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ABSTRACT
Filter data structures are widely used in various areas of computer
science to answer approximate set-membership queries. In many
applications, the data grows dynamically, requiring their filters to
expand along with the data. However, existing methods for expand-
ing filters cannot maintain stable performance, memory footprint,
and false positive rate (FPR) simultaneously. We address this prob-
lem with Aleph Filter, which makes the following contributions.
(1) It supports all operations (insertions, queries, deletes, etc.) in
constant time, no matter how much the data grows. (2) Given an
estimate of how much the data will ultimately grow, Aleph Filter
provides a memory vs. FPR trade-offs on par with static filters.
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1 INTRODUCTION
Filters. A filter is a compact data structure that represents keys in
a set and answers set-membership queries [46]. It cannot return a
false negative, but it returns a false positive with a probability that
depends on the amount of memory used on average to represent
each key. A filter is typically stored at a higher layer of the memory
hierarchy (e.g., DRAM) than the data keys that it represents, which
typically reside in storage (i.e., disk or SSD) or over a network. If a
filter returns a negative, the sought-after key is guaranteed not to
exist, meaning the full data set does not need to be searched. Thus,
filters eliminate storage accesses and/or network hops to improve
a system’s performance [18, 20, 21, 35, 51].
The Need for Dynamic Filters. Applications with dynamic data
require filters that support deletes and can expand. Various modern
key-value stores employ dynamic filters to map data entries in
storage [2, 11, 16, 22–25, 48, 56], while network applications use
them to support black lists and multicast routing [59].

Bloom filter [6, 8, 52], the oldest and best-known filter, does not
support deletes or efficient expansion. If the data grows or changes,
the only recourse is to recreate its Bloom filter from scratch by
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rereading the original keys. This, however, can be performance-
prohibitive if the keys reside in storage. In contrast, dynamic filters
support deletes and expansion without rereading the original keys.
Motivation: Scaling Dynamic Filters.As existing dynamic filters
expand, their performance, memory footprint, and/or false positive
rate (FPR) deteriorate. Our research goal is to better scale these
cost metrics so that dynamic filters remain effective no matter how
much the data grows or changes.
Quotient Filters. Quotient filters are a family of dynamic filters
that store a fingerprint for each key in a compact hash table [9] and
handle collisions using linear probing [4, 14, 28, 44, 45, 50]. While
they seamlessly support deletions, expanding them efficiently is
more challenging. The reason is that we do not have access to the
original keys and can therefore not rehash each key to a unique slot
within a larger hash table. Existing quotient filters address this issue
by transferring one bit from each entry’s fingerprint to become a
part of its slot address to evenly distribute the fingerprints across a
2x larger hash table [4, 62]. As a result, the fingerprints shrink as
the data grows, causing the FPR to increase rapidly. Eventually, the
fingerprints run out of bits, making the filter useless by returning a
positive for any query.
The State of the Art: InfiniFilter. The recent InfiniFilter [19] is a
quotient filter that can expand indefinitely while better scaling the
FPR. It does so using a hash slot format that supports variable-length
fingerprints. Thus, while fingerprints of older entries shrink across
expansions, the fingerprints of new entries can still be initialized to
occupy the original slot length. This design keeps fingerprints long
on average. As a result, the FPR increases more slowly. Nevertheless,
InfiniFilter exhibits two remaining scalability challenges.
Problem 1: Performance Scalability. After the first few expan-
sions, the fingerprints of older entries within InfiniFilter run out of
bits. Such entries are referred to as void entries [19]. A void entry
cannot be mapped to a unique slot in a 2x larger hash table since
there is no remaining fingerprint bit to transfer to its slot address.
InfiniFilter tackles this problem by transferring and storing void
entries along a series of smaller hash tables. However, this causes
queries and deletions to potentially search multiple hash tables,
increasing their CPU overheads. Can we better scale the costs of
queries and deletions?
Problem 2: FPR vs. Memory Scalability. As InfiniFilter expands,
the shorter fingerprints of older entries cause the FPR to increase.
To counteract this, InfiniFilter can assign even longer fingerprints
to newer entries as we expand to cause the FPR to converge [19].
Nevertheless, this entails widening the slot width and thus inflat-
ing the memory footprint. Thus, there is an intrinsic scalability
contention between the FPR and memory for InfiniFilter and for
expandable filters in general [43]. Is it possible to alleviate this
contention so that the FPR vs. memory trade-off resembles that of
static filters?
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Table 1: Terms used throughout the paper to describe Aleph
Filter and other baselines.

term definition
𝑁 current filter capacity divided by initial capacity
𝑋 number of expansions so far (i.e., 𝑋 = ⌈log2 (𝑁 )⌉)
𝑀 total memory used for the filter (bits / entry)
𝐹 initial fingerprint length when the filter is first allocated
ℎ(...) mother hash generating function
𝛼 fraction of occupied slots (0 ≤ 𝛼 < 1)

Aleph Filter.We propose Aleph Filter1, an infinitely expandable
filter with constant time performance for all operations and superior
memory vs. FPR trade-offs. It builds on InfiniFilter in three ways.
Contribution 1: Faster Queries by Duplicating Void Entries.
During expansion, Aleph Filter duplicates every void entry in the ex-
panded hash table across both slots that it could have been mapped
to if there had been an additional fingerprint bit to sacrifice. This
keeps the information about all entries, including void entries,
within one main hash table. As a result, Aleph filter accesses only
one hash table for any query in 𝑂 (1) time. We show how to tune
the filter so that duplicated void entries occupy negligible space.
Contribution 2: Faster Deletes using Tombstones. Duplicating
void entries within the main hash table complicates deletions as
potentially multiple duplicates must be identified and removed
when an older entry is deleted. Aleph filter addresses this challenge
by first transforming the target void entry into a tombstone. Before
the next expansion, it retrieves the original hash of the deleted
void entry and uses it to identify and remove all of its duplicates.
The overhead of removing these duplicates is negligible and gets
amortized as a part of the next expansion.
Contribution 3: Inverting the FPR vs Memory Trade-Off. In
many applications, the maximum data size can be predicted in
advance. We show that given a reasonable estimate of how much
the data will grow, we can pre-allocate slightly longer fingerprints
from the onset and assign shorter fingerprints as we expand. When
we reach the estimated data size, the filter guarantees an FPR vs.
memory trade-off that is on par with that of static filters.

2 BACKGROUND
This section describes Quotient Filter and InfiniFilter, on top of
which we build Aleph Filter.

2.1 Quotient Filter
A quotient filter [4, 14, 28] is a hash table that stores a fingerprint for
each inserted key. It does this by first generating amother hash for a
key consisting of 𝐹+𝐴 bits using some hash functionℎ(...). The least
significant 𝐴 bits of this mother hash represent the key’s canonical
slot. The subsequent 𝐹 bits are the key’s fingerprint. Table 1 lists
terms used throughout the paper.

A quotient filter resolves hash collisions using Robin Hood hash-
ing [10], which is a variant of linear probing [47]. This means that

1The name Aleph is borrowed from set theory, where the Aleph numbers denote
different orders of infinity.

Figure 1: A Quotient filter stores a fingerprint for each key in a
hash table, and it resolves has collisions by organizing fingerprints
into runs and clusters. Fingerprints are illustrated in italicized red.

all fingerprints mapped to a given canonical slot are stored contigu-
ously, and they push to the right any other existing fingerprints
that they collide with. A run is defined as a group of contiguous
fingerprints belonging to the same canonical slot. A cluster is de-
fined as several adjacent runs where all but the first have all been
pushed to the right due to collisions.

Figure 1 Part A illustrates a quotient filter with eight slots after
four insertions in any order of Keys𝑉 ,𝑌 ,𝑍 and𝑊 . The mother hash
for each key is shown at the top. The rightmost (least significant)
bits for each mother hash represent the key’s canonical address.
The subsequent bits, shown in italicized red, are the fingerprint.
Keys 𝑉 and 𝑌 share Canonical Slot 100 while Keys 𝑍 and𝑊 share
the adjacent Canonical Slot 101. The result is a cluster consisting
of two runs, each with two slots.
Metadata Bits. To keep track of the start and end of runs and
clusters, a quotient filter employs three metadata bits per slot. The
is_occupied bit indicates whether the slot is a canonical slot for at
least one existing key. The is_shifted bit indicates whether the slot
contains a fingerprint that has been shifted to the right relative to
its canonical slot. The is_continuation bit indicates whether the
slot contains the start of a new run within a cluster.

In Figure 1 Part A, the is_occupied flag is set for Slots 100 and
101 as each of them is a canonical slot for at least one key. The
is_shifted flag is set for Slots 101, 110, and 111 as they each contain
a fingerprint that has been shifted to the right from its canonical
slot. The is_continuation flag is set for Slots 101 and 111 as they
each contain a fingerprint belonging to a run that starts to its left.
Query. To illustrate the query process, consider a query to entry
𝑊 in figure 1 Part (A). The query begins at the canonical slot for
the target key (Slot 101). If the is_occupied flag for this slot is set
to 0, the key could not have been inserted so the query returns a
negative. In this case, however, the is_occupied flag is set to 1 and
so the search continues. The query must now find the start of the
target run that might contains the sought-after key, yet this run
could have been pushed to the right from its canonical slot due to
collisions. To find the target run, the query first moves leftwards
until reaching the start of the cluster. Along the way, it counts the
number of is_occupied flags 𝑐 set to ones (in our example 𝑐 = 2),
each of which indicates the existence of a run in the cluster that
precedes Run 𝑟 . After reaching the start of the cluster (at Slot 100),
the query moves rightwards while skipping 𝑐 runs, at which point it
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Figure 2: The Fingerprint Sacrifice method transfers one bit
from the fingerprint to the slot address while expanding to
evenly distribute the entries across the larger hash table.

reaches the target run (at Slot 110). It then scans this run, returning
a positive if it finds a matching fingerprint (at Slot 111).

Insertion. An insertion commences as a query by first finding the
start of the target run for the key we wish to insert. It then adds
a fingerprint to this run, pushing subsequent fingerprints in the
cluster one slot to the right to clear space. This may cause more
runs to join the cluster by pushing them from their canonical slots.

Delete. A delete operation also commences like a query by first
finding the target run of the key we wish to remove. It then scans
the run and removes the first matching fingerprint. Then, it pulls
all remaining fingerprints in the cluster one slot to the left to keep
the cluster contiguous. For example, Figure 1 Part B illustrates
how deleting Key 𝑌 pulls the second run in the cluster back to its
canonical slot, causing the cluster to fragment. As with any tabular
filter, it is only permissible to delete keys that we know for sure
had been inserted to prevent false negatives.

False Positive Rate. A quotient filter’s FPR is ≈ 𝛼 · 2−𝐹 , where
𝐹 is the fingerprint size and 𝛼 is the fraction of the slots that are
occupied. The intuition is that the target run contains on average 𝛼
fingerprints, while the probability that each of them matches that
of the sought-after key is 2−𝐹 .

Reaching Capacity. As long as the quotient filter is less than 90%
full (i.e., 𝛼 = 0.9), the clusters stay small on average leading to
constant time operations. As it exceeds 90% utilization, however,
the clusters’ lengths begin to grow rapidly. This causes performance
to plummet as all operations on the filter must traverse a greater
number of slots. To keep performance stable and to accommodate
more insertions, it is desirable to expand the filter.

Fingerprint Sacrifice. The standard approach for expanding a
quotient filter is to derive themother for every key by concatenating
its canonical slot address to its fingerprint. We then reinsert the
mother hash into a hash table with twice the capacity of the original
one [4]. Figure 2 illustrates an example. As shown, this approach
transforms the least significant bit of each fingerprint to the most
significant bit of its canonical slot address in order to to evenly
distribute the fingerprints across the larger hash table. Hence, all
fingerprints shrink by one bit in each expansion, causing the FPR to
double, i.e., the FPR becomes𝑂 (𝑁 ·2−𝐹 ) [19]. This method supports
at most 𝐹 expansions, at which point all fingerprints run out of bits.
We summarize the properties of this method in Row 1 of Table 2.
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Figure 3: By supporting variable-length fingerprints, In-
finiFilter can set long fingerprints to newer entries inserted
after expanding.

Figure 4: InfiniFilter in the Widening Regime gradually in-
creases the slot width across expansions to keep the false
positive rate constant.

2.2 InfiniFilter
InfiniFilter is a quotient filter that sets longer fingerprints to newer
entries to allow expanding indefinitely while better scaling the FPR.
Unary Padding. The central innovation of InfiniFilter is the ability
to store variable-length fingerprints. This is achieved by padding
each fingerprint with a self-delimiting unary code to occupy the
rest of the space in the slot. The top part of Figure 3 illustrates an
instance of InfiniFilter with four occupied slots and fingerprints
of lengths 3, 1, 2 and 3 bits from left to right. Unary codes and
fingerprints and are shown in blue and italicized red, respectively.
Expansion Algorithm. As with the Fingerprint Sacrifice method,
InfiniFilter transfers the least significant bit from each fingerprint to
become the most significant bit of the slot address during expansion
to evenly distribute existing entries across the expanded hash table.
After the expansion, InfiniFilter’s slot format allows inserting longer
fingerprints than the older ones that had shrunk. This is shown by
the insertion of entry 𝑌 in Figure 3. This entry is assigned a three
bit fingerprint despite the fact that fingerprints that existed before
the expansion have now all shrunk to two or fewer bits. This keeps
the average fingerprint length longer.
False Positive Rate. Since InfiniFilter doubles in capacity every
time it expands, the fingerprints within the filter follow a geometric
distribution with respect to their lengths: half of them are as long
as possible, a quarter are shorter by one bit, an eighth are shorter
by two bits, etc. Generally, the fingerprints created 𝑖 generations
ago comprise a fraction of ≈ 𝛼 · 2−𝑖−1 of the occupied slots, while
their fingerprints have a length of 𝐹 − 𝑖 bits and hence a collision
probability of 2−𝐹+𝑖 . The FPR after 𝑋 expansions can be derived
as a weighted average of these terms:

∑︁𝑋
𝑖=0 2

−𝐹+𝑖 · 𝛼 · 2−𝑖−1 ≲
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Figure 5: InfiniFilter deletes the longest matching finger-
prints in the target run to prevent future false negatives.

(log2 (𝑁 ) + 2) · 2−𝐹−1 · 𝛼 . After ≈ 2𝐹 expansions, the FPR reaches
one, at which point the filter returns a positive for any query.
Fixed-Length vs. Widening Regimes. To further scale the FPR,
it is possible to widen slots across expansions. For example, Figure
4 illustrates increasing the slot width by one bit. Entries inserted
after the expansion are set fingerprints of length four rather than
three bits. By assigning fingerprints of length 𝐹 + ⌈2 · log2 (𝑋 + 1)⌉
bits to new entries after the 𝑋 th expansion, the FPR converges to
a constant smaller than 2−𝐹 [19]. The intuition is that the longer
fingerprints of newer entries make their weighted contribution to
the FPR increasingly small. We refer to this as theWidening Regime,
in contrast to the Fixed-Width Regime described just before.
Deletes. InfiniFilter deletes a key by removing the longest matching
fingerprint in the target run to prevent future false negatives. For
example, Figure 5 illustrates a delete operation to Key 𝑍 . The target
run for this key begins at Slot 1010 and consists of three slots.
While the fingerprint at Slot 1010 does not match, both subsequent
fingerprints, which have different lengths, do match. If we remove
the shorter matching fingerprint (at Slot 1011) and it happens to
belong to a different key 𝑌 with a different mother hash from
that of Key 𝑍 (e.g., ℎ(𝑌 ) = 011010), future false negatives would
occur when querying for Key 𝑌 . In contrast, removing the longest
matching fingerprint (at Slot 1100) guarantees that the remaining
shorter fingerprint in the run will still match the non-deleted key
so that future queries to it do not result in false negatives.
Rejuvenation. In many applications (e.g., key-value stores), a posi-
tive query to a filter is followed by fetching the corresponding data
entry from storage to return it to the user. In case that the key exists
(i.e., a true positive), we can rehash it to derive a longer mother
hash and thus rejuvenate (i.e., lengthen) the key’s fingerprint, in
case it was created before the last expansion. Such rejuvenation
operations help keep the FPR low. However, they are only effective
when queries target older entries. Similarly to deletes, a rejuvena-
tion operation must lengthen the longest matching fingerprint in a
run to prevent false negatives.
Void Entries. After the first 𝐹 expansions, the oldest fingerprints
in InfiniFilter run out of bits. Such entries are referred to as void
entries. Both Figures 3 and 4 show the creation of a void entry at Slot
101 after the expansion. As shown, the unary code fully occupies a
slot that contains a void entry. Any query that encounters a void
entry in its target run returns a positive. Void entries cannot be
uniquely remapped to a slot in a larger filter as there is no extra
fingerprint bit to transfer to the entry’s canonical slot address.
Supporting Infinite Expansions. To support more than 𝐹 expan-
sions, InfiniFilter transfers each void entry from the main hash table
into a smaller secondary hash table, which has an identical structure
to that of the main hash table but fewer slots. Figure 6 illustrates
this process across four expansions. During the second expansion,

Figure 6: InfiniFilter transfers void entries into a secondary
hash table, which also expands when it reaches capacity.
When void entries appear in the secondary hash table, it
is appended to a chain of hash tables and a new secondary
hash table is allocated.

for instance, the void entry from canonical Slot 110 of the main
hash table is transferred to the secondary hash table. As 110 is also
the mother hash of this entry, its least significant bit (i.e., 0) is used
as a canonical slot address in the secondary hash table while its
more significant two bits (i.e., 11) are used as a fingerprint.

The secondary hash table also expands when it reaches capacity.
Eventually, the oldest entries in the Secondary hash table become
void entries, as shown in Figure 6 by the entry at Slot 11 after the
third expansion. As this point, the Secondary InfiniFilter is sealed
and appended to a so-called chain of auxiliary hash tables, and a new
empty secondary hash table is allocated. While this design supports
an unlimited number of expansions, it slows down queries, deletes
and rejuvenation operations, as they must now traverse potentially
all hash tables along the chain.

3 PROBLEM ANALYSIS
Challenge 1: Scaling CPU Costs. The number of hash tables
across which InfiniFilter stores its entries determines the CPU costs
of queries, deletes and rejuvenation operations. In the Fixed-Width
Regime, each hash table stores entries from across 𝐹 subsequent ex-
pansions, and the overall number of expansions is log2 (𝑁 ). Hence,
there are at most 𝑂 (lg(𝑁 )/𝐹 ) hash tables. In the Widening Regime,
each hash table stores entries from across 𝐹 + 𝑂 (lg lg𝑁 ) subse-
quent expansions on average, and so the number of hash tables is
𝑂 (lg(𝑁 )/(𝐹+lg lg𝑁 )) [19]. We summarize these properties in Rows 2
and 3 of Table 2. Under both regimes, performance deteriorates as
the data grows. Canwe reduce the worst-case number of hash tables
that queries, deletes, and rejuvenation operations must access?
Challenge 2: Alleviating the Memory vs. FPR Contention. As
shown in Row 2 of Table 2, InfiniFilter exhibits a logarithmic FPR
if we fix the number of bits per entry. Alternatively, as shown in
Row 3, it exhibits a stable FPR if we increase the number of bits
per entry at a doubly logarithmic rate. Is it possible to alleviate this
scalability contention to achieve an FPR and memory footprint that
are both on par with a static filter?
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Table 2: A comparison of existing filter expansion techniques against Aleph Filter with respect to the data size 𝑁 and the initial
fingerprint length 𝐹 . Aleph Filter provides faster query/delete/rejuvenation operations, and its Predictive Regime requires less
memory given an approximation 𝑁𝑒𝑠𝑡 of the ultimate data size.

query/
delete/rejuv

insert false positive
rate (FPR)

fingerprint
bits / key

max.
expansions

Fingerprint Sacrifice [4, 62] 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · 𝑁 ) 𝐹 −𝑂 (lg𝑁 ) 𝐹

InfiniFilter (Fixed-Width Regime) 𝑂 ( lg𝑁
𝐹

) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁 ) 𝐹 2𝐹

InfiniFilter (Widening Regime) 𝑂 ( lg𝑁
𝐹+lg lg𝑁 ) 𝑂 (1) 𝑂 (2−𝐹 ) 𝐹 +𝑂 (lg lg𝑁 ) ∞

Aleph Filter (Fixed-Width Regime) 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁 ) 𝐹 2𝐹

Aleph Filter (Widening Regime) 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 ) 𝐹 +𝑂 (lg lg𝑁 ) ∞
Aleph Filter (Predictive Regime) 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 ) 𝐹 +𝑂 (lg | lg(𝑁 /𝑁𝑒𝑠𝑡 ) |) ∞

4 ALEPH FILTER
We introduce Aleph Filter, an expandable filter that builds on In-
finiFilter to improve its scalability properties. Section 4.1 shows
how Aleph Filter supports queries in 𝑂 (1) time by keeping and du-
plicating void entries within the main hash table. Section 4.2 shows
analytically that the fraction of duplicated void entries stays small
and therefore does not significantly impact the FPR or the maxi-
mum number of expansions that the filter supports. Sections 4.3
and 4.4 show how to support deletes and rejuvenation operations in
𝑂 (1) time without introducing false negatives by lazily identifying
and removing void duplicates corresponding to the entry with the
longest matching mother hash.

Throughout Sections 4.1 to 4.4, we analyze Aleph Filter in both
the the Fixed-Width and Widening Regimes and summarize their
properties in Rows 4 and 5 of Table 2. In Section 5, we introduce
the Predictive Regime. Given a rough, conservative estimate of
how much the data will grow, Aleph filter in the Predictive Regime
achieves FPR vs. memory trade-offs that are on par with static
filters. We summarize its properties in Row 6 of Table 2.

4.1 Fast Queries by Duplicating Void Entries
While expanding, Aleph Filter duplicates each void entry in the
main hash table across both canonical slots that it could have
mapped to if there were an additional fingerprint bit to sacrifice. In
Figure 7, for example, there is a void entry at Slot 11 of the main
hash table before the expansion. During the expansion, Aleph Filter
duplicates it across Canonical Slots 011 and 111. In the next expan-
sion, each of these duplicates will be duplicated again, resulting in
four duplicates at Canonical Slots 0011, 0111, 1011, and 1111.

As a result of duplicating void entries, a query targeting any old
entry returns a positive after one access to the main hash table.
Figure 7 illustrates a query to Key 𝑌 , which corresponds to the
void entry that was duplicated. The query visits canonical slot 111
(based on the first three bits of the key’s mother hash), finds a void
entry and returns a positive. Had Key Y’s mother hash started with
011, the query would have found the other void duplicate at Slot 011
and also terminated after one hash table access. As there is a void
entry in every possible run that would have contained the entry if
we had all bits of its mother hash, a query to the the original key
always returns a positive. Hence, no false negatives can occur.

Figure 7: While expanding, Aleph Filter duplicates each void
entry so that one duplicate would still be found in constant
time when querying for the original key.

Another result of duplicating void entries is that any query to a
non-existing key terminates after one access to the main hash table.
The reason is that the main hash table contains either a fingerprint
or a void entry in any existing key’s canonical slot. This means that
if we do not find a matching entry in 𝑂 (1) time, the target entry is
guaranteed not to exist.

Hence, all queries to Aleph Filter are processed in worst-case
𝑂 (1) time. This is an improvement over InfiniFilter, where queries
targeting non-existing or older keys must search an increasing
number of hash tables as the data grows.

4.2 Analysis
Duplicating void entries in the main hash brings up two plausible
concerns. The first is whether duplicated void entries significantly
increase the FPR, seeing as a query that encounters a void entry
immediately returns a positive. The second is whether duplicated
void entries take up significant space within the main hash table.
This section shows that the proportion of void entries stays small
and therefore does not significantly increase the FPR or cause the
hash table to fill up prematurely.
Generational Distribution. Aleph Filter doubles in capacity dur-
ing each expansion. This means that keys inserted zero, one or
two expansions ago comprise approximately a half, a quarter, or
an eighth of the data set, respectively, and so on. More generally,
consider the Set 𝑠 𝑗 of keys inserted in-between the 𝑗 th and ( 𝑗 + 1)th
expansions, i.e., in Generation 𝑗 . Suppose we are now in Generation
𝑋 (𝑋 ≥ 𝑗 ), i.e., before Expansion 𝑋 + 1. Equation 1 approximates
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the size of Set 𝑠 𝑗 as a fraction of the whole key set.

𝑓 ( 𝑗) ≈ 2−𝑋+𝑗−1 (1)

FPR in the Fixed-Width Regime. Consider some Generation 𝑗

of non-void entries (i.e., 𝑋 − 𝑗 < 𝐹 ). These entries’ fingerprints
each consist of 𝐹 − (𝑋 − 𝑗) bits, since they are initialized with 𝐹

bits and lose one bit in each expansion. The probability for a query
to encounter such an entry in a given slot and falsely match its
fingerprint is 𝛼 · 𝑓 ( 𝑗) · 2−𝐹+𝑋−𝑗 = 𝛼 · 2−𝐹−1.

Now consider a Generation 𝑗 of void entries (i.e., 𝑋 − 𝑗 ≥ 𝐹 ).
There are 2−𝐹+𝑋−𝑗 duplicates per entry since the number of dupli-
cates increases by a factor of two in each expansion. The fraction
of slots occupied by void duplicates originating from Generation 𝑗

is 𝛼 · 𝑓 ( 𝑗) · 2−𝐹+𝑋−𝑗 = 𝛼 · 2−𝐹−1. Hence, the probability of encoun-
tering a void duplicate from Generation 𝑗 during a query and thus
returning a false positive is 𝛼 · 2−𝐹−1.

As shown, the contribution of each generation of entries to the
FPR is equal (i.e.,𝛼 ·2−𝐹−1). For non-void entries, this is because each
time their fingerprints lose one bit, their fraction in the overall filter
halves. For void entries, this is because they always return a positive,
and their fraction of void entries emanating from a given generation
stays fixed since they duplicate. Equation 2 expresses the overall
FPR after𝑋 expansions. We see that Aleph Filter has approximately
the same FPR as InfiniFilter in the fixed-width regime.

𝐹𝑃𝑅 ≈
𝑋+1∑︂
𝑗=0

𝛼 · 2−𝐹−1 ≲ 𝛼 · (𝑙𝑜𝑔2 (𝑁 ) + 2) · 2−𝐹−1 (2)

FPR in the Widening Regime. In the Widening Regime, entries
in Generation 𝑗 are assigned fingerprints of ℓ ( 𝑗) = 𝐹 +2 · log2 ( 𝑗 +1)
bits, and they lose one bit in each expansion.

Let us consider a generation Generation 𝑗 of non-void entries
(i.e.,𝑋− 𝑗 < ℓ ( 𝑗)). By Generation𝑋 , the fingerprints of Generation 𝑗

will have shrunk by 𝑋 − 𝑗 bits to ℓ ( 𝑗) − (𝑋 − 𝑗) bits. The probability
for a query to encounter an entry from Generation 𝑗 in a given slot
and falsely match its fingerprint is therefore 𝛼 · 𝑓 ( 𝑗) · 2−ℓ ( 𝑗)+𝑋−𝑗 .

Let us now suppose Generation 𝑗 consists of void entries (i.e.,
𝑋 − 𝑗 ≥ ℓ ( 𝑗)). The number of void duplicates for each entry is
2−ℓ ( 𝑗)+𝑋−𝑗 . The probability of encountering a void duplicate origi-
nating from this generation is therefore the same expression: 𝛼 ·
𝑓 ( 𝑗) · 2−ℓ ( 𝑗)+𝑋−𝑗 .

Equation 3 sums up this expression across all generations to
derive the FPR. The derivation uses a well-known identity that
the sum of the reciprocals of the square numbers (i.e., Σ∞

𝑖=0𝑖
−2)

converges to 𝜋2/6. The result is that Aleph Filter’s FPR matches
InfiniFilter’s FPR in the Widening Regime.

𝐹𝑃𝑅 ≈
𝑋+1∑︂
𝑗=0

𝛼 · 𝑓 ( 𝑗) · 2−ℓ ( 𝑗 )+𝑋−𝑗

≈ 𝛼 · 2−𝐹−1 ·
𝑖∑︂
𝑗=0

· 1
( 𝑗 + 1)2 ≲ 𝛼 · 2−𝐹−1 · 𝜋

2

6
≲ 𝛼 · 2−𝐹

(3)

Expansion Limit in Fixed-Width Regime.We saw above that
the fraction of slots in the filter that are occupied by void duplicates
of entries created in generation 𝑗 is 𝛼 · 𝑓 ( 𝑗) · 2−𝐹+𝑋−𝑗 = 𝛼 · 2−𝐹−1.
The number of generations of void entries is 𝑋 − 𝐹 + 1. Hence, the
fraction of slots occupied by void duplicates by the time we reach
Generation𝑋 (𝑋 ≥ 𝐹 ) is 𝛾 (𝑋 ) = 𝛼 ·2−𝐹−1 · (𝑋 −𝐹 +1). We may now

Main hash 
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Void entries

Auxiliary 
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Inserts

Expand Expand

Append

Figure 8: Aleph filter stores the mother hashes of all void
entries along the secondary and auxiliary hash tables.

ask at which point the number of duplicates takes up half the space
in the filter, meaning that even after we expand, void duplicates
fully take up the expanded capacity so there is no space for new
insertions. We obtain it by setting 𝛼 to one, equating 𝛾 (𝑋 ) to 1/2,
and solving for𝑋 to obtain 𝐹 +2𝐹 −1. Recall from Section 2 that the
fixed-width regime only supports 2𝐹 expansions anyways (as at this
point the FPR reaches one and the filter becomes useless). Hence,
Aleph Filter does not reduce the maximum number of supported
expansions in the Fixed-Width Regime.
Expansion Limit in Widening Regime. As we saw, the fraction
of slots occupied by void duplicates from Generation 𝑗 is 𝛼 · 𝑓 ( 𝑗) ·
2−ℓ ( 𝑗)+𝑋−𝑗 . Let 𝑣 denote the total number of generations of void
entries. The overall fraction of slots occupied by void entries is∑︁𝑣

𝑗=0 𝛼 ·𝑓 ( 𝑗)·2−ℓ ( 𝑗)+𝑋−𝑗 . This expression is subsumed by Equation 3
and is therefore lower than 𝛼 ·2−𝐹 . This establishes that the fraction
of slots occupied by void entries converges to a small constant as
the filter expands. The intuition is that newer entries are assigned
longer fingerprints, and so it takes them increasingly longer to
become void and start duplicating. Hence, Aleph Filter supports an
infinite number of expansions in the Widening Regime.

4.3 Fast Deletes Using Tombstones
Duplicating void entries makes delete operations intricate to handle.
The reason is that every duplicate of a void entry that we wish to
delete must be identified and removed. The challenge is doing so
in constant time, without using a significant amount of additional
metadata, and without creating the possibility of false negatives.

In the simple case that a delete operation is targeting a run with
at least one matching non-void entry, the entry with the longest
matching fingerprint will be removed as shown in Section 2. This
section focuses on processing deletes when the only matching
entries in the target run are void entries.
Identifying a Void Entry’s Duplicates. An entry becomes void
when the length of the mother hash that it was assigned when
it was inserted matches the logarithm base two of the number of
slots in the filter. In every subsequent expansion, the number of
duplicates for the entry and the number of slots in the filter both
multiply by a factor of two. If the entry’s original mother hash
consists of 𝑏 bits and the filter currently comprises 2𝑘 slots, then
the entry participated in 𝑘 − 𝑏 expansions since it became a void
entry. Therefore, it has 2𝑘−𝑏 void duplicates. For example, suppose
the filter consists of 26 slots and the mother hash we wish to remove
is 0011. This mother hash consists of 𝑏 = 4 bits while the power
of the size of the filter is 𝑘 = 6, meaning that its number of void
duplicates is 26−4 = 4.

We can also infer which canonical slots contain these void du-
plicates by using the mother hash of the original entry as the least
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significant 𝑏 bits of their addresses, and applying all possible per-
mutations to the remaining 𝑘 −𝑏 bits. In the example just given, we
use the mother hash 0011 as the least significant bits and permute
the remaining two bits to obtain the following four slots addresses:
000011, 010011, 100011, 110011. To execute the delete correctly,
we would need to remove a void duplicate from each one of these
canonical slots. The question becomes how to efficiently store and
retrieve the mother hash of any void entry so that we can identify
and remove all of its void duplicates?
SecondaryHashTable. Similarly to the Chained InfiniFilter, Aleph
filter adds the mother hash of any entry that turns void into a
secondary hash table, which has an identical structure to that of
the main hash table yet fewer slots. Figure 7 illustrates an example.
Before the expansion, the secondary hash table stores only the
mother hash of the void entry at Slot 11 of the main hash table. The
secondary hash table then expands alongside the main hash table.
After the expansion, another entry turns void at Slot 010 of the main
hash table, and so its mother hash is stored in the Secondary hash
table. Note that while a void entry may have multiple duplicates in
the main hash table (e.g., at Slots 011 and 111), its mother hash is
only stored once in the secondary hash table.
Auxiliary Hash Tables. As the Secondary Hash Table fills up,
it must expand as well. Expanding it entails transferring one bit
from each entry’s fingerprint to its canonical slot address in the ex-
panded hash table. In Figure 7, for example, the entry at Slot 1 of the
secondary hash table after the expansion corresponds to the entry
with fingerprint 11 before the expansion, since the least significant
bit of its fingerprint is repurposed as the most significant bit of its
slot address. Eventually, void entries appear in the secondary hash
table as well. At this point, we seal the secondary hash table and
add it to a chain of auxiliary hash tables. A new empty secondary
hash table is then allocated. Figure 8 illustrates the high-level work-
flow. This architecture is similar to that of the Chained InfiniFilter
from Section 2. The core difference is that InfiniFilter traverses the
secondary and auxiliary hash tables to process queries and deletes
while Aleph Filter does not.
Tombstones. A delete operation commences by modifying a void
entry in the canonical slot of the key to be deleted into a tombstone
at the main hash table. This causes subsequent queries to the deleted
key to likely return a negative (unless there is some other void
entry in the slot, which would lead to a false positive). To encode a
tombstone, we employ a special bit string of all 1s. Figure 9 shows
an example of a delete operation of Key𝑋 landing at Canonical Slot
101, where the only matching entry is a void entry. The first step is
changing the content of the slot from a void entry encoding (i.e.,
1110) into a tombstone (i.e., 1111). As a result, subsequent queries
to Key 𝑋 in the example will now return a negative.
Deferred Removal of Duplicates. The second step of a delete
operation is to add the canonical slot of a void entry to be removed
into a deletion queue, which is structured as an append-only array.
Right before the next expansion, Aleph Filter pops one canonical
slot address at a time from the deletion queue. It uses this address
as a search key to traverse the secondary and auxiliary hash tables
from largest to smallest. The search terminates as soon as it finds a
matching entry. Since larger hash tables store longer mother hashes
and we search the hash tables from largest to smallest, the first
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Figure 9: Aleph filter deletes a void entry by first transform-
ing it into a tombstone and storing the canonical address in
a deletion queue. Before the next expansion, void duplicates
are identified and removed.

matching entry that we find corresponds to the longest matching
mother hash. Based on this mother hash, we identify all duplicates
and remove them from the main hash table2.

In Figure 9, for example, we pop Slot 101 from the deletion queue
and use it as a search key to probe the secondary hash table. We
find a matching entry at Slot 1 with fingerprint of 0. We concatenate
these to obtain a longest matching mother hash of 01. Since the
main hash table currently has 23 slots while the longest matching
mother hash consists of two bits, we infer that the void entry has
23−2 = 2 duplicates in the main hash table, and that their canonical
slots are 001 and 101. We proceed to delete one void entry from
each of these canonical slots. Finally, we also delete the longest
matching mother hash from the secondary hash table.
Preventing False Negatives. Figure 10 shows a more complex
example of a delete operation where there are two void entries in
the target canonical slot. When we visit the Secondary Hash Table,
we find a run containing two mother hashes of different lengths for
these void entries: 00 and 000. The different lengths of these mother
hashes indicate that one of the void entries has two duplicates in the
filter while the other has one. There is now a question of whether
to remove the entry with the single void entry or the one with the
two void duplicates.

Let us first suppose the entry with the smaller mother hash
(and hence more duplicates) is removed. If this entry happens to
correspond to a different key Y with a different extended mother
hash than that of key X (e.g., ℎ(𝑌 ) = ...100), we would get false
negatives later when querying for Key 𝑌 . Particularly, a query for
Key𝑌 would reach Slot 100, fail to find a matching entry, and return
a false negative. To prevent false negatives, we must delete the void
entry with the fewest duplicates. As before, this entry corresponds
to the one with the longest matching mother hash. This ensures that
the remaining void entry’s duplicates will still match whichever
entry still exists. Hence, in Figure 10, one void entry is removed
from Slot 001 of the main hash table, and the entry with Slot 0 is
removed from the secondary hash table.
Computational Analysis. Turning a void entry into a tombstone
and adding its address to the deletion queue take 𝑂 (1) time to
execute. The cost of identifying and removing all duplicates for
a given void entry is deferred and incurred right before the next
expansion. To quantify this cost in the worst-case, suppose the user

2Note that if many such deletes of void entries take place before the next expansion
and cause the filter utilization to drop significantly below the expansion threshold
again, we delay the expansion until utilization reaches the threshold again.
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Figure 10: Aleph filter identifies which void duplicates to
remove based on the longest matching mother hash of the
deleted key.

deletes all void entries at once. The dominating part of the cost is to
remove each individual duplicate from the main filter, while the cost
of retrieving every mother hash from the secondary and auxiliary
hash tables is a lower-order term (i.e., 𝑂 (𝑋/𝐹 )). In Section 4.2, we
saw that there are at most 𝑂 (2−𝐹 · 𝑋 · 𝑁 ) void duplicates in the
main hash table in the Fixed-Width Regime. Each of them takes
constant time to remove. Hence, the overall amount of work is
𝑂 (2−𝐹 · 𝑋 · 𝑁 ). As this work is performed after 𝑁 insertions, it
remains sub-constant as long as 𝑋 < 2𝐹 . Since this is the maximum
number of supported expansions anyways, the cost of removing
void duplicates is amortized constant for the filter’s whole lifetime.

In the Widening Regime, we saw in Section 4.2 that there are at
most 𝑂 (2−𝐹 · 𝑁 ) void duplicates in the main hash table. Removing
each of them after 𝑁 insertions entails𝑂 (2−𝐹 ) additional overhead
per insertion. Hence, Aleph Filter supports deletes in constant time
while being able to expand indefinitely in the Widening Regime.
Memory Analysis. The secondary and auxiliary hash tables store
at most 𝑁 · 2−𝐹 mother hashes altogether. The size of these hash
tables is therefore smaller by a factor of at least 2−𝐹 from the main
hash table and therefore does not take up much memory.

4.4 Fast Rejuvenation Operations
In Section 2, we saw that a rejuvenation operation rehashes a
queried key after retrieving it from storage to lengthen the longest
matching fingerprint in the target run. This helps reduce the FPR.
In Aleph Filter, a rejuvenation operation can be trickier to handle
if the only matching entry in the target run is a void entry. In this
case, we must also eliminate its void duplicates.

Aleph Filter handles the case where the target run only contains
matching void entries by immediately rejuvenating one void entry
into the full fingerprint of the queried key. It also adds the cor-
responding canonical slot into a Rejuvenation Queue (similar to
the Deletion Queue from Section 4.3). Just before the next expan-
sion, Aleph filter pops one address at a time from the Rejuvenation
Queue. For each address, it finds the longest matching mother hash
in the Secondary or Auxiliary Hash Tables. It compares the length
of this mother hash to the log of the number of slots in the main
hash table to infer how many void duplicates correspond to this
mother hash and what their locations are. It then removes each of
these void duplicates. This process is identical to how deletes are
processed with the only exception that a void duplicate need not
be removed from the queried key’s canonical slot, as the void entry
there has already been transformed into a full fingerprint upfront.
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Figure 11: Aleph filter rejuvenates a void entry by turning
it into a full fingerprint and adding the canonical slot to a
rejuvenation queue. It removes duplicates lazily.

Figure 11 shows an example of rejuvenating a void entry at
Canonical Slot 100. First, Aleph Filter transforms the void entry
into a full fingerprint and adds the canonical slot address to the
Rejuvenation Queue. Before the next expansion, Aleph filter pops
address 100 from the Rejuvenation Queue and uses it as a search key
to query the Secondary Hash Table. It finds the longest matching
fingerprint of 0 at Slot 0 (the other mother hash in this run is 000,
which doesn’t match 100 along the third bit). Hence, the longest
matching mother hash is 00. This implies that the void entry had
been duplicated twice at Canonical Slots 000 and 100 of the main
hash table. However, since this is a rejuvenation operation, we
know we have already replaced one void entry by a fingerprint at
Canonical Slot 100, so the only remaining duplicate to remove is at
Canonical Slot 000. Finally, we also remove the longest matching
mother hash from the Secondary Hash Table.

Rejuvenation operations do a constant amount of work upfront
while deferring and amortizing the removal of duplicates to the
next expansion. Hence, their cost is 𝑂 (1).

5 PREDICTIVE REGIME
So far, we have seen two complementary methods of scaling the FPR
as the data grows. Rejuvenation operations lengthen fingerprints to
reduce the FPR, but they are only effective when the queryworkload
is targeting older entries (i.e., with shorter fingerprints). On the
other hand, the Widening Regime scales the FPR by increasing
the fingerprint length assigned to newer entries, yet the cost is a
higher memory footprint of 𝐹 +𝑂 (lg lg𝑁 ) bits / entry. This begs the
question of whether there are ways to fix the FPR without relying
on rejuvenation operations or using more memory. This section
introduces the Predictive Regime to address this challenge. The
Predictive Regime is an orthogonal contribution to Aleph Filter. It
is also applicable to other expandable filters (e.g., InfiniFilter [19]).

The Predictive Regime takes as a parameter an estimate from the
user of how much the data will grow. We denote this estimate as
𝑁𝑒𝑠𝑡 , and it is measured as the ratio between what we think the final
data size will be to the initial filter capacity. Using this estimate, the
Predictive Regime uses Equation 4 to assign fingerprints of length
ℓ ( 𝑗) to entries inserted at Generation 𝑗 . The term𝑋𝑒𝑠𝑡 = log2 (𝑁𝑒𝑠𝑡 )
refers to the number of expansions before reaching the estimate.

At Generation 0, Equation 4 assigns longer fingerprints of length
𝐹+⌈2·log(𝑋𝑒𝑠𝑡−1)⌉ bits. As the data size grows towards the estimate
(1 ≤ 𝑗 ≤ 𝑋𝑒𝑠𝑡 ), it assigns an equal or shorter fingerprint length to
every subsequent generation. When we reach the data size estimate
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(i.e., 𝑗 = 𝑋𝑒𝑠𝑡 + 1), the Equation assigns fingerprints of length 𝐹 bits,
while all fingerprints assigned in previous generations will have
shrunk to at most 𝐹 bits. Note that this is in contrast to theWidening
Regime, in which we begin with fingerprints of length 𝐹 bits and
assign monotonically longer fingerprints as the filter expands. The
max function in Equation 4 keeps the inner part of the logarithm
non-zero so that the equation is defined for all 𝑗 ≥ 0.

ℓ ( 𝑗) = 𝐹 + 2 · ⌈log2 (max( |𝑋𝑒𝑠𝑡 − 1 − 𝑗 |, 1)) ⌉ (4)

After surpassing the data size estimate (i.e., 𝑗 > 𝑋𝑒𝑠𝑡 + 1), the
Predictive Regime assumes the Widening Regime’s behavior. The
absolute value function within the logarithm in Equation 4 sets
increasing fingerprint lengths to subsequent generations to keep
the FPR stable. Note that when we set 𝑁𝑒𝑠𝑡 = 1 (implying 𝑋𝑒𝑠𝑡 = 0),
the Predictive Regime is identical to the Widening Regime from
the get-go. Generally, the memory complexity for the Predictive
Regime is 𝐹 +𝑂 (lg | lg(𝑁 /𝑁𝑒𝑠𝑡 ) |).
Visualization. Figure 12 illustrates how the fingerprint length
assigned to newer entries first drops during the first𝑋𝑒𝑠𝑡 expansions
and then increases again afterwards. The Predictive Regime initially
requires more memory than the Widening Regime. As the data
grows, however, the Predictive Regime comes to improve upon the
Widening Regime across the board, especially when the real data
size is close to the estimate. This is a good trade-off; it is better
to take up fewer bits per entry when the data is large rather than
when it is small.
FPR Analysis. The analysis of the FPR with the Predictive Regime
is similar to the analysis of the Widening Regime from Section 4.2.
The contribution of any generation 0 ≤ 𝑗 ≤ 𝑋 to the FPR is 𝛼 ·
𝑓 ( 𝑗) · 2ℓ ( 𝑗)−(𝑋−𝑗) . Equation 5 sums this up across all generations
to obtain the overall FPR.

𝐹𝑃𝑅 =

𝑋+1∑︂
𝑗=0

𝛼 · 𝑓 ( 𝑗) · 2ℓ ( 𝑗 )−(𝑋−𝑗 ) (5)

By plugging in 𝑋𝑒𝑠𝑡 for 𝑋 in Equation 5 and simplifying, we
obtain the maximum FPR until the moment we reach the data size
estimate. This turns out to be at most 2−𝐹 by the same analysis
we saw in Section 4.2 for the FPR in the Widening Regime. At this
point, all fingerprints consist of at most 𝐹 bits. Hence, the memory
vs. FPR trade-off is on par with a static filter by the time we reach
the data size estimate.

By plugging infinity for 𝑋 in Equation 5 and simplifying, we
obtain amaximum FPR of 2−𝐹+1 as we surpass the data size estimate.
The intuition is that the left-hand and right-hand curves of the
Predictive Regime in Figure 12 each contribute an additive factor
of 2−𝐹 . It is possible to use one extra bit in advance to maintain a
given FPR target as we surpass the data size estimate.

6 EVALUATION
We evaluate Aleph Filter against the Fingerprint Sacrifice (FS)
method and InfiniFilter, the state-of-the-art techniques for expand-
ing filters, which were described and analyzed in Sections 2 and 3.
Implementation. We built Aleph filter as a fork and subclass
of InfiniFilter to reuse its core machinery (e.g., for parsing slots,
migrating entries, etc.). All baselines inherit from the same Quotient
Filter base class. Reusing code across the baselines means that any
performance differences arise due to their expansion algorithms
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Figure 12: Given a rough estimate of how much the data size
will grow, Aleph filter requires far fewer bits per entry by
the time we reach the estimate and pass it.

rather than implementation idiosyncrasies. We employ version
11.0.16 of the Java compiler.
Workload Description. All experimental trials begin with a filter
consisting of 256 canonical slots and issuing insertions, causing
the filter to expand multiple times. Unless otherwise mentioned, all
queries are issued to a given baseline right before the next expan-
sion to measure the worst-case query performance (when clusters
are longest). Other than Figures 13 Parts (C) and (D), the queries in
all experiments target non-existing keys. Each query experiment
issues 10k queries and averages their latency. Aside from Figure 17
Part (B), all experiments employ uniformly random workloads. For
all baselines, we use java.util.Random to generate random keys and
xxhash [15] as the hash function. All data keys are eight-byte inte-
gers before being hashed. Each baseline expands when 80% of the
hash table is occupied, though we vary this threshold in Figure 16.
Figure 14 focuses on the Widening and Predictive Regimes, while
all other experiments use the fixed-width regime with 12-bit slots.
Hardware. Our system is equipped with two Intel Xeon E5-2690v4
processors, each running at 2.6 GHz with 14 cores and two hyper-
threads per core. The machine contains 512GB of RAM, 35MB of L3
cache, 256KB of L2 cache, and 32KB of L1 cache. Storage includes
two 960GB SSDs and four 1.8TB HDDs, though these drives are not
used in the experiments. The system runs on Ubuntu 18.04.5 LTS.
Lower Query Cost. Figure 13 Parts (A) measures latency for ran-
dom negative queries (i.e., to non-existing keys). On each curve,
one expansion occurs between two adjacent points, indicating a
doubling of the data size. As the data grows, the average latency
increases across all baselines as they outgrow the CPU caches. Nev-
ertheless, InfiniFilter’s query cost deteriorates more rapidly since
each query checks a growing number of hash tables. The FS method
cannot expand indefinitely as eventually, all fingerprints run out of
bits. Its performance is also more erratic as the filter’s slot width
changes, leading to cache misalignment. In contrast, Aleph Filter
supports unlimited expansions while maintaining stabler latency
as each query checks at most one hash table.

Part (B) measures the false positive rate (FPR) for the same
queries as in Part (A). The FS method exhibits a skyrocketing FPR as
fingerprints shrink across expansions. InfiniFilter and Aleph Filter
exhibit stabler FPRs that match the model in Equation 2.

Part (C) measures query latency for uniformly random existing
keys. InfiniFilter is only slightly slower than Aleph Filter as most
queries terminate after finding a matching entry in the main hash
table. In contrast, Part (D) measures latency for queries targeting
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Figure 13: Aleph Filter exhibits faster worst-case queries while matching InfiniFilter in terms of the false positive rate.
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Figure 14: The Predictive Regime is best when we have a lower bound on how much the data will grow.

the oldest existing entries. InfiniFilter traverses multiple hash ta-
bles in this case, thus incurring significantly higher latency. Aleph
Filter is faster as each query returns a positive immediately after
encountering a void entry in the main hash table.
The Widening and Predictive Regimes. Figure 14 considers an
application that requires an FPR of at most ≈ 1% while expecting
the data size to grow to ≈ 106 entries. We initialize each baseline
with the smallest memory footprint such that when the data size
reaches ≈ 106 entries, the FPR is at most ≈ 1%. InfiniFilter and
Aleph Filter in the Widening Regime are each assigned 13 bits per
entry. We initialize the FS method with 30 bits per entry and Aleph
filter in the Predictive Regime with 22 bits per entry. We measure
performance as the data size approaches and exceeds ≈ 106 entries.

Parts (B) and (C) show the takeaways. The FS method cannot
meet the FPR requirement after the data size exceeds ≈ 106 en-
tries since all fingerprints shorten in each expansion. In contrast,
InfiniFilter and Aleph Filter in the Widening Regime maintain a
constant FPR from the get-go and even after the data size surpasses
≈ 106 entries. The trade-off is a growing memory footprint. Aleph
filter in the Predictive Regime also meets the FPR target while
requiring a memory footprint on par with static filters when we
meet the target data size. Even as the data outgrows our estimation,
Aleph filter still requires less memory than in the Widening regime
as predicted by our model in Equations 4 and 5 and in Figure 12.
The trade-off is that it requires a few more bits per entry from the
get-go, though this is a good deal: it is better to use more bits per
entry when the data is small rather than large.

For experimental control, Part (A) verifies that both variants of
Aleph Filter exhibit the fastest queries, while Part (D) shows that
all baselines have approximately the same insertion speed.

Cheaper Deletes. Figure 15 Part (A) focuses on deletion latency.
We show two variants of Aleph Filter with greedy vs. lazy deletes.
The former identifies and removes void duplicates immediately
during a deletion. The latter uses tombstones and removes void du-
plicates lazily during the next expansion as described in Section 4.3.
We compare these baselines to InfiniFilter. All baselines are in the
Fixed-Width Regime with 12-bit slots. We initialize each baseline
with 29 slots and perform insertions until it expands to 225 slots. We
then clone each baseline. For each clone, we measure latency for
deleting 512 random entries from the same generation (i.e., entries
inserted in-between the same two expansions). As we move from
left to right on the x-axis, we delete entries from earlier generations
(i.e., older entries).

The figure shows that for all baselines, deletion latency is ≈ 600
ns when deleting non-void entries (on the left-hand side). As we
delete older entries, the latency for InfiniFilter increases to ≈ 800
since more hash tables are accessed to find and remove them. For
Aleph Filter with greedy deletes, latency skyrockets as we target
older entries since each entry has exponentially more duplicates in
the main hash table, each of which must be removed. In contrast, for
Aleph Filter with lazy deletes, latency decreases as we delete older
entries since we only replace one void entry with a tombstone (i.e.,
we do not need to shift the remaining fingerprints in the cluster
backward by one slot). Hence, Aleph filter’s use of tombstones
achieves constant time deletions. An experiment with rejuvenation
operations yields a nearly identical figure, and so we omit it.
Deletion Cost Gets Amortized. When Aleph filter deletes a void
entry by replacing it with a tombstone, the removal of the entry’s
potentially many duplicates is deferred to the next expansion. To
ensure that this does not degrade expansion speed, Figure 15 Part (B)
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Figure 15: Aleph Filter supports fast deletions by using tomb-
stones and deferring the removal of void duplicates to the
next expansion.
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Figure 16: The expansion threshold allows trading between
space and performance. Aleph Filter exhibits more robust
query performance as we vary this parameter.

measures this overhead in both the Fixed-Width and Widening
Regimes against the cost of migrating entries into an expanded hash
table. We run the experiment by inserting entries into an initially
small empty filter, causing it to expand multiple times. From the
10th expansion onward, we delete the oldest remaining generation
of entries before the next expansion (e.g., After Expansion 15, we
delete all entries inserted in Generation 5, etc.). During the next
expansion, all void duplicates for this generation of entries are
removed. This experiment represents the worst-case consistent toll
that deletes can exact on expansions.

In the fixed-width regime, removing void duplicates takes ap-
proximately two orders of magnitude less time than the overhead
of migrating entries into the expanded hash table. The reason is
that the maximum number of void duplicates from each generation
as a proportion of the filter size is small (i.e., ≈ 2−𝐹 as shown in Sec-
tion 4.2). By contrast, in the Widening Regime, entries are slower
to become void as they are created with increasing fingerprint
lengths. Therefore, there are only a few generations of void entries
to remove. Once they are removed, all subsequent deletions target
entries in the main hash table, and so the removal of void duplicates
inflicts no toll on expansion. The experiment demonstrates that in
both regimes, the removal of void duplicates is heavily amortized
with respect to the cost of expansion. Thus, insertions stay fast no
matter how many deletes targeting old entries are in the workload.
Expansion Threshold. Figure 16 varies the threshold at which
we expand InfiniFilter and Aleph Filter. A higher threshold makes
these filters more compact and memory efficient, though it hurts
performance as clusters in the underlying quotient filter become
longer. Part (A) of the figure measures the average query latency
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Figure 17: All baselines exhibit space spikes while expanding
(Part A) and slowdown due to skewed insertions (Part B).

right before each expansion as we insert 226 keys. Each dot in this
figure represents a trial starting with a small empty filter. With a
higher threshold, InfiniFilter’s query latency significantly increases
as longer clusters must be traversed across multiple hash tables.
In Aleph Filter, query latency increases more slowly as only one
hash table is accessed per query. Part (B) shows that insertion
performance is similar across these baselines as longer clusters need
to be traversed before finding the target run for a new fingerprint.
Transient Space Cost. Figure 17 Part (A) uses an independent
thread to measure the filter’s total memory footprint every two
seconds as we insert 229 keys. We observe significant memory
spikes during expansion. A spike begins whenever we allocate a
larger main hash table and transfer fingerprints into it from the
formermain hash table. A spike ends whenwe deallocate the former
main hash table. Handling expansions without such memory spikes
is an intriguing future work direction.
Skew. Figure 17 Part (B) examines the impact of insertion skew.
We insert keys from a Gaussian distribution with a mean of one
billion and varying the standard deviation on the x-axis (from 1
million to 16 million) to control the likelihood of repeated insertions
of the same key. Each dot represents a trial starting with a small
empty filter followed by 224 insertions. With both Aleph Filter and
InfiniFilter, more skew (i.e., smaller standard deviation) leads to
longer clusters and thus higher insertion latency. This problem can
be alleviated by embedding a counter in the filter to count repeating
identical fingerprints rather than materializing each instance [44],
though this feature is not yet implemented in our library.
Slot Width. Figure 18 compares Aleph Filter to InfiniFilter as we
vary the initial slot width in the Fixed-Width Regime. Each dot
represents a trial starting from a small empty filter and inserting
226 keys. Part (A) shows the FPR dropping for both baselines as
the wider slots support longer fingerprints. Part (B) shows that
with wider slots, InfiniFilter becomes more competitive with Aleph
Filter in terms of query cost as there are fewer auxiliary hash tables
to access along InfiniFilter’s chain. Nevertheless, Aleph Filter still
outperforms InfiniFilter across the board. Parts (C) and (D) highlight
a limitation of Aleph Filter when operating with narrow slots (i.e.,
fewer than 10 bits per entry). In this case, the fraction of void entries
in the filter becomes significant. This leads to premature expansion,
which compromises the overall memory footprint as shown in
Part (C). This also degrades insertion throughput as the void entries
entail more overhead to copy during expansion as shown in Part (D).
The figure shows that it is best to operate Aleph Filter with 10 bits
per entry or more. In this range, Aleph Filter provides a significant
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Figure 18: Aleph Filter improves on InfiniFilter across the board in terms of query cost, though its memory footprint and
average insertion latency suffer when using a narrow slot width (i.e., fewer than 10 bits per entry).

query cost improvement without a significant degradation to the
overall memory footprint or insertion latency. In the real world,
filters are typically allocated with 10-16 bits per entry, making
Aleph Filter viable across many applications [16, 22, 48].

7 RELATEDWORK
Some filter expansion approaches allocate additional empty filters
into which more insertions can be made [1, 13, 33, 34, 58, 60]. The
issue is that multiple filters potentially need to be checked during
a query or deletion. Other approaches [39, 61] form a hash ring of
buckets to support elastic expansion, yet this causes all operations to
take𝑂 (lg𝑁 ) time to search a binary tree for a given entry’s bucket.
Yet another approach involves fetching a larger fingerprint for a
key from storage, yet this entails expensive I/Os [59]. In contrast,
Aleph filter provides constant time operations and does not require
storage I/Os.

Complementary approaches expand at a finer granularity to
prevent blocking regular operations and save space [54, 55, 57].
Applying such techniques to Aleph filter could be impactful.

Pagh, Segev, andWieder prove a lower bound that if we initialize
a filter to constant capacity and expand it to contain 𝑁 keys, the
filter must at some point use at least lg lg𝑁 bits per key in addition
to what is required for a filter with a fixed capacity of 𝑁 keys [43].
Aleph Filter’s Widening and Predictive Regimes both meet this
lower bound. The former meets it after the 𝑁 data entries are
inserted, while the latter meets it before any entries are inserted.

The idea of duplicating void entries within a filter hash table
to support indefinite expansion with constant time queries can
also be traced back to Pagh, Segev, and Wieder [43]. Taffy Cuckoo
Filter [3] is an expandable Cuckoo filter [30] based on these ideas,
though it does not support deletes or rejuvenation operations. The
data structure by Liu, Yin, and Yu [38] performs constant time
operations with high probability and a lower space overhead of
lg lg𝑁 +𝑂 (lg lg lg𝑁 ) bits per entry if 𝑁 and 𝑈 are polynomially
related. This matches the leading term of the lower bound. Never-
theless, this method has not been shown to support deletes, and it
does not support unbounded growth beyond a universe size of𝑈 .

Aleph filter improves on these works in several ways. (1) In the
Widening Regime, it requires𝑂 (lg lg𝑁 ) rather than𝑂 (lg lg𝑈 ) bits
per key to support unbounded growth while maintaining a stable
FPR. This is a significant difference if 𝑈 , the universe size, is un-
known or significantly larger than 𝑁 , the data size. (2) To support
deletes, the data structure in [43] keeps track of the age of entries
using a binary age counter alongside each slot for lg lg𝑈 additional

bits per key. In contrast, Aleph filter keeps track of the ages of en-
tries using a chain of exponentially smaller hash tables that take up
negligible space. (3) The data structure in [43] handles fingerprint
collisions by storing the full keys of entries with colliding finger-
prints in an auxiliary dictionary. In contrast, Aleph filter can store
multiple identical fingerprints in the main hash table by employing
Robin Hood hashing. This eliminates one dictionary access from
the query path. (4) Aleph Filter introduces the Predictive Regime,
which significantly reduces the memory footprint.

8 CONCLUSION
We introduced Aleph Filter, an infinitely expandable filter with
constant time operations and improved FPR vs. memory trade-offs.
Applying the Aleph Filter on top of other point filters [5, 7, 27, 29,
32, 44], range filters [12, 17, 31, 36, 40, 42, 53, 63], and adaptive
filters [26, 37, 41, 49] can offer intriguing future work directions.
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