significantly better compared
to classical heuristics. On the other hand, for the latter, index selec-
tion is modeled as a fully enumerative search over the exponential
configuration space, and solved using the seminal Grover Search

algorithm [30]. This approach identifies, with high confidence, the
optimal index configuration incurring 𝑂 (

√
𝐿) computations.

Finally, modeling database applications on quantum platforms
poses tricky implementation issues. For instance, with Grover
Search, we have to devise an efficient data loading scheme that
can scale with the size of the problem and also facilitate subse-
quent computations. Our approach diverges from the conventional
method of loading data via basis states – instead, we load the data
in the phase of the qubits. This unconventional strategy allows for
more efficient computation and paves the way for further inno-
vations, such as intrinsic computation of aggregate weights and
benefits of each index configuration, and easy identification of qual-
ifying configurations by just checking the sign qubit. We also design
an efficient quantum oracle that is able to identify qualifying con-
figurations. The creation of such an oracle is a complex task, as it
requires performing computations while the data is phase-resident
in a quantum superposition state.

The QIA System
The overall architecture of our hybrid Quantum-Classical Index
Advisor (QIA) framework is shown in Figure 2. Given a database en-
vironment, the system takes the SQL workload and storage budget
as input and outputs a recommended index configuration.

Figure 2: Quantum Index Advisor (QIA) Architecture

The first three steps – candidate configuration generation, fol-
lowed by computing the storage costs and time benefits of these
configurations – are carried out in the classical world, whereas
the final computationally intensive index selection step is hosted
on the quantum platform. Based on the user choice, either OQIA
(Optimization-based QIA) or SQIA (Search-based QIA) is invoked to
recommend the index configuration. With SQIA, the user provides
an additional parameter, 𝛿 , the desired probability of obtaining the
optimal solution. This parameter sets an exponential trade-off be-
tween result quality and search time, as quantified in Equation 10.
While the OQIA porting is an amalgamation of known techniques,
SQIA represents, to our knowledge, the first application of quan-
tum search to the index selection problem implementable through
standard quantum gates.
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Evaluation
We have designed quantum circuits for the OQIA and SQIA algo-
rithms and implemented them using the Qiskit SDK [33]. They have
been evaluated on a 32-qubit noiseless quantum simulator, and on
a 127-qubit IBM Eagle circuit processor. Given the current limited
capacity of quantum platforms, we are perforce only able to model
modest instances of the IA problem, which we have evaluated on
the TPC-H environment.

Interestingly, however, we show that even for these modest in-
stances, QIA obtains substantive quality improvements, approach-
ing optimality. As an exemplar, consider again the problem instance
of Figure 1, where greedy delivered 0.54 of the optimal (as deter-
mined by exhaustive search). For this scenario, OQIA produced a
0.76 solution, while SQIA recommended the optimal.

Moreover, these good results are obtained while incurring sub-
stantially less computational effort than exhaustive search. Specifi-
cally, with OQIA, the computational overheads are 23% relative to
exhaustive search, while SQIA is 73%. Finally, we make the case that
for large problem instances, our techniques effectively scale the
qubit requirements linearly with problem size, an essential feature
from a long-term feasibility perspective.

Index Advisor Framework
To put the Index Advisor framework into perspective, Figure 3
shows a high-level characterization of the QIA techniques, con-
trasted to the greedy and exhaustive approaches for challenging
IA instances (like the one shown in Figure 1). The dimensions are
the (normalized) index configuration quality, the computational
efficiency in identifying these configurations, and the probabilistic
distribution of the quality. On the efficiency axis, 𝐿 = 2𝐼 , where 𝐼 is
the number of indexes.

Figure 3: Quality-Efficiency Characterization

We see here that OQIA consistently delivers high-quality index
configurations while performing fewer computations than Greedy.
Further, by making a modest additional computational investment,
SQIA could be instead used to obtain optimal configurations with
a high probability. But we hasten to add that the computations
performed by Greedy are simpler, and hence it may be empirically

faster for contemporary index sizes. Therefore, a variety of quality-
efficiency trade-offs are available, and in a complete deployment, a
sentinel module would be required to make the appropriate choice.
We plan to explore this aspect in our future work.

Contributions
To summarize, our contributions are the following:

(1) Proposed the first hybrid IA architecture that harnesses
classical computing and gate-based quantum technology
in a pluggable manner for database engines.

(2) Logical design and circuit representations for the OQIA and
SQIA approaches. The SQIA design, in particular, represents
an original application of quantum search to the index selec-
tion problem, leveraging a phase-resident approach to data
storage while only employing standard quantum gates. Fur-
ther, OQIA and SQIA provide different tradeoffs between
configuration quality and computational efficiency.

(3) A pilot implementation and evaluation of the proposed IA
approaches on both (noiseless) quantum simulators and
(noisy) quantum circuit processors. The evaluations show
that substantively improved index configurations, by a mul-
tiplicative factor of 1.5 to 2 and approaching optimality, are
achievable through quantum technology. We also observe
that OQIA is more robust to noise than SQIA.

To our knowledge, this study represents the first investigation
of quantum computing to the IA problem. For this initial analysis,
we restrict our attention to the computationally expensive index
selection step in the IA pipeline. We intend to explore quantum
implementation of other pipeline components in our future work.

The rest of the paper is organized as follows: A brief background
of quantum data processing is given in Section 2. The formal
problem framework is detailed in Section 3. Then, in Sections 4
and 5, we present the OQIA and SQIA algorithms, respectively,
and their performance evaluation is profiled in Section 6. Related
work is reviewed in Section 7. Finally, our conclusions and future
research avenues are highlighted in Section 8.

2 QUANTUM BACKGROUND
Quantum computation brings to bear on information processing,
the fundamental phenomena of quantum mechanics [43], such as
superposition, interference, entanglement, reversible computation, and
irreversible measurements. Here, we briefly review the basic building
blocks used in QIA.

Quantum computation is built upon the quantum bit or qubit.
The possible states for a qubit are |0⟩ and |1⟩ (in Dirac notation),
which correspond to the states 0 and 1 of a classical bit. But un-
like a classical bit, a qubit can be in a state |𝜓 ⟩ which is a linear
combination, or superposition, of the |0⟩ and |1⟩ states:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝑒𝑖𝛾 𝛽 |1⟩ (1)

where𝛼 and 𝛽 are complex numbers such that |𝛼 |2+|𝛽 |2 = 1 and𝛾 ∈
[0, 2𝜋) is the quantum phase (angle of rotation around the Z-axis).
When a qubit is measured, we get either 0 with probability |𝛼 |2,
or 1 with probability |𝛽 |2, while the phase 𝛾 is lost. Furthermore,
the measurement operation is irreversible, since it destroys the
quantum superposition state and outputs classical bits.
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2.1 Quantum Gates
A quantum algorithm generates a quantum circuit comprising ele-
mentary quantum gates wired together to accomplish a task. The
quantum gates used in QIA are summarized below:

NOT Gate (X): Operates on a single qubit and is quantum equiva-
lent of the classical NOT gate. It takes a state𝛼 |0⟩+𝛽 |1⟩ as input and
flips the amplitudes of |0⟩ and |1⟩, producing the state 𝛽 |0⟩ +𝛼 |1⟩.

Hadamard Gate (H): Operates on a single qubit and produces an
equal superposition of the |0⟩ and |1⟩ states. That is, it turns |0⟩
into |+⟩ = ( |0⟩ + |1⟩)/

√
2, and |1⟩ into |−⟩ = ( |0⟩ − |1⟩)/

√
2.

Phase Gate (P): Takes an angle 𝜙 as input and rotates a qubit
about the Z-axis, mapping: |0⟩ → |0⟩ and |1⟩ → 𝑒𝑖𝜙 |1⟩.

Controlled-Phase Gate (CP): Takes an angle 𝜙 as input and op-
erates on a pair of qubits: a control qubit and a target qubit. The
P gate is applied to the target qubit conditional on the state of
the control qubit.

Multi-Controlled Toffoli Gate (MCT): Operates on a set of 𝑛
qubits, with 𝑛 − 1 control qubits, and the remaining qubit being
the target. If all control qubits are set to |1⟩, then the target qubit is
flipped; otherwise, it is left undisturbed. For 𝑛 = 2, MCT reduces
to the fundamental Controlled-NOT Gate (CX).

2.2 Quantum Approximate Optimization
Algorithm (QAOA)

QAOA is a hybrid algorithm that combines classical and quantum
components and is tailored to find approximate solutions to op-
timization problems [24]. QAOA operates through a sequence of
quantum and classical steps. The quantum part involves initializing
qubits in the uniform superposition state |+⟩, and then applying a
specialized quantum circuit (configured with 2𝑝 parameters) on the
initial state 𝑝 times. A quantum computer is used to evaluate the
objective function, while a classical optimizer is used to update the
2𝑝 parameters. This iterative process is repeated until the classical
optimizer converges. The protocol is shown in Figure 4.

As might be expected, the approximation quality of QAOA im-
proves with 𝑝 , but the circuit depth also grows linearly with 𝑝 .
Therefore, 𝑝 is usually set to a small value to balance solution
quality and quantum feasibility. In fact, even at the lowest circuit
depth (𝑝 = 1), QAOA has non-trivial provable performance guaran-
tees [25], and hence 𝑝 = 1 has been used as a common assignment
in the literature [49]. However, the literature also suggests that a
logarithmic depth is anticipated to surpass classical optimizers [53].
Therefore, in our evaluation, we vary 𝑝 in the range 1 to ⌈log( |𝐼 |)⌉,
where 𝐼 is the list of candidate indexes.

2.3 Grover Search (GS)
GS is a quantum algorithm designed to solve the unstructured
search problemwith high probability (WHP) [30]. Specifically, given
an unordered list of 𝑁 items, GS identifies a desired item WHP,
using O(

√
𝑁 ) iterations, as compared to the O(𝑁 ) probes incurred

by the classical algorithms. During each iteration, GS leverages
quantum properties to simultaneously check all 𝑁 items, resulting
in a quadratic speed-up compared to classical methods.

Figure 4: The QAOA Protocol [5]

The GS algorithm involves three key operators: state preparation,
quantum oracle, and diffusion. The state preparation operator cre-
ates a quantum superposition state encompassing an exponential
solution space. The quantum oracle enhances each candidate solu-
tion with problem-specific data, evaluates the cost function, and
identifies qualifying candidates. The diffusion operator amplifies
the measurement probability of the qualified candidates. Notably,
the state preparation is a one-time activity. The combined applica-
tion of the quantum oracle followed by the diffusion operator is
termed a Grover Iteration. It is invoked multiple times to identify
a qualifying candidate with a probability exceeding 0.5.

The key challenges in designing an index selection scheme based
on GS include: (1) Creating an efficient problem-specific quantum
oracle; (2) Identifying the precise number of Grover Iterations re-
quired for the GS algorithm to work appropriately; and (3) Boosting
the success probability from 0.5 to the user-desired 𝛿 . In Section 5,
we present a novel approach to construct the quantum oracle, uti-
lizing various quantum concepts implementable through standard
quantum gates. Additionally, we address the remaining challenges
by adapting the Generalized Grover Search (GGS) [11, 14] algo-
rithm and the Powering Lemma [34], which enable performance
optimization. These modules are discussed in detail in Section 5.2.

2.4 Shots
An operational parameter that influences the solution quality of
quantum algorithms is “shots”(S). Shots indicate the number of times
a quantum algorithm is executed, with increased shots providing
more accurate and reliable results at the expense of consumingmore
quantum resources. In our experiments, we empirically identify the
ideal number of shots for the proposed QIA schemes.

3 PROBLEM FRAMEWORK
The Index Advisor problem that we consider here is the following:

Given an SQL query workload Q on a relational database
instance D, recommend a configuration of indexes that maximizes
the performance benefit for the workload while adhering to the fol-
lowing constraints: (1) Space Constraint: The configuration must
fit in a user-specified storage budget; and (2) Validity Constraint:
The configuration must satisfy validity requirements, which could
be (a) intrinsic – for instance, at most one clustered index per re-
lation, or (b) extrinsic – for instance, mandatorily add all indexes
listed in a pre-specified base configuration.
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In the above problem definition, the performance benefit of a con-
figuration is measured as the reduction in the estimated execution
time of the workload compared to the base configuration. Further,
since contemporary database systems typically build, by default,
a clustering index on the primary key column of each relation,
we assume that the base configuration comprises these indexes.
Therefore, our objective is restricted to selecting the additional
unclustered indexes – however, selection of clustered indexes can
also be incorporated in our framework, as detailed in [35].

Index Advisor Pipeline. The index advisor pipeline encompasses
a sequence of tasks to find a beneficial configuration of constraint-
compliant indexes. The tasks, shown pictorially in the top pipeline
of Figure 2 as Steps 1 through 4, are the following:

(1) Candidate Generation: This task entails identifying can-
didate indexes to improve the SQL workload performance.
Techniques such as analyzing query predicates and recog-
nizing common query patterns, are employed to create a
comprehensive pool of potentially beneficial indexes.

(2) Cost Evaluation: This step computes the individual stor-
age and maintenance (due to updates) overheads of the
candidate indexes. Storage overheads serve to model the
index cost, whereas maintenance overheads are factored
into the benefit calculations of the next stage.

(3) Benefit Computation: The overall improvement of the
query workload execution time due to the presence of each
index is computed, typically via the query optimizer module.
Specifically, the cumulative improvement in query response
times is weighed against the increase in index maintenance
overheads.

(4) Index Selection: This final step aims to find the configura-
tion among the candidate indexes that maximizes the bene-
fit while respecting the storage and validity constraints.

Our study employs classical strategies for the first three tasks
in the pipeline and uses the quantum platform only for the final
computationally-intensive index selection task. Specifically, we use
DB2 Index Advisor [52] as the exemplar classical technique.

In this formulation, given a set of indexes 𝐼 = {𝑖0, 𝑖1, · · · , 𝑖𝑛−1},
each with its storage overhead𝑊 = {𝑤0,𝑤1, · · · ,𝑤𝑛−1} and time
benefit 𝑉 = {𝑣0, 𝑣1, · · · , 𝑣𝑛−1}, index selection in Step 4 is modeled
as the following constrained optimization problem:

max
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖 s.t.
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑤𝑖 ≤𝑊𝑚𝑎𝑥 (2)

where the solution to the problem is represented by an array, de-
noted as 𝑋 , consisting of elements {𝑥0, 𝑥1, · · · , 𝑥𝑛−1}, each taking
binary values of 0 (exclusion) or 1 (inclusion). The objective is to
select and recommend a configuration of indexes that maximizes
the performance benefit for the workload while adhering to the
storage/validity constraints.

3.1 Notation
The various input and algorithmic parameters used in the sequel,
together with their notation, are summarized in Table 1.

Table 1: Parameters

Type Symbol Description Domain
Input 𝐼 List of Indexes [𝑖0, · · · , 𝑖𝑛−1 ]
Input 𝑊 List of Storage Costs [𝑤0, · · · , 𝑤𝑛−1 ]
Input 𝑉 List of Time Benefits [𝑣0, · · · , 𝑣𝑛−1 ]
Input 𝑊𝑚𝑎𝑥 Storage Budget (0,∑︁𝑛−1

𝑖=0 𝑤𝑖 ]
Input 𝑉𝑚𝑎𝑥 Maximum Benefit [0,∑︁𝑛−1

𝑖=0 𝑣𝑖 ]
Input 𝐿 # of Possible Configurations 2|𝐼 |

Input 𝑆 # of Shots Z+ [Pos. Integer]
OQIA 𝑝 Repetition Depth of QAOA {1, · · · , log( |𝐼 | ) }
SQIA 𝛿 Desired Optimality Probability [0.5, 1)
SQIA 𝜖 Failure Probability 1 − 𝛿
SQIA 𝜆 Step size for GGS [1, 1.33]
SQIA 𝛼 Timeout Control of GGS Q+ [Pos. Rational]
SQIA 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 Upper bound on Grover Iteration ⌊𝛼 ·

√
𝐿⌋

SQIA 𝑅 # of Repetitions of GGS ⌈log(1/𝜖 ) ⌉

In the subsequent sections, we describe the proposed
Optimization-based (OQIA) and Search-based (SQIA) quantum
schemes to implement Stage 4 of the Index Advisor pipeline.

4 OPTIMIZATION-BASED QIA (OQIA)
In the first step of OQIA, the index selection optimization problem,
as defined in Equation 2, is transformed into a Quadratic Uncon-
strained Binary Optimization (QUBO) instance. We then map the
QUBO instance to an Ising Hamiltonian using the transformations
outlined in [40]. This two-step process helps convert the index se-
lection problem instance into a suitable format for consumption by
Quantum Approximate Optimization Algorithm (QAOA).

QUBO for Index Selection. QUBO problems feature binary deci-
sion variables, quadratic objective functions, and no constraints –
the objective is to identify the assignment of binary variables that
minimizes the quadratic objective function. For the index selection
problem, we essentially use the QUBO reformulation technique pre-
sented in [23] with some minor modifications. The process operates
as follows: First, Equation 2 is converted from a maximization task
into a minimization task – this is trivially achieved by changing
the sign of the objective function:

𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖 → −
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖 (3)

Next, the storage space constraint is internalized to make the
optimization objective constraint-free. This process requires addi-
tional machinery, specifically the introduction of an auxiliary term,
denoted B in the optimization objective. This B term undergoes
dynamic adjustments in each iteration by the optimizer in response
to the solution’s characteristics.

For starters, the original solution array 𝑋 of length 𝑛 bits is ex-
tended to include an additional𝑚 bits, resulting in an expanded ar-
ray denoted 𝑋𝐵 = [𝑥0, · · · , 𝑥𝑛−1, 𝑏𝑛, · · · , 𝑏𝑛+𝑚−1]. The additional
bits 𝑏 𝑗 are formed from the binary representation of B, that is, B
=

∑︁𝑛+𝑚−1
𝑗=𝑛 2𝑗𝑏 𝑗 .

Next, the objective function is updated to enable the optimizer
to simultaneously optimize the values of 𝑋 and B. To do so, the B
is subtracted from the storage constraint, the resultant is squared,

3619



and then multiplied with a large positive number 𝐴. The resulting
expression is:

𝐴 ·
(︄
𝑊𝑚𝑎𝑥 −

𝑛−1∑︂
𝑖=0

𝑥𝑖𝑤𝑖 − B
)︄2

(4)

The updated cost function is obtained by adding Equations 3 and 4:

𝐶 (𝑋𝐵) = 𝐴 ·
(︄
𝑊𝑚𝑎𝑥 −

𝑛−1∑︂
𝑖=0

𝑥𝑖𝑤𝑖 − B
)︄2
−

𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖

= 𝐴 · ⎛⎜⎝𝑊𝑚𝑎𝑥 −
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑤𝑖 −
𝑛+𝑚−1∑︂
𝑗=𝑛

2𝑗𝑏 𝑗
⎞⎟⎠
2

−
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖

(5)

resulting in the following QUBO objective function:

min
𝑋𝐵

⎛⎜⎝𝐴 · ⎛⎜⎝𝑊𝑚𝑎𝑥 −
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑤𝑖 −
𝑛+𝑚−1∑︂
𝑗=𝑛

2𝑗𝑏 𝑗
⎞⎟⎠
2

−
𝑛−1∑︂
𝑖=0

𝑥𝑖𝑣𝑖
⎞⎟⎠ (6)

The minimization of the above function requires the first term to
go to 0, implying that

∑︁
𝑖 𝑥𝑖𝑤𝑖 ≤𝑊𝑚𝑎𝑥 , which is the storage con-

straint. Given a zero-valued first term, the function minimization
is determined by the second term, which is the aggregate bene-
fit. Therefore, benefit maximization is achieved subject to meeting
the storage budget. Finally, we map the generated QUBO instance
(Equation 6) to an Ising Hamiltonian using the scheme in [40].

4.1 OQIA Resource Scaling
The number of qubits required to implement the OQIA pipeline is
determined by the count of binary variables in the QUBO objective
function. As shown in Equation 6, it comprises two sets of binary
variables: (a) the 𝑛 binary variables {𝑥0 · · · 𝑥𝑛−1} representing in-
dexes, and (b) the𝑚 binary variables {𝑏𝑛, · · · , 𝑏𝑛+𝑚−1} composing
B which are upper-bounded by the storage budget𝑊𝑚𝑎𝑥 . Assum-
ing that𝑊𝑚𝑎𝑥 fits within a 32-bit integer, the qubit count scales
linearly with the number of indexes.

5 SEARCH-BASED QIA (SQIA)
We now turn our attention to solving the index selection prob-
lem as an enumerative search over the exponential configuration
space using the Grover Search (GS) algorithm. The quantum su-
perposition property is first leveraged to generate the exponential
space of candidate index configurations, incurring only logarithmic
qubit overhead. Next, we present a novel algorithm for construct-
ing a quantum oracle for the index selection problem. Our oracle
harnesses the power of quantum entanglement and, for reasons
explained below, loads the problem instance in the qubit phases – a
marked shift from the normal practice of loading data into qubit
basis states. Further, only standard quantum gates are used in our
construction of the oracle. Then, we provide procedures for config-
uring the GS algorithm to overcome various practical challenges.
Finally, we analyze the computational complexity of our approach
and demonstrate that SQIA effectively provides linear qubit scala-
bility with index set size while preserving the quadratic speed-up
offered by the GS algorithm.

Generate Candidate Configurations. Given the set of candidate
indexes 𝐼 , the total number of possible candidate configurations
is 𝐿 = 2 |𝐼 | . The superposition property is used to simultaneously
load these 𝐿 candidate configurations in 𝐼 qubits, employing a cor-
responding number of H gates.

To achieve this, a quantum circuit is initialized with 𝑛 = |𝐼 |
qubits, where each qubit maps to an element of the index set 𝐼 .
Initially, all the qubits are in the |0⟩ quantum state. In order to im-
plicitly generate the power set of 𝐼 , we apply theH gate individually
on all qubits, and then observe the combined state of these qubits.
Accordingly, we get:

𝐻 |0⟩0 ⊗ · · · ⊗ 𝐻 |0⟩ |𝐼 |−1 =
|0⟩ + |1⟩
√
2
⊗ · · · ⊗ |0⟩ + |1⟩√

2

=
1
√
𝐿

𝐿−1∑︂
𝑥=0
|𝑥⟩

(7)

Since |𝑥⟩ corresponds to the binary representation of the corre-
sponding integer, the above equation represents an equal superpo-
sition of all 𝐿 candidate index configurations. To visualize, consider
the binary representation of any integer 𝑥 ∈ {0, 𝐿−1}. For every bit
𝑗 ∈ {1, |𝐼 |}, if 𝑥 𝑗 = 1, then include the index 𝑖 𝑗 in the corresponding
candidate configuration, otherwise not.

5.1 Quantum Oracle for Index Selection
We now move on to showing how the quantum entanglement prop-
erty can be leveraged for assigning storage costs and time benefits
to the candidate configurations, and maintaining compliance with
the storage constraint. This is done in conjunction with qubit phase
manipulation. We present novel building blocks that construct a
quantum oracle for the index selection problem, and this oracle is
subsequently used in the GS algorithm to identify the qualifying
configurations.

5.1.1 Encoding Storage Costs (Index Weights). Given a can-
didate configuration 𝐶𝑥 ,𝑊 (𝐶𝑥 ) represents the aggregate cost of
its constituent indexes. For instance, if 𝐶𝑥 = {𝑖0, 𝑖2}, then its cost
𝑊 (𝐶𝑥 ) = 𝑤0 +𝑤2. Further, an upper-bound on this value is the cost
of the configuration that includes all candidate indexes. Therefore,
we need𝑚 = ⌈log2 (

∑︁ |𝐼 |−1
𝑖=0 𝑤𝑖 )⌉ qubits to cover all costs that could

potentially appear during execution.

Direct Approach. The simplest way to associate costs to candidate
configurations is to first pre-compute the costs of all candidate
configurations. Then, to single out each configuration (present in
the uniform superposition) using the quantumX gate, and insert the
corresponding cost in the dedicated cost qubits. But this requires: 1)
Pre-computing costs for an exponential number of configurations;
and 2) Applying an exponential number of X gates to uniquely
identify each candidate configuration.

Phase-basedApproach. Given the above problemswith the direct
approach, we design an alternate strategy based on qubit phase
manipulation. The state of a qubit, as shown by Equation 1, has
three components: the basis states (|0⟩ and |1⟩), the amplitudes (𝛼
and 𝛽) associated with the basis states , and the relative phase (𝛾 ) of
the |1⟩ state. We convert the classical costs into suitable angles 𝛾 (in
Fourier basis), and then load them as the relative phase of the qubits
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using the CP gate. This strategy helps us to intrinsically compute
and associate the costs of an exponential number of candidate
configurations using just𝑚 · |𝐼 | two-qubit CP gates.

Algorithm 1 load_cost_SQIA
Require: 𝑊 = [𝑤0, 𝑤1, · · · , 𝑤𝑛−1 ] ⊲ Input costs
1: 𝑛 ← |𝑊 | ⊲ # of Indexes
2: 𝑚 = ⌈log2 (

∑︁𝑛−1
𝑖=0 𝑤𝑖 ) ⌉ + 1

3: 𝑞𝑐 ← 𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶𝑖𝑟𝑐𝑢𝑖𝑡 (𝑛 +𝑚)
4: 𝑞𝑐.ℎ (𝑚) ⊲ Generate Equal Superposition
5: for 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑛) do
6: 𝜃𝑖 =

𝑤𝑖
2𝑚 · 2𝜋

7: for 𝑗 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑚) do
8: 𝛾 𝑗 = 2(𝑚− 𝑗−1) · 𝜃𝑖
9: 𝑞𝑐.𝑐𝑝 (𝛾 𝑗 , 𝑖, 𝑗 )
10: return 𝑞𝑐

The above process is summarized in Algorithm 1, which takes
a list of costs𝑊 as input. As mentioned earlier, we need𝑚 qubits
to encode the costs of all candidate configurations. However, an
additional qubit is allocated (Line 2) for storing the sign of the costs.
Specifically, a state |0⟩ in the sign qubit represents a positive cost.
Subsequently, we instantiate a quantum circuit 𝑞𝑐 with the capacity
to accommodate both index (𝑛) and cost (𝑚 + 1) qubits – all of these
qubits are initialized to the |+⟩ state using the H gate.

Now consider an index 𝑖 ∈ 𝐼 with cost𝑤𝑖 . To load this cost into
the 𝑚 cost qubits, the phase angles 𝛾1, · · · , 𝛾𝑚 are computed for
each cost qubit. For ease of understanding, we decompose this angle
computation into two parts:
Rotation Angle: The core rotation angle 𝜃𝑖 is the rotation relative

to the full rotation 2𝜋 . It depends on 𝑤𝑖 and the number
of qubits, namely 𝑚, on which this cost is encoded and
calculated as 𝜃𝑖 = 2∗𝜋

2𝑚 ·𝑤𝑖

Rotation Frequency: The frequency of rotation depends on the
qubit position – the first qubit is rotated by an angle 2𝑚−1 ·
𝜃𝑖 , and this angle is progressively halved for the next qubits,
i.e., the 𝑗𝑡ℎ qubit is rotated by an angle 𝛾 𝑗 = 2𝑚− 𝑗−1 · 𝜃𝑖 .

The rotation 𝛾 𝑗 is applied using the CP gate. Here, the index
qubit 𝑖 is the control qubit and the 𝑗𝑡ℎ cost qubit is the target. The
CP gate entangles the index qubits with the cost qubits, and 𝛾𝑖 loads
the costs in the phase of these qubits. We repeat this process over
all indexes in 𝐼 .

Phase Loading Example. To make clear the above process
of loading costs via phases, consider the candidate configuration
𝐶𝑥 = {𝑖0, 𝑖2} for the problem instance shown in Figure 1. Here, the
aggregate cost𝑊 (𝐶𝑥 ) = 𝑤0 +𝑤2, and the index qubit assumes the
quantum state |0000101⟩ (in superposition). It therefore triggers the
conditional rotations corresponding to index qubits 𝑖0 and 𝑖2. The
index qubit 𝑖0 adds a relative phase 𝛾 𝑗 to the 𝑗𝑡ℎ cost qubit (𝑚 𝑗 ),
computed as:

𝛾 𝑗 = 2(𝑚− 𝑗−1) · 2𝜋 · 𝑤0
2𝑚

(8)

producing a quantum state |𝑚 𝑗 ⟩ = |0⟩+𝑒
𝑖 ·2−( 𝑗+1) ·2𝜋 ·𝑤0 |1⟩

2 . Similarly,
index qubit 𝑖2 adds a phase angle 𝛾 𝑗 = 2−( 𝑗+1) · 2𝜋 · 𝑤2 to 𝑚 𝑗 .

Therefore, the final state of𝑚 𝑗 is:

|𝑚 𝑗 ⟩ =
|0⟩ + 𝑒𝑖 ·2−( 𝑗+1) ·2𝜋 · (𝑤0+𝑤2 ) |1⟩

2
(9)

With the above rotations, the desired aggregate cost is loaded in
the phase of the cost qubits.

5.1.2 Encoding Benefits. The encoding of benefits mirrors the
encoding of costs, and Algorithm 1 is reused with minor modifica-
tions. Specifically, the list of benefits𝑉 is passed instead of the costs
𝑊 , and the number of qubits needed is 𝑣 = ⌈log2 (

∑︁𝑛−1
𝑖=0 𝑣𝑖 )⌉ + 1.

The rest of the algorithm is followed as is.

5.1.3 Encoding Storage Constraint. To encode the storage con-
straint,𝑊𝑚𝑎𝑥 is subtracted from the cost qubits for all 𝐿 configu-
rations in superposition. For this, we encode the negative of the
storage budget (−1·𝑊𝑚𝑎𝑥 ) as angles (𝛾1, · · · , 𝛾𝑚), and apply a single-
qubit Phase (P) gate on each cost qubit. The P gate is used instead
of theCP gate to make the rotation independent of the index qubits,
thus uniformly subtracting the storage constraint from the cost of
an exponential number of superposed costs with only one appli-
cation of the gate. After this step, all configurations that satisfy
the storage constraint will have a negative cost loaded as a relative
phase in their cost qubits.

5.1.4 Extracting SignedCosts. As discussed in Section 2, relative
phases are not directly measurable. To make them measurable, we
apply the inverse Quantum Fourier Transform (QFT) algorithm [43]
to the cost qubits and transform the costs from the phase to the
basis state of the qubits. A key point to note here is that since
the costs are encoded in the angles of a periodic function (𝑒𝑖𝛾 )
with a period 2𝜋 , when the inverse QFT operation is performed,
the costs are obtained in two’s complement format. Accordingly,
costs associated with the configurations that satisfy the storage
constraint are all either 0 or negative, and negative configurations
can be easily identified since their sign qubit is in the quantum state
|1⟩. Further, the 0 cost configurations are identified by ignoring the
sign qubit and checking if the rest of the cost qubits are in the |0⟩
state. These checks are easily encoded in the quantum circuit using
MCT gates to detect and signal qualifying configurations.

5.1.5 Composing the Quantum Oracle. For a given instance of
the index selection problem, we compose the above modules (cost
encoding, benefit encoding, constraint encoding, cost extraction),
combine their circuits and construct the quantum oracle. The or-
acle integrates with the GS algorithm and signals the qualifying
configurations. The full construction details are available in [35].

5.1.6 Oracle Construction Example. Consider the following
index selection problem instance (we will refer to this as I2): 𝐼 =
[𝑖0, 𝑖1],𝑊 = [1, 4], 𝑉 = [2, 4], and𝑊𝑚𝑎𝑥 = 4. The quantum oracle
for this problem is shown in Figure 5, and the construction process is
summarized below. Note, each step below is mapped to the numbers
shown in Figure 5, except for the preprocessing step (i.e. Step 0).
Step 0: Count the number of qubits needed to store the indices
𝑛 = |𝐼 | = 2, the cost𝑚 = ⌈log2 (

∑︁𝑛−1
𝑖=0 𝑤𝑖 )⌉ + 1 = 4 and the benefit

𝑣 = ⌈log2 (
∑︁𝑛−1
𝑖=0 𝑣𝑖 )⌉ + 1 = 4. Additionally, one qubit is required for

each of the following: encoding the storage constraint, encoding the
target benefit constraint, and flagging the qualifying configurations.
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Figure 5: Quantum Circuit of SQIA Oracle for Problem Instance I2

Note, the target benefit constraint is an additional constraint added
in SQIA and is explained later in Section 5.2. Therefore, the total
number of qubits needed is 2 + 4 + 4 + 3 = 13.
Step 1: Initialize the index, cost, and benefit qubits in an equal
superposition |+⟩ state using theH gate and the output qubit in the
|−⟩ quantum state. Although the index, cost, and benefit qubits are
initialized using the same quantum gate, their interpretations vary
depending on how these qubits are used in the rest of the quantum
circuit. Specifically, the index qubits are viewed jointly; hence, as
shown earlier, they generate all the 4 possible index configurations
after initialization. The remaining qubits are viewed independently
– the cost and benefit qubits are kept in state |+⟩ to load and process
the data in the relative phase of the qubit while the output qubit is
in state |−⟩ to flag the qualifying index configurations.
Step 2: For each𝑤𝑖 ∈𝑊 , the phase angles are calculated and loaded
into the relative phase of the cost qubits by applying the CP gate.
For example, for𝑤0 = 1, the rotation angle 𝜃0 = 2∗𝜋

2𝑚 ·𝑤0 =
𝜋
8 and

therefore the phase angles are 𝛾0 = 𝜋,𝛾1 =
𝜋
2 , 𝛾2 =

𝜋
4 𝑎𝑛𝑑 𝛾3 =

𝜋
8 .

Step 3: Similarly, for each benefit 𝑣𝑖 ∈ 𝑉 , the phase angles are
computed and loaded into the relative phase of the benefit qubits.
Step 4: Next, the storage and the target benefit constraints are
applied. For𝑊𝑚𝑎𝑥 = 4, the phase angle is computed for −4 and
applied to all cost qubits using a quantum P gate.
Step 5: Now, to retrieve the signed cost and benefit values, the
inverse QFT operation is performed on the cost and benefit qubits.
Step 6: Finally, the qualifying index configurations are signalled
via the output qubit.

5.2 Finding Optimal Index Configuration
Now we turn our attention to the index selection process, imple-
mented via the SQIA _search procedure outlined in Algorithm 2.
It takes a problem instance comprising [𝐼 ,𝑊 ,𝑉 ,𝑊𝑚𝑎𝑥 ] as input,
and produces an optimal index configuration with a user-settable
success probability 𝛿 ∈ [0.5, 1).

Since the precise benefit accrued by the optimal configuration
is initially unknown, Algorithm 2 employs a recursive halving
strategy, starting with𝑉𝑚𝑎𝑥 , the upper bound, to identify this value.
In each iteration, the 𝑓 𝑖𝑛𝑑_𝑜𝑝𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 procedure is used to identify
the optimal index configuration achieving a benefit greater than or
equal to the target benefit value. Failure indicates that the target

benefit is too large to be feasible. The first successful identification
indicates a transition from an infeasible to a feasible range, and
we now again carry out a recursive halving within this transition
range to finally identify the optimal configuration.

At its core, the 𝑓 𝑖𝑛𝑑_𝑜𝑝𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 method relies on the GS algo-
rithm. However, as mentioned in Section 2, for effective utilization
of the GS algorithm, three key elements must be provided: 1) an
appropriate quantum oracle, 2) the precise number of Grover Iter-
ations, and 3) an enhancement of its success probability from 0.5
to the desired 𝛿 . While Section 5.1 handled the first element, the
following discussion will address the remaining elements.

Algorithm 2 SQIA _search
Require: List: (𝐼 ,𝑊 ,𝑉 ), Int:𝑊𝑚𝑎𝑥

1: 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑉𝑚𝑎𝑥

2: 𝑉𝑚𝑖𝑛 = 0
3: 𝑜𝑝𝑡𝑖𝑛𝑑 = 𝑛𝑢𝑙𝑙

4: while𝑉𝑚𝑖𝑛 < 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 do
5: 𝑃𝑟𝑒𝑠 ← 𝑓 𝑖𝑛𝑑_𝑜𝑝𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 (𝐼 ,𝑊 ,𝑉 ,𝑊𝑚𝑎𝑥 ,𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , 𝛿 )
6: if 𝑃𝑟𝑒𝑠 [𝑞𝑢𝑎𝑙𝑖 𝑓 𝑦 ] == 𝑇𝑟𝑢𝑒 then
7: 𝑜𝑝𝑡𝑖𝑛𝑑 = 𝑃𝑟𝑒𝑠 [𝑖𝑛𝑑 ]
8: 𝑉𝑚𝑖𝑛 = 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

9: 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = ⌈ (𝑃𝑟𝑒𝑠 [𝑣𝑎𝑙 ] +𝑉𝑚𝑎𝑥 )/2⌉
10: else
11: 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = ⌈ (𝑉𝑚𝑖𝑛 +𝑉𝑡𝑎𝑟𝑔𝑒𝑡 )/2⌉
12: return 𝑜𝑝𝑡𝑖𝑛𝑑

5.2.1 Finding precise number of Grover Iterations. To calcu-
late the number of Grover Iterations (Oracle + Diffusion), the GS
algorithm needs precise knowledge of the number of qualifying in-
dex configurations. However, since this information is unavailable,
we turn to the Generalized Grover Search (GGS) algorithm [11]. In
one GGS run, the GS quantum circuit is executed iteratively, with
the number of iterations dynamically adjusted in each instance
until success. In our work, we have implemented the time-out vari-
ant of GGS, with a fixed maximum budget of iterations denoted as
𝑀𝑎𝑥𝑖𝑡𝑒𝑟 . Furthermore, in each iteration, the number of iterations 𝑗
is uniformly sampled from the range [1, 𝑙], where 𝑙 is initially set to
a constant 𝜆. Subsequently, 𝑙 is incremented by an amount 𝜆 after
each iteration. The rationale behind choosing 𝜆 is detailed in [14].
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Setting 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 . In the worst case, the GS algorithm needs
√
𝐿

iterations. Therefore, the iteration budget for GGS is set to ⌊𝛼 ·
√
𝐿⌋,

where 𝛼 is a positive rational number. A universal lower bound for
𝛼 , specifically 𝛼𝑙𝑏 = 9.2, was presented in [14]. In Section 6.7.1 of
the technical report [35], we discuss instance-specific upper bounds.

5.2.2 Boosting Success Probability. The GGS algorithm finds
a valid solution with probability 0.5. To boost the probability to
the desired 𝛿 , we employ the Powering Lemma [34], which resorts
to repeat executions of every GGS run. The number of repetitions
required for the boosting is 𝑅 = ⌈log( 1

1−𝛿 )⌉.
The above considerations are incorporated into the

𝑓 𝑖𝑛𝑑_𝑜𝑝𝑡_𝑐𝑜𝑛𝑓 𝑖𝑔 procedure, detailed in [35].

5.3 Computational Complexity
Aligned with the quantum computing literature, our complexity
measure is the number of calls made to the quantum oracle, since
it is architecture-independent. The SQIA _search procedure (Al-
gorithm 2) performs recursive halving over the range [0,𝑉𝑚𝑎𝑥 ]
which takes a maximum of ⌈log2 (𝑉𝑚𝑎𝑥 )⌉ steps. Now, for every tar-
get benefit value 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , the algorithm invokes the GGS algorithm
𝑅 = ⌈log

(︂
1

1−𝛿

)︂
⌉ times. In each run of GGS, we execute the GS

algorithm multiple times but with a budget of𝑀𝑎𝑥𝑖𝑡𝑒𝑟 iterations,
which is heuristically set to ⌊𝛼 ·

√
𝐿⌋. Further, each iteration makes

2 invocations of the quantum oracle, once to apply the Oracle, and
the second time to undo its effect. Therefore, the total number of
Oracle calls made by Algorithm 2 is upper bounded by:

⌈2 · ⌊𝛼 ·
√
𝐿⌋ · ⌈log

(︃
1

1 − 𝛿

)︃
⌉ · ⌈log2 (𝑉𝑚𝑎𝑥 )⌉⌉ (10)

As mentioned earlier, a universal lower bound 𝛼𝑙𝑏 = 9.2 for all
𝐿, and the success probability 𝛿 is set by the user during system
initialization. Therefore, only the terms

√
𝐿 and𝑉max vary based on

the input problem instance. Furthermore, if we reasonably assume
that 𝑉max can fit within a 32-bit integer, then log2 (𝑉𝑚𝑎𝑥 ) can be
upper bounded to 32. Therefore, we can conclude that the overall
rate of growth of the number of oracle calls for SQIA is O(

√
𝐿). In

contrast, for exhaustive search, the rate of growth of the number
of oracle calls is 𝑂 (𝐿). Consequently, as the problem size increases,
the absolute gap between the two approaches widens, resulting in
greater time benefits with SQIA for the larger problem instances
typically encountered in industrial scenarios.

5.4 SQIA Resource Scaling
The number of qubits required to implement the SQIA pipeline is
detailed in Table 2. The entries in the table show that the qubit
count exhibits a linear relationship with the number of indexes
and a logarithmic correlation with the cumulative cost and benefits.
However, if we reasonably assume that the aggregate cost & benefit
(log terms) can fit within a 32-bit integer, in that case the qubit
count effectively scales linearly with the number of indexes.

6 EXPERIMENTS
In principle, the correct methodology for evaluating quantum per-
formance relative to the classical approaches would be to execute
both classes of algorithms on their respective devices, assess the

Table 2: SQIA Qubit Requirement

Symbol Description Count
𝑛 # of Qubits for Indexes |𝐼 |
𝑚 # of Qubits for Cost ⌈log2 (

∑︁𝑛−1
𝑖=0 𝑤𝑖 ) ⌉ + 1

𝑣 # of Qubits for Benefit ⌈log2 (
∑︁𝑛−1

𝑖=0 𝑣𝑖 ) ⌉ + 1
𝑐 # of Qubits for Constraints 2

𝑜𝑢𝑡 # of Qubits for Output 1

quality of the recommended outcomes, and measure the index se-
lection overheads. However, this is not practical at the current time
due to lack of industrial-strength quantum platforms. Therefore,
we settle for the approach prevalent in the quantum computing
literature (e.g. [14, 30]), wherein comparisons are on architecture-
independent metrics – in our case, the number of oracle calls.

6.1 Experiment Environment
We implemented the proposed ideas using the Qiskit SDK [33] and
performed evaluations with Qiskit Aer [3], on a 32-qubit gate-
based noiseless simulator. Using Qiskit Runtime Primitives [4], the
same code was also ported to and evaluated on an IBM Eagle circuit
processor with 127 qubits (“ibm_sherbrooke”). Our experiments
have perforce been carried out on modest problem instances due
to current platform limitations; however, we expect the design
techniques to carry through to futuristic scaled platforms.

As shown in Stage 4 of Figure 2, the Quantum Index Advisor
module receives an index selection problem instance comprising of
(a) an index set (𝐼 ), (b) the associated time benefit (𝑉 ) and storage
cost (𝑊 ) of each index in 𝐼 , and (c) the storage budget𝑊𝑚𝑎𝑥 . In
our evaluation, the instance is solved with the proposed quantum
schemes, OQIA and SQIA, and comparedwith the classical baselines,
Greedy and Exhaustive Search.

Our problem suite consists of four index selection instances. The
first instance, comprising 7 indexes, is the motivating example of
Figure 1, generated on the commercial database engine – we refer
to it asCDB_I7. The remaining three problem instances comprising
5, 6, and 7 indices, respectively, are synthetically generated – we
hereafter refer to them as I5, I6, and I7. These problem instances
are shown in Figure 6, and they all have the same storage constraint,
namely𝑊𝑚𝑎𝑥 = 19. In addition, in all of them, Exhaustive Search
provides the same optimal configuration, namely {𝑖0, 𝑖1, 𝑖2, 𝑖3} with
benefit 44, while Greedy provides the same (sub-optimal) recom-
mendation, namely {𝑖0, 𝑖2, 𝑖3, 𝑖4} with benefit 35. We define the
quality of a configuration as its benefit normalized to the ideal
solution (as obtained by the Exhaustive Search algorithm).

While the original CDB_I7 instance could be directly used
with OQIA, its costs and benefits were normalized for SQIA
evaluation to reduce the complexity of the quantum circuit.
Specifically, the following transformed problem instance pro-
duces the same greedy and optimal solution as the original prob-
lem: 𝐼 = [𝑖0, 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6], 𝑊 = [126, 114, 3, 72, 95, 1, 4], 𝑉 =

[4, 5, 27, 27, 27, 1, 1], and𝑊𝑚𝑎𝑥 = 75. Furthermore, the algorithmic
parameters for OQIA were set to (𝑝 = 1, 𝑆 = 100), while SQIA had
(𝛿 = 0.9, 𝑆 = 1). The sensitivity to these parameters is discussed
later in the section.
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Table 3: Evaluation of IA Schemes on a 32-qubit Quantum Simulator

Problem # of Candidate
Configurations

IA Scheme Configuration Quality Quantum Resources Normalized
OverheadWeighted Average Optimal Fraction Worst Case Qubits Depth

CDB_I7
128

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (𝛿 = 0.9, 𝛼 = 0.26, S = 1) 0.95 0.9 0.54 28 80 73%

OQIA (p = 1, S = 100) 0.76 0.5 0.5 15 30 23%
Greedy 0.54 0 0.54 – –

I5 32

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (𝛿 = 0.9, 𝛼 = 0.18, S = 1) 0.9 0.8 0.34 21 58 111%

OQIA (p = 1, S = 100) 0.99 0.9 0.89 10 20 91%
Greedy 0.8 0 0.8 – –

I6 64

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (𝛿 = 0.9, 𝛼 = 0.22, S = 1) 1.0 1.0 1.0 22 60 94%

OQIA (p = 1, S = 100) 0.97 0.6 0.86 11 22 45%
Greedy 0.8 0 0.8 – –

I7 128

Exhaustive 1.0 1.0 1.0 – 100%
SQIA (𝛿 = 0.9, 𝛼 = 0.26, S = 1) 1.0 1.0 1.0 25 68 75%

OQIA (p = 1, S = 100) 0.97 0.4 0.89 12 24 23%
Greedy 0.8 0 0.8 – –

(a) I5 (b) I6 (c) I7

Figure 6: Index Selection Problem Suite

6.2 Performance Comparison
Configuration Quality. Table 3 presents a summary assessment

of the configuration quality delivered by the four index selection
strategies when invoked on our problem suite on the noiseless
quantum simulator. For the quantum algorithms, the Weighted
Average column reports the average of the quality scores over the
ten repeat invocations, the Optimal Fraction column represents
the fraction of outcomes delivering the optimal benefit, while the
Worst Case column represents the smallest benefit obtained across
the invocations. Recall that the expectation from OQIA is to rec-
ommend a solution having better quality than the Greedy scheme,
while SQIA should produce the optimal solution with the desired 𝛿
probability. The good news from these results is that both schemes
consistently achieve their objectives (except for I5). The detailed
instance-specific analysis is as follows:
CDB_I7: The Greedy configuration delivers only 0.54 of the opti-
mal. OQIA improves the quality to 0.76, while SQIA delivers the
optimal configuration with the desired 𝛿 = 90%. Nevertheless, ow-
ing to the inherently probabilistic nature of quantum platforms, the
worst-case recommendation could be of arbitrary quality. However,
as observed for both schemes, the worst-case quality is about the
same as the greedy solution.

I5: Here, Greedy delivers a configuration quality of 0.8, and OQIA
enhances the configuration quality to as high as 0.99. On the other
hand, SQIA although delivering 0.9 quality, does not satisfy its de-
sired 𝛿 success probability. This is because the 𝛼 value is impractical
for this instance, as explained in detail in the technical report [35].
I6 and I7: In both these instances, OQIA enhances the solution
quality to 0.97. Further, SQIA always recommends the optimal so-
lution, and exceeds the 𝛿 threshold. The worst-case quality of both
schemes is also significantly better than the greedy recommenda-
tion. Notably, this exceptional performance is delivered despite the
exponential increase in the number of candidate configurations
from I6 to I7.

Computational Overheads. Turning our attention to the computa-
tional effort, also delineated in Table 3, we observe that forCDB_I7,
I6 and I7, SQIA incurs only marginally fewer Oracle calls compared
to Exhaustive Search. This is further substantiated when we con-
sider the smallest-sized I5, where the Oracle calls even exceed
those of Exhaustive Search. This may seem surprising; however,
this is an artifact of our small-sized examples and is again due to
the impractical values of 𝛼 . The resource gap will become clearly
apparent in large-index scenarios seen in enterprise environments.
For instance, consider the full TPC-H benchmark query suite with
53 single-attribute candidate indexes [37]. Assuming that the ag-
gregate benefits can be accommodated in a 32-bit integer, then for
𝛿 = 0.9, we estimate using Equation 10 that SQIA will only need
0.002% of the oracle calls incurred by Exhaustive Search.

A similar trend is observed for the OQIA scheme and is attributed
to the variational principle used by the underlying QAOA algorithm,
which dynamically explores and refines the solution space, and
quickly converges to optimal or near-optimal solutions. Hence, it is
evident that both the proposed schemes are targeted towards larger
problem instances. In the technical report [35], we delineate the
problem size landscape in which the SQIA scheme ensures both
guaranteed quality and computational advantage.
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6.3 Real Circuit Processor
We now turn our attention to the performance observed on a popu-
lar real quantum circuit processor, the 127-qubit Eagle from IBM.
To optimize the quantum circuits for this hardware and reduce the
impact of errors, we used Qiskit runtime compilation techniques
and transpiled the Qiskit simulator quantum circuits for OQIA and
SQIA by setting the optimization level to 3 [6] and verified that they
ran correctly. Further, their performance on the index instances
of Table 3 was evaluated and the results are summarized in Ta-
ble 4. The Configuration Quality column reports the average of
the quality scores over three repeat invocations. The outcomes of
these experiments are qualitatively in agreement with the simu-
lated results, demonstrating that achieving high-quality solutions
is feasible even on these early quantum hardware. Moreover, an
additional insight is that OQIA is more robust to quantum noise
than SQIA, leading to better configurations on this platform. This is
due to the QAOA algorithm used in OQIA, which is more effective
in noisy environments than the GS algorithm employed by SQIA.

6.4 Real Annealing Processor
For completeness, we have also evaluated the performance of index
selection on a real annealing processor, specifically the 5000-qubit
D-Wave Leap Hybrid Solver [1]. In these experiments, the QUBO
generated in OQIA was input to this solver. Given the native suit-
ability of annealing for optimization, this approach provided, as
expected, the best solutions for all the small-sized index selection
instances considered in our study.

However, this success needs to be qualified with the following
deployment-related observations: (1) Extending the index selection
problem to account for index interactions requires benefit values
to be dynamically computed, as they depend on the order in which
the indexes are selected. Encoding such dynamism in the QUBO
may not be feasible, whereas a circuit processor offers the nec-
essary computational flexibility. (2) The overall industry trend is
towards circuit processors, with even D-Wave itself recently includ-
ing such processors in its roadmap [39]; (3) In a practical DBMS,
it appears reasonable to expect a single quantum platform that is
usable for both computation and optimization. Therefore, hosting
index selection on circuit processors is of independent interest.

Table 4: Evaluation on IBM 127-qubit Eagle Processor

Problem IA Scheme Configuration
Quality

CDB_I7 SQIA (𝛿 = 0.9, 𝛼 = 0.26, S = 1) 0.85
OQIA (p = 1, S = 100) 0.68

I5 SQIA (𝛿 = 0.9, 𝛼 = 0.18, S = 1) 0.89
OQIA (p = 1, S = 100) 1.0

I6 SQIA (𝛿 = 0.9, 𝛼 = 0.22, S = 1) 0.86
OQIA (p = 1, S = 100) 0.98

I7 SQIA (𝛿 = 0.9, 𝛼 = 0.26, S = 1) 0.95
OQIA (p = 1, S = 100) 1.0

Figure 7: OQIA Solution Quality vs Shots (𝑝 = 1)

6.5 Discussion
6.5.1 Setting quantum parameters. We have evaluated the sen-
sitivity of the quantum algorithm performance to the various con-
figuration parameters. Due to space constraints, the full details are
deferred to the technical report (Sections 6.6 and 6.7) [35]. Here, as
an example, we discuss choosing the number of shots for OQIA.

To find the optimal number of shots, we evaluated OQIA for the
I5, I6, and I7 problems, setting 𝑝 = 1 and varying 𝑆 in the range
[1, 150]. Each experiment was repeated ten times and Figure 7
shows the average quality score against 𝑆 . For comparative pur-
poses, the performances of Greedy heuristic is also shown. Three
key insights emerge from this figure: 1) OQIA rapidly outperforms
the greedy algorithm after 𝑆 crosses a small value (≥ 10); 2) The
configuration quality achieved by OQIA consistently surpasses
that of the greedy solution, resulting in a superior approximation
ratio; and 3) Starting from around 100 shots, the recommended
configuration is effectively optimal.

6.5.2 Estimated Efficiency on Practical Workloads. We now
project the performance profile that could be expected on the full
TPC-H benchmark query suite. The number of candidate single-
attribute indexes is 53 [37]. Assume that the aggregate costs and
benefits can be accommodated in 32-bit integers, and that the es-
timated depth of the Quantum Oracle circuit constructed in the
SQIA scheme is around 100 (calculated by analyzing Algorithm 2).
Furthermore, as shown in [20], a single two-qubit gate currently
takes around 6.5ns. Now, anticipating a reduction to 1ns within the
next decade, a quantum Oracle call in the SQIA scheme is estimated
to take around 100ns. Next, assuming 𝛿 = 0.9, we can use Equa-
tion 10 to estimate the number of Oracle calls made by the SQIA
scheme. Multiplying this by the time for an Oracle call, the SQIA
scheme is estimated to take approximately 5 hours to identify an
optimal configuration with 90% probability. In contrast, assuming
a classical Oracle call duration of just 1ns, an Exhaustive Search
would take around 3.5 months to find the optimal solution.

7 RELATEDWORK
Recently, there have been vision papers advocating the need to
accelerate database tasks using quantum computing [15, 31, 56, 57].
But, we are not aware of any prior work performing index selection
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using quantum platforms. Therefore, in this section, we separately
review the literature on index selection, 0-1 Knapsack Problem on
quantum platform, and use of quantum platforms for DBMS.

Index Selection. The index selection problem has been studied for
decades, and recent comprehensive surveys are available in [32, 37].
Further, all major database engines feature an Index Advisor. We
have already considered DB2’s Index Advisor in the preceding
sections. Microsoft SQL Server features a broad-based Database
Engine Tuning Advisor (DTA) [18], which includes a sophisticated
index advisor in its ambit. DTA considers both single and multi-
column indexes, as well as their interactions.

Recently, ML based IA methods have also been introduced [36,
38]. Most of this work uses reinforcement learning, where the state
is defined as the currently built indexes, and the action as choosing
an index to build. These methods exhibit promising outcomes in
enhancing the index selection process’s efficiency. However, as
demonstrated in the detailed evaluation of [36], the quality of the
recommended configuration remains similar to non-ML systems.

The approaches proposed in our work aim to enhance the con-
figuration quality provided by the above tools by leveraging the
computing power offered by quantum platforms.

0-1 Knapsack Problem on quantum platform. The papers in this area
could be broadly classified into two categories: Some address a
weaker formulation of the original problem, while others use non-
standard quantum gates with heuristic parameter settings. Specifi-
cally in [26], the authors consider 0-1 Knapsack Problem instances
that do not have item-specific benefit values. Whereas in [54], an
approach called “Quantum Tree Generator (QTG)” was introduced.
Here, they generate in superposition all feasible solutions for a given
problem instance and then leverage the Grover Search algorithm
to find the solution. However, their protocol uses non-standard
biased Hadamard gates and heuristically sets the bias value. These
deviations raise concerns about the feasibility of implemention on
real quantum computers. In contrast, we have considered standard
0-1 Knapsack Problem and utilized only standard quantum gates.

Quantum Database Platforms. There have been some earlier efforts
to showcase the potential of quantum platforms for database opti-
mization. For instance, the generation of optimal execution plans
in the context of Multi-Query Optimization was proposed in the
pioneering work of [51]. Their technique is based on utilizing the
quantum annealing. Moreover, a singular feature of the study is its
implementation on the D-Wave Quantum Annealer [2].

More recently, the relational join-order optimization problem
was addressed in [42, 49, 55] on quantum hardware. These propos-
als reformulated the problem to an equivalent QUBO task that can
be evaluated on quantum computers. Specifically, [49] conducted a
comprehensive evaluation of various query graphs and successfully
generated about 41% valid join orders, among which 10% were op-
timal, for three-relation chain queries using the D-Wave annealing
processor. These results demonstrate the feasibility of quantum
solutions and also serve as a motivation for our OQIA scheme.

Quantum platforms for database transaction scheduling has also
been explored. Specifically, to schedule transactions in a 2PL data-
base, [9, 10] introduced a quantum algorithm that uses annealing ,
while [29] employed the Grover Search algorithm.

Finally, another line of research focuses on designing “quantum-
inspired” algorithms for DBMS [41, 45]. These algorithms are de-
signed to run on classical computers but incorporate ideas de-
rived from quantum computing to potentially improve their per-
formance in solving certain problems. For instance, in [45], the
authors perform resource allocation reasoning on traditional rela-
tional databases in an OLTP setting. They borrow ideas of quantum
superposition and quantum measurement and allow resource trans-
actions to commit without assigning concrete resource instances.

8 CONCLUSIONS AND FUTUREWORK
We presented here, for the first time, Quantum-computing-based
Index Advisors for efficiently delivering index selections that pro-
vide close-to-optimal benefits under a storage budget. We first
described an optimization-based approach, OQIA, which composed
well-known quantum algorithms to provide high-quality config-
urations with limited expense of quantum resources. Then, we
designed from scratch a novel Grover Search-based approach SQIA,
which provides optimal solutions with high probability, in con-
junction with resource consumption that is compatible with the
quantum platforms expected in the coming decade. The key novelty
was the construction of an efficient quantum oracle where data is
represented in qubit phases, rather than basis states, and using only
standard quantum gates.

Our design is a hybrid quantum-classical architecture that lends
itself to easy implementation on contemporary database environ-
ments. Using classical components to enumerate the search space
and the benefits and costs of indexes, it leverages the power of the
quantum computing platform for the computationally expensive
index selection process.

The evaluation of modest index scenarios on both a noiseless
quantum simulator and real quantum hardware demonstrated the
feasibility of our proposed schemes on quantum platforms. Further,
they indicated that high-quality configurations can be reliably pro-
duced by suitable choices of algorithmic parameter settings. We
also showed that the complexity of our circuit design scales linearly
to future deployment scenarios with large databases. In our future
work, we plan to evaluate our algorithms on more powerful quan-
tum hardware (eg. 1121 qubit IBM Condor [27]) and also extend
our algorithms to include additional IA components.

In summary, we have taken an initial step in this paper toward
designing and constructing index advisors using quantum plat-
forms that are both close-to-optimal in solution quality and efficient
with regard to index selection. We hope that our results will spur
new research to address the challenges of making quantum-based
databases a practical reality in the near future.
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