
Why TPC Is Not Enough:
An Analysis of the Amazon Redshift Fleet

Alexander van Renen∗†
UTN

alexander.van.renen@utn.de

Dominik Horn∗
Amazon Web Services
domhorn@amazon.de

Pascal Pfeil∗
Amazon Web Services
pfeip@amazon.de

Kapil Vaidya
Amazon Web Services
kapivaid@amazon.com

Wenjian Dong
Amazon Web Services
wjdong@amazon.fr

Murali Narayanaswamy
Amazon Web Services
muralibn@amazon.com

Zhengchun Liu
Amazon Web Services
zcl@amazon.com

Gaurav Saxena
Amazon Web Services
gssaxena@amazon.com

Andreas Kipf †
UTN

andreas.kipf@utn.de

Tim Kraska
Amazon Web Services
timkrask@amazon.com

ABSTRACT
Database research and development is heavily influenced by bench-
marks, such as the industry-standard TPC-H and TPC-DS for analyt-
ical systems. However, these twenty-year-old benchmarks neither
capture how databases are deployed nor what workloads modern
cloud data warehouse systems face these days.

In this paper, we summarize well-known, confirm suspected, and
unearth novel discrepancies between TPC-H/DS and actual work-
loads using empirical data. We base our analysis on telemetrics from
Amazon Redshift – one of the largest cloud data warehouse deploy-
ments. Among others, we show how write-heavy data pipelines
are prominent, workloads vary over time (in both load and type),
queries are repetitive, and how most properties of queries or work-
loads experience very long tailed distributions. We conclude that
data warehouse benchmarks, just like database systems, need to
become more holistic and stop focusing solely on query engine
performance. Finally, we publish a dataset containing query statis-
tics of 200 randomly selected Redshift serverless and provisioned
instances (each) over a three-month period, as a basis for building
more realistic benchmarks.

PVLDB Reference Format:
Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian
Dong, Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas
Kipf, and Tim Kraska. Why TPC Is Not Enough: An Analysis of the
Amazon Redshift Fleet. PVLDB, 17(11): 3694 - 3706, 2024.
doi:10.14778/3681954.3682031
∗Contributed equally.
†Work performed while at Amazon Web Services.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682031

Table 1: Redshift vs. TPC-H/DS: Key differences between real
workloads and synthetic benchmarks.

Name (Section) TPC-H/DS Redshift Fleet

Q
U
ER

Y

Types (3.2) read-mostly write/read
Complexity (3.4) narrow large/long tails
Operators (3.4) mostly-join varied
Scans Filters (3.5) full scan function calls
CTAS (3.3) none freq./repeating

W
O
RK

LO
A
D

Weekly pattern (4.1) N/A yes
Daily pattern (4.2) N/A no
Distribution (4.3) narrow large/long tails
Repeating (4.4) per-run daily
↩→ Queries ↩→ none ↩→ high
↩→ Templates ↩→ all ↩→ high
↩→ Filters ↩→ high ↩→ high

D
AT

A

Types (5.1) fixed text varchar
int/date timestamp

Table growth (5.2) all stable mostly stable
Skew (5.3) low high
External formats (5.4) only CSV mostly CSV

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/amazon-science/redset.

1 INTRODUCTION
TPC-H/DS. The TPC-H [32] and TPC-DS [31] benchmarks have
been the de-facto standard (heavily skewed towards TPC-H) to
evaluate and compare database systems in industry [2, 9, 15, 29] as
well as in academia. In fact, we searched through all VLDB papers
from the previous five years and found that 14 % of them mention

3694

https://doi.org/10.14778/3681954.3682031
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682031
https://github.com/amazon-science/redset
https://www.acm.org/publications/policies/artifact-review-and-badging-current

TPC-H/DS. Both benchmarks have been created to stress test the
query throughput of analytical data warehouse applications, faced
with a decision support workload. While rarely used in most evalu-
ations, both benchmarks include periodic data ingestion tasks in
the form of bulk deletes and inserts (with some ELT in the case
of TPC-DS). The benchmarks assume a closed system, i.e., a fixed
number of active user sessions, which each issue queries back to
back. These properties make for a highly valuable test for the per-
formance of a query engine. However, typical queries in Redshift’s
fleet don’t query as many tables as TPC-DS does, indicating that
TPC-DS only represents the tail end of analytical workloads. More
importantly, as we will outline in the following sections, a cloud
data warehouse consists of more than just a query engine (e.g.,
workload management, adaptive scaling) and we need to evaluate
these additional components as well.
Cloud Data Warehouses. Databases have, as they always do,
rapidly evolved over the previous decade to adopt to a new land-
scape, namely: the cloud. Most databases’ software is no longer
shipped as an on-premise deployment to run on dedicated ma-
chines for a fixed number of users. Instead, databases are sold as a
(serverless) services, integrated into an intricate cloud ecosystem:
Customers expect an elastic data processing platform that can be
used for a wide range of workloads ranging from data scientist
tasks, over ETL pipelines and ML, to dashboarding. These database
offerings are often used by a varying number of users (open system)
and can interconnect with many systems. Hence, with databases
encompassing more and more features, benchmarks like TPC-H/DS
only evaluate a narrow portion of the overall system.
Redshift Fleet Statistics. Amazon Redshift is a managed database
service fully adopted to the previously outlined cloud landscape. As
part of Amazon Web Services’ (AWS) offerings, it is one of the most
widely used cloud data warehouses on the market. In this paper,
we publish insights from analyzing its telemetry, which permits
us to empirically evaluate what customers are doing with their
database systems in this novel landscape. Our findings confirm some
previously suspected usage patterns and uncover novel insights.
The goal of this work is to highlight potential avenues of research,
close down some dead ends, and connect database research better
with actual customer use cases.
Contributions. We categorize our findings into three sections
relating to (I) individual queries (Section 3), (II) entire workloads
(Section 4), and (III) dataset characteristics (Section 5). All our find-
ings are summarized in Table 1, which gives an overview of how
actual workloads differ from TPC-H/DS. One surprising finding
in this work is the repetitiveness of queries: We find that in 50%
of database clusters 80% of queries are 1-to-1 repetitions of pre-
viously seen queries (details in Section 4.4). This finding presents
huge opportunities for result caching and (automatic) Materialized
Views, which are extensively used in Redshift. We break down how
well our caching implementation is currently working and show
open opportunities in Section 4.6. Next to our analysis of fleet data,
we open source a dataset of query logs (“Redset”, described in Sec-
tion 6) containing statistics over all queries that ran on a sample of
Redshift instances over the span of three months.

2 EXPERIMENTAL METHODOLOGY
Dataset. The presented data is based on statistics over database
clusters from the Redshift fleet. If not otherwisementioned, it relates
to the provisioned offering of Redshift and data over one month.
Please note that some statistics cannot be published because they
contain sensitive information.
Privacy. Given that all statistics are based on customer clusters,
we cannot access data directly due to Amazon regulations for pre-
venting exposure of any sensitive information or any potential
impact on normal operations of customer clusters. All statistics are
therefore based on externalized, anonymized telemetry data.
TPC-H/DS. All experiments relating to TPC-H/DS were conducted
on an off-the-shelf ten node ra3.4xlarge provisioned Redshift
cluster. We chose a TPC-H/DS scale factor of 3 TB for both bench-
marks. We use all queries of the respective benchmarks, including
the standardized, but lesser known insert/delete queries.

3 HOW DO THE QUERIES DIFFER?
In this section, we give a general overview over the types of queries
and their resource demands being run on Redshift. After that, we
dive deep into the distribution of plan operator nodes, the complex-
ity of filter conditions, and the large amount of CTAS queries.

3.1 A qualitative impression
Combining these fleet observations with our experience from talk-
ing to hundreds of customers, we note a few interesting trends.
While there are certainly more, all Redshift directors considered
these as most notable.
Live dashboards. Customers are running live, latency sensitive
dashboard workloads at high concurrency. The p95 response time is
often < 3 seconds as some user is waiting on the dashboard to render.
Often, new data is being ingested every few minutes or sometimes
continuously, limiting the impact of caching whole query results.
ETL to ELT. We observe workload patterns are shifting from
ETL (extract-transform-load) to ELT (extract-load-transform). Cus-
tomers are landing raw data, both structured and semi-structured,
and curating data on Redshift for downstream consumption. Data
freshness SLAs require ingestion pipelines to be simplified and re-
duce the number of hops. The transformation is done either within
Redshift with SQL or with tight read-transform-write back loops.
Features like Zero-ETL are just accelerating this trend.
Lazy SQL. A combination of machine-generated SQL and the non-
SQL-expert persona means that queries received by the engine may
not be efficiently written. Tools which generate SQL, often try to
make the generation process easier, rather than trying to focus on
easier to optimize queries (e.g., they use subqueries, temp tables for
parameters, etc.). Query rewriters and optimizers need to adapt to
handle this efficiently to maintain good query performance.
Repetition. There is a high rate of query repetition encourag-
ing analytics engines to go beyond simple caching techniques to
approaches that learn or even memorize from the initial runs.
Highly variable workloads. While some customers separate dis-
tinct workloads onto different clusters connected with data sharing,
not all do. The result is that some workloads vary significantly over

3695

Table 2: Query Types: The different types of queries executed in Redshift, their cumulative runtime, and the size distribution of query statements.

Number of Queries Query Runtimes Query Text Sizes [byte]: Fleet Mean
Fleet TPC-H TPC-DS Fleet TPC-H TPC-DS Median Mean P90 P99 Max TPC-H -DS

RO Select 48.9% 75.9% 79.2% 28.6% 91.6% 86.7% 260 4396 1542 16413 16 776K 823 2793

Insert 19.5% 6.9% 5.6% 7.3% .4% .5% 378 9972 1401 141941 17 307K 52 570
Copy 7.4% 10.0% 9.6% 38.3% 1.1% 10.8% 337 431 541 2445 98K 135 311

RW Delete 6.6% 6.9% 5.6% 2.6% 7.0% 2.0% 204 340 376 950 15 962K 73 577
Update 3.8% .0% .0% 2.2% .0% .0% 239 807 789 11761 11 700K 0 0
CTAS 1.9% .0% .0% 16.4% .0% .0% 481 3595 3244 30987 13 817K 0 0

Sys Maint. 8.2% .0% .0% 3.3% .0% .0% 165 271 619 969 4K 0 0
Other 3.7% .0% .0% 1.3% .0% .0% 53 311 336 3942 7294K 0 0

time and consist of diverse queries (dashboards, ETL, and large ad-
hoc queries). This trend motivated the development of Redshift’s
AI-driven scaling [23].

3.2 Analytics = Updates
Updates are Frequent. To give an overview of the workload,
we investigate which types of queries are being run on Redshift
(cf. Table 2). Despite Redshift being an analytic data warehouse,
we can see a large number of read/write queries (≈40%). Most
frequently, TPC-H/DS are executed as a read-only benchmark in
industry and academia. But even if the two data refresh function of
TPC-H (consisting of three copies, two inserts, and two deletes)
and three maintenance functions of TPC-DS (consisting of twelve
copies, seven inserts, and seven deletes), respectively, are taken
into account the ratio of updates is still less than in Redshift (≈24 %
for TPC-H and ≈21 % for TPC-DS).
Updates are Heavy. The “Query Runtimes” column of Table 2
show what percentage of the overall query runtime is spent on the
various query types. It shows that the data manipulation queries are
not only numerous, but also account for more runtime than read-
only queries. This is in stark contrast to TPC-H/DS where read-only
queries account for ≈90% of time. This shows that the notion of
a read-only data warehouse is outdated. Even analytical systems
need to support updates and deal with their implications: staleness
of statistics, reclaiming of freed space, maintenance of indexes,
etc. We suspect that the influx in write queries could be partially
due to people moving from ETL to ELT pipelines, especially with
Redshift’s new Zero-ETL feature that lets users continuously load
data from transactional engines into Redshift [4].
System Maintenance. Next to user-related queries, we can also
observe that ≈10 % of queries fall into the system category (≈5 % of
runtime). This category is made up of all work that Redshift needs to
perform internally to keep the system running. While these queries
are certainly necessary to run TPC-H, they are usually not reported
and, therefore, not a focus in cost/performance optimization.

3.3 CTAS
Having observed a high overall runtime impact by CREATE TABLE
AS (CTAS) statements in customer workloads, we want to investigate
those queries in this section, analyze how these tables are being
used, and outline possible strategies on how to optimize databases

Table 3: Query Runtimes: Number of queries and their total run-
times grouped into various runtime buckets.

Time bucket % of queries % of sum(runtime)

Fleet TPC-H -DS Fleet TPC-H -DS

(0s, 10ms] 13.7 0 0 0.01 0 0
(10ms, 100ms] 48.3 0 0 0.4 0 0

(100ms, 1s] 24.9 0 22 2.3 0 2
(1s, 10s] 9.9 27 59 7.3 3 19

(10s, 1min] 2.2 55 13 13.3 30 25
(1min, 10min] 0.86 8 5 35.7 66 55

(10min, 1h] 8e-2 0 0 25.2 0 0
(1h, 10h] 8e-3 0 0 14.3 0 0

>=10h 9e-5 0 0 1.6 0 0

for this usage pattern. As previously shown, around≈1.9% of queries
are CTAS queries, but those account for ≈16.4% of the load on Red-
shift. Those tables created by CTAS statements are heavily used;
roughly ≈40% of queries overall utilize them.

When looking at how often the same CTAS table is recreated,
we find that most tables (≈66%) are created only once within the
span of a week. This leaves ≈34% of CTAS tables that are recreated
multiple times and we can analyze if they are also used similarly.
By looking at subsequent queries on a CTAS table before it is being
recreated, we find that ≈95% of them are being used in the exact
same way each time. This would indicate that CTAS tables are often
used in prepared pipelines, and, most often, to precompute a result
that can then be retrieved quick and easy. The latter is evidenced
by the fact that around ≈80% of CTAS tables are only used by one
query each.

3.4 Query Complexity
Due to obvious privacy concerns, Redshift operators have no facili-
ties to analyze customer queries directly. Therefore, we only report
several indicator metrics to approximate the structure and size of
queries being run in real world workloads compared to TPC-H/DS.
We can see that there is a heavy tail in query text length (which
serves as an indicator for query complexity): while most queries
are rather simple, there are some heavy hitters.

3696

Table 4: Query Plan Nodes: Shows the average number of plan
operators per query in the Redshift fleet compared to TPC-H/DS. The
first row tells us that queries with a runtime of up to 1s have an
average of 1.63 table scans.

Redshift Fleet TPC

(0s, 1s) [1s, 60s) [60s, ∞) Total -H -DS

Scan 1.63 4.15 6.51 2.03 4.00 9.17
HashJoin 0.33 1.30 2.19 0.48 2.54 5.46
MergeJoin 0.04 0.02 0.02 0.04 0.00 0.00
NestLoop 0.01 0.03 0.07 0.01 0.00 0.12
Agg 0.52 0.50 0.72 0.52 1.15 2.11
Sort 0.10 0.23 0.34 0.12 0.73 0.95
Merge 0.08 0.09 0.12 0.08 0.69 0.68
Window 0.03 0.08 0.20 0.04 0.00 0.23
Network 0.15 0.37 0.57 0.18 0.69 1.15

SQL Code Size. First, we analyze the SQL text length of submitted
queries in bytes in Table 2. We found, in accordance with ear-
lier studies [35], that customer queries are much longer than the
ones from standard benchmarks. Especially the higher percentiles
show an extreme long-tailed distribution where Redshift encoun-
ters queries of several mega bytes posing significant stress to any
database frontend. For instance, the largest select queries con-
tain over ≈16MB of SQL code, which is also the current limit of
Redshift [3]. As a comparison, the entire Lord of the Rings trilogy
contains about 580 thousand words, which (assuming an average
word length of 4.7 in the English language) amounts to only 2.7MB.
Query Runtimes. Second, we investigate runtimes of queries.
Table 3 groups all executed queries on the fleet by their runtime.
While most queries are very short running (i.e., less than 100ms),
the vast majority of resources is spent on longer running queries.
For instance, while less than 0.1% of queries run longer than an
1 h, they take up ≈25% of all resources. Similar to query text, we
observe a long tailed distribution for runtimes. In contrast, the query
runtime in TPC-H/DS is a narrow spectrum: depending on the scale
factor, all queries roughly run in the same order of magnitude of
time. Outliers, in either direction, are less skewed. The long running
queries stress the query scheduler and the concurrency control of
the database. In addition, Redshift’s MVCC implementation needs
to keep increasingly old snapshots around for the long running
query, while data is constantly being updated in the system.
Query PlanNodes. Third, we compare the average number of used
query operator types through the fleet with TPC-H/DS (cf. Table 4).
For short running queries, we can see a much higher ratio of scan
and join operators in TPC-H/DS compared to the fleet, because most
short running queries only touch a limited amount of tables. Similar
trends can observed for most operators, showing that the TPC-
H/DS benchmarks do not capture the small, but constant and ever-
present load of short running queries in actual data warehouses.
These short running queries need to co-exist with long running
queries in the database, posing significant challenges to scheduling
and concurrency control mechanisms. For the buckets with longer
running queries in the fleet (one second to a minute and upward),
the usages of operators match more closely.

Table 5: Scan Types: Number of occurrences of different filter types
for base table scans.

Category Fleet TPC-H TPC-DS

subquery 2.1% 1.1% 0.6%
string matching 2.1% 8.0% 0.1%
function call 4.9% 2.3% 0.1%
conjunction 32.7% 21.6% 37.2%
disjunction 8.4% 9.0% 9.4%
no predicate 20.9% 51.1% 35.7%
simple 41.4% 20.5% 21.9%

3.5 Scan Types
We classified base table scans run in the Redshift fleet into different
categories based on the filters applied in Table 5. Scans categorized
as subquery use the result of a subquery in their filter. String match-
ing scans perform string pattern matching such as SIMILAR TO,
LIKE, or regex. Function call scans contain a call of a system or
user-defined function. conjunction and disjunction scans contain
AND or OR respectively. No predicate scans are full scans without any
filters, and simple scans are those that match none of the previous
categories. Note that the percentages do not sum up to 100% as
the categories are non-exclusive. Overall, the distribution of scan
categories in the Redshift fleet is not terribly different from the
benchmarks. TPC-H does far more string matching than TPC-DS
and the Redshift fleet. Redshift customers use functions more often
than the benchmarks. Interestingly, the no predicate and simple
scans make up 60-70% which shows the importance of optimized
scan code.

4 HOW DO THEWORKLOADS DIFFER?
In this section, we go beyond the scope of individual queries and
investigate how queries are combined into workloads as well as the
characteristics of those workloads. We find that workloads vary a
lot within individual days, but are rather stable, in general, over
longer periods of time. Another interesting finding is how often
individual filters, query structures, and even the exact same queries
repeat. These findings present huge opportunities for workload
prediction and caching.

4.1 Query Elasticity (daily)
Individual Clusters. In this section, we analyze how workloads
vary over time. Figure 1 shows the daily load aggregated over
all clusters (labeled: All) as well as three individual, hand-picked
clusters (labeled: C1 to C3) with different load patterns over a one-
month period (November 2023). The first depicted cluster C1 shows
a very stable workload, with almost no variation between days.
The second cluster C2 shows a very common workload pattern
where the cluster has a high amount of work on weekdays and
lower one on the weekend (the Saturdays of the depicted month are
labeled on the horizontal axis). The third cluster C3 shows a more
chaotic workload (those are less common). Lastly, when looking at
the combined load of all clusters All, we observe that most small
fluctuations average out and result in a rather stable load, with
slight dips on the weekends.

3697

Figure 1: Query Elasticity (daily): Shows the daily load (approxi-
mated by query count) for the entire fleet (All) and three representative
clusters (C1-C3). Each plot’s title shows the spikiness of the workload,
measured as the sum of the root mean square errors between the cur-
rent and previous day.

Figure 2: CDFWorkload Spikiness (daily): Spikiness (cf. Figure 1)
distribution over all clusters in the Redshift fleet. The vertical axis
marks the hand-picked clusters from Figure 1 as a point of reference.

Spikiness Factor. In order to extend this analysis from individ-
ual clusters to the entire Redshift fleet, we introduce a workload
spikiness factor: a single number to capture how much a workload
fluctuates over time. It is calculated as the sum of the root mean
square errors between the load of a particular day and its preceding
day. Each depicted workload in Figure 1 shows its spikiness in its
title for comparison: The higher the spikiness factor, the more the
load varies throughout the month.
Fleet Behavior. In the next figure (Figure 2), we calculate the spik-
iness for all clusters in the fleet and plot the CDF. We marked the
clusters C1-C3 from the previous figure (Figure 1) as points of refer-
ence on the vertical axis. We can thus observe that most clusters
in the fleet (75%) of workloads are more stable than C2/C3. This
demonstrates the potential of serverless approaches such as Red-
shift Serverless [5] or Google BigQuery [14]. However, to minimize
database administration overhead, more automated ad-hoc scaling
mechanisms [23] are needed.

Figure 3: Workload Elasticity (hourly): Show the average load
per hour for the entire fleet (All) and three representative clusters (C1-
C3). Each plot’s title shows the spikiness of the workload, measured
as the sum of the root mean square errors between the current and
previous hour.

Figure 4: CDF Workload Spikiness (hourly): Spikiness (cf. Fig-
ure 3) distribution over the Redshift fleet. The vertical axis marks the
hand-picked clusters from Figure 3 as a point of reference.

4.2 Query Elasticity (hourly)
Individual Spikiness. As shown in the previous section, the load
on a day to day basis is rather stable, with predictable drops on the
weekend. In Figure 3 we show the intra-day load for all clusters
combined (labeled: All) and three individual clusters (labeled: C1 to
C3, different clusters as in Section 4.1) with different load patterns.
The load per hour is calculated as the number of queries that were
run in this particular hour (other metrics like memory used or
runtime show a similar distribution). In contrast to the day to
day load, we find that the intra-day load can vary significantly
in individual clusters. Even so, it is relatively stable and constant
across the fleet (All). Observe how the last depicted cluster (C3) has
a huge spike around 4am, but relatively low load for the remainder
of the day. The first cluster (C1) has a comparatively constant load
throughout the day.
Fleet Spikiness. In Figure 4, we show this spikiness factor (as
introduced in Section 4.1 but for hours instead of days) across all
clusters throughout the Redshift fleet. As a point of reference, the

3698

Table 6: Query Runtime and Memory Distribution

p50 p90 p99 p99.9

Runtime [s] 0.1 1.8 26.1 203.0
Memory [GB] 0.6 3.6 21.4 250.6

spikiness of the aggregated cluster load (All) and the three hand-
picked clusters (C1 - C3) from Figure 3 are marked on the y-axis
of Figure 4. We can see that the load patterns vary significantly
across the fleet:

While ≈50% are less spiky than C2, there are more than ≈20%
that are even more spiky than C3. Therefore, we conclude that some
workloads can be well and easily served by a static cluster, but many
require the dynamic, scalable deployment of the cloud. For cost
optimality, it is imperative that the compute resource of a cluster
in a cloud analytics platform can be dynamically adjusted to the
actual load of the cluster, as in [23].
TPC Spikiness. Neither of the standard TPC-H/DS workloads
have a varying load pattern over the day: The work is constant
throughout the test period and usually only lasts a few hours atmost.
However, the automatic elasticity through concurrency scaling [5,
14, 37] or more advanced AI-driven scaling methods [23] became
central to all cloud data warehouses to provide the best performance
at low cost and reporting the best throughput as demanded by TPC
benchmarks is no longer adequate. The recently introduced Cloud
Analytics Workload (CAB) [34] simulates such a scenario.

4.3 Workload Tail-Distribution
As a general pattern throughout our experiments, we have seen
very large outliers in distributions in essentially all dimensions. In
this section, we show those for workloads including query runtime,
memory consumption, and daily number of queries.

Table 6 shows the distribution for query runtime and memory.
In the median, we observe a runtime of 100ms with a maximum
execution time of several days, and a 2030x difference between the
median and the p99.9 value. The memory distribution is similarly
skewed with a 418x difference between the median and the p99.9
value, and a maximum value in the hundreds of TB.

Such strong tail-skewed distributions confirm an open system
and a lot of variety in the complexity of individual queries, as
opposed to a closed system such as TPC-H/DS benchmarks. Inter-
estingly, the most important customers often operate in the tail as
they tend to also be the largest customers, which push the system.

4.4 Repeating Queries
Repetitiveness Definition. To characterize how repetitive a work-
load is, we investigate three similarity metrics: how often do scan
filters repeat, how often does the entire query repeat, and how often
does the structure of the query, i.e., the query template repeat. Each
time, repetitiveness is defined as the number of repeats divided by
the total number of observed filters / queries / templates. Suppose,
for example, there are 5 distinct queries 𝑞1, . . . , 𝑞5. 𝑞1 was issued
three times, 𝑞2 was issued 2 times and the rest were each issued
once. This means we saw a total of 8 queries with two repetitions

for 𝑞1 and one repetition for 𝑞2. The repetition rate therefore works
out to 3

8 = 37.5%.
We calculate repetitiveness rates on top of cryptographically

secure one-way hashed filter/query text strings. Note that semanti-
cally irrelevant elements of the text, e.g., newlines, multiple white-
spaces and comments, are removed before hashing in all three
metrics. Both repeating filters and queries count exact repeats, i.e.,
all literals are the same, while repeating query structures also re-
move literals before hashing. For example, the following queries
would count as repeats for query structure but not for queries or
filters.

SELECT SUM((table_a.amount > 3)::int)

FROM table_a JOIN table_b USING (id)

WHERE table_a.column_date BETWEEN '20230101' AND '20230131'

AND table_b.name = 'gollum'

SELECT SUM((table_a.amount > 42)::int)

FROM table_a JOIN table_b USING (id)

WHERE table_a.column_date BETWEEN '20230107' AND '20230111'

AND table_b.name = 'gollum'

Each query has two table scans. table_b is predicated with name =
'gollum' in both cases, hence this filter would count as repeating.
The filter on column_date differs, i.e., is not considered repeating.
Repetitiveness. We show the repetitiveness of scan filters (Fig-
ure 5a), entire queries (Figure 5b), and query structures (Figure 5c)
against percentile of clusters in Figure 5. The CDF plots show one
line per time window, ranging from individual days to an entire
month. The close resemblance between the three graphs shows that
query and filter repetitions are not just a weekly or monthly pattern.
For instance, we can see that on ≈60% of Redshift clusters up to
≈50% of scan filters repeat over an entire month or week, while
the same is true for ≈50% of clusters on a single day (Figure 5a).
Further, almost ≈25% of clusters show almost no filter repetition
while queries themselves virtually always repeat to some degree.

This artifact of customer workloads is not well represented in
TPC-H and TPC-DS, as zero queries are repeating in a single run. On
the flip side, query structures always repeat across runs since both
workloads comprise of the same queries with randomly instantiated
filter condition parameters (once per run).

We therefore also measured filter repetition rates over a number
of consecutive runs for both benchmarks. Results are presented
in Figure 5d. For TPC-H, 10 to 100 runs are required to reach the
≈50% filter repetition rate seen for more than 60% of real world
clusters (2 to 5 runs for TPC-DS).
Repeating Query Runtimes. Thus far, these results indicate an
opportunity for employing caching on various levels, and we will
discuss some ideas and already deployed techniques within Red-
shift in Section 4.6. However, to benefit from caching, we must first
consider the runtimes of the repeating queries, as caching longer-
running queries is likely more lucrative. Therefore, we grouped
repeating queries by their maximum observed runtime across repe-
titions and plot the respective repetition rates over the percentile
of clusters in Figure 6. We chose the maximum observed runtime
per query to eliminate caching effects and to ensure that all repeti-
tions of a particular query end up in the same group. This yields a
couple of interesting insights. First, both long and short running

3699

(a) Filter (b) Query (c) Query Templates (d) TPC Filters

Runs TPC-H TPC-DS

1 7.7% 22.8%
2 20.5% 39.6%
5 30.7% 54.9%
10 38.5% 64.1%
100 65.9% 81.3%

Figure 5: Repetition: CDF plots and stats about filter, query and query template repetition in the real world vs. filter repetition after a consecutive
number of runs in TPC.

Figure 6: Repeated Queries by Runtime: PDF of the percentage of
repeating queries over clusters, grouped into different runtime buckets.
Themaximum encountered runtime of a query is used to assign repeats
to their buckets.

queries are repeating. While ultra-short ones (<100ms) seem to
either all repeat or never repeat at all, short queries (<10 s) heavily
repeat on most clusters. Long running queries (>1 h) almost always
repeat on all clusters. Those might be regular transformation or
analytical tasks and are likely picked more carefully due to their
resource intensiveness. There are only a limited amount of sample
points in the last bucket (>10 h) (cf. Table 3), which leads to varied
results. Overall, we conclude that longer-running queries do indeed
repeat and, therefore, we can establish that caching strategies have
a significant performance potential.
Caching Requirements. The timing between repeating queries is
important for caching, since long intervals between repeats increase
the likelihood of cache staleness or eviction. In Figure 7 we show
the distribution of median downtime between a) all select queries
and b) repeats of the same query. For more than 50 % of repeating
queries, the median time between repeats is just under 100 s. The
longest median time between repeats on a cluster we observed is
just below 12 days.

This indicates that we should try to avoid invalidating cached
results until a (rather short) timeout has passed. Since we rarely

Figure 7: Median Downtime Distribution: Downtime between
all select statements and repeats of the same select statement.

observe more median downtime than a second between arbitrary
selects, i.e., there is a high cache pollution potential, a standard
least-recently-used (LRU) policy with a small cache size might evict
results before their query repeats shortly thereafter.

4.5 Common Table Sets
Having analyzed the repetition rate of query templates, we go one
step further and investigate common table sets. While workloads
often contain thousands of queries over hundreds of tables, we
find that often the number of sets of distinct tables used in the
queries is very limited. We analyzed this in ten randomly picked
clusters and found that within more than 50 000 queries there are
only an average of 23.5 distinct sets of tables being used (max=108).
This result indicates that it might be beneficial to pre-calculate join
indexes for these few important joins [11].

4.6 Dealing with Repeating Queries
Redshift already deploys a result cache that is capable of capitaliz-
ing on the high query repetition rate. While highly effective, we
analyze some outstanding opportunities to further improve the hit
rate and why certain queries are hard to cache. Overall the cache
has a hit rate of ≈20 %. There are two main reasons for cache misses:

3700

Table 7: Column Data Type Distribution: Shows the proportion of columns
that use a particular data type and the proportion of columns marked as Predicate
Columns by Redshift.

Data Type Stored Columns Predicate Columns
Fleet TPC-H TPC-DS Fleet TPC-H TPC-DS

varchar 52.1% 21.3% 11.2% 53.8% 15.6% 9.8%
numeric(P, S) 10.2% 14.8% 18.8% 7.0% 11.1% 8.8%
integer 9.1% 19.7% 44.5% 11.6% 22.2% 60.3%
bigint 7.0% 11.5% - 9.4% 15.6% -
timestamp w/o tz 6.2% - - 5.8% - -
double 4.5% - - 2.2% - -
boolean 3.9% - - 1.5% - -
date 2.2% 6.5% 2.6% 3.2% 8.9% 0.5%
smallint 2.1% - - 2.3% - -
char(N) 1.7% 26.2% 22.8% 2.4% 26.7% 20.6%
float 0.4% - - 0.2% - -
timestamp w/ tz 0.4% - - 0.4% - -

Table 8: Table Size Distribution: Shows the distri-
bution of an estimate of the number of rows stored in
non-empty tables across the fleet and for the TPC bench-
marks.

Rowcount Bucket Fleet TPC-H TPC-DS

(100, 101] 12.3% 12.5% -
(101, 102] 10.8% 12.5% 25.0%
(102, 103] 12.0% - -
(103, 104] 12.9% - 16.6%
(104, 105] 14.2% - 12.5%
(105, 106] 13.5% - 4.2%
(106, 107] 11.4% - 4.2%
(107, 108] 7.6% 12.5% 8.3%
(108, 109] 3.5% 25.0% 12.5%
≥ 109 1.8% 37.5% 16.7%

compulsory misses and inability of queries to be cached. Compul-
sory misses constitute ≈20% of all queries because only ≈80% of
queries do repeat and thus can be cached. Out of the repeating
queries, ≈60 % are cache misses because when such a query arrived
last, it was not cached. ≈30% of queries in this category are not
populated because of a concurrent transaction which updated one
or more tables used in the read query. ≈24% could not be cached
because their transactions were read/write. If a write to a table
comes after read query, then its results cannot be cached. ≈24%
used an non-immutable functions like CURRENT_DATE. ≈14 % access
system tables to read metrics and catalog. ≈4 % could not be cached
as they read an external table for which modifications cannot be
tracked. ≈2% could not be cached because its result set was too
large. Lastly, ≈2% could not be cached because another query’s
result was concurrently being cached.

5 HOW DOES THE DATA DIFFER?
Having looked at queries and workloads, we use this section to
investigate statistics about data: What data types are being used,
how skewed is customer data, and what storage formats are used
on external storage.

5.1 Data Types
Fleet Data Types. Table 7 compares how frequently different data
types are used in Redshift compared to TPC-H/DS. Notably, time
zones appear to be a rarely used features occurring only in ≈0.4 %
of all columns. Even more advanced time-related types (namely,
times and intervals) only account for ≈0.02 % in total. Further, we
see occasional usage of complex data types, such as json (≈0.1 %)
or geography (≈0.02%). Redshift stores its numerics in either 64
or 128 bit registers, depending on the defined precision. Here, we
find that ≈50 % are stored as 64 bits.
TPC-H Data Types.When comparing to TPC-H and TPC-DS, it
stands out that the benchmarks do not use any of the temporal data
types except date. Instead, TPC-DS is emulating a timestamp with
the columns t_time, t_hour, t_minute, t_second, and t_am_pm

in a time_dim dimension table, where each row represents one
second. This table also stores additional information that could be
directly inferred, such as t_shift, t_sub_shift, and t_meal_time.
In contrast, Redshift customers use the timestamp w/o tz type
quite frequently (6.2%). More generally, TPC-H and TPC-DS use
only a few basic types, notably many fixed sized char columns.
Redshift customers, on the other hand, use a more diverse set of data
types. As previously shown [35], variable-sized text columns are
most prominent in the fleet. Notably, the TPC-H/DS do not use the
boolean data type, which makes up 3.9% of the customers’ columns.
Instead, they emulate it with a char(1) (e.g., l_linestatus).
Predicate Types. Table 7 also shows (on the right) how often
columns of a certain data types are marked as predicate columns
by Redshift. Predicate columns are columns that have been used
for comparisons, i.e., in a filter, join or group condition in previous
queries or as (part of) a sort or distribution key [1]. Those columns
make up 10% of columns in the fleet and are prioritized by Red-
shift when it comes to collecting statistics. Analyzing the types of
these predicate columns shows that the previously mentioned more
complex data types are used even less often as comparison inputs.
Otherwise, the predicate columns are fairly similar to the stored
data distribution.

5.2 Table Sizes and Change
Table Size. Table 8 shows how many rows are stored in tables
throughout the fleet and in the TPC benchmarking datasets with
our chosen scale factor (3000). Continuing the trend of long-tailed
distributions, there is a small number of tables in Redshift with
trillions of rows, while the majority is much more reasonably sized
with only millions of rows. In fact, most tables have less than a
million rows and the vast majority (98%) has less than a billion
rows. Much of this data is small enough such that it can be cached
or replicated, opening up opportunities for optimized data layouts
and distribution schemes. The tables in the TPC datasets have a
few small statically-sized tables and bigger tables that grow with
the scale factor. Obviously, there are many orders of magnitude

3701

Table 9: Table Growth Trends:We group tables into the categories
shrinking, stable (i.e. number of inserted and deleted rows is roughly
equal), and growing tables.

Growth Behavior Fraction of Fleet Tables

No insert/delete 86.6%
Yes insert/delete 13.4%
↩→ Stable 76.70%
↩→ Growing 23.24%
↩→ Shrinking 0.06%

Figure 8: Insert Quantity.: CDF over daily inserts and deletes.

less tables in the benchmark data sets than in the Redshift fleet.
We observe that TPC-DS’s table size distribution is closer to the
Redshift fleet’s than TPC-H. By using multiple scale factors in a
single benchmark one could likely get close to the fleet distribution,
but a benchmark with a configurable table size distribution would
be desirable.
Table Growth. Table 9 classifies tables into a number of categories
depending on their growth behavior. We first distinguish the ones
not receiving any updates (first row in table) and the ones receiving
changes (second row). Next, we break down the latter category into
stable (where the number of inserts and deletes roughly neutralize
each other), growing, and shrinking tables. There are only some
outlier tables that were actually shrinking during the monitored
time frame. Overall the vast majority of tables are untouched and a
potential easy candidate for optimizations such as indexing, sort-
ing, replication, or compression. These results are consistent with
TPC-H, where 25 % of tables receive changes. Both of these tables
(lineitem and orders) are stable. There are no growing tables in
TPC-H (similar for TPC-DS).
Daily Updates. Figure 8 shows the percentage of tables (horizontal
axis) that insert/delete a certain amount of rows per day (vertical
axis). This plot excludes tables which do not experience any deletes
or inserts. We can see that there are far more inserts than deletes.
≈80% of tables receiving inserts did not receive deletes the same
day, and ≈30% of tables receiving deletes did not receive inserts the
same day.

5.3 Data Distribution
In this section, we analyze the distribution of table data by gathering
information through the column statistics that Redshift’s query
planner is using. It uses a combination of Most Frequent Values
(MCVs), compressed histogram (compressed meaning it does not
contain the MCVs’ values), null fraction, and Number of Distinct
Values (NDVs).
Most Common Value Skew. First, we calculate the fraction of
rows that are occupied by the (up to) twenty MCVs, the single most
frequent value, and null values per column for the fleet, TPC-H,
and TPC-DS. We investigate the null fraction in this paragraph as
we observe that null is often a “hidden” extra MCV. We show the
results of this experiment aggregated over all tables in Figure 9.
The plot is over the percentile of columns (horizontal axis) and
shows the CDF of the respective fraction (vertical axis). For instance,
in the MCV plot (left most figure), we can see that at most 25%
of rows consist of MCVs for 40% of fleet columns. Overall, TPC-
H has the least amount of skew, followed by TPC-DS, and then
the fleet for all three metrics. In addition, the MCV curves are a
lot steeper for TPC-H/DS than the fleet. This indicates that the
columns in the synthetic benchmarks, especially TPC-H, are more
extreme: either consisting of uniformly distributed values or a small
set of unique values (e.g., n_name or l_shipmode). The amount of
skew in the fleet data is more even. Skew is a double edged sword
for data processing systems, as it can be beneficial (e.g., caching,
distributed join processing), but when not expected or dealt with it
is also capable of causing large bottlenecks (e.g., multi-threading,
partitioning, cardinality estimation). It is also remarkable that the
frequency of the single most frequent value (center plot) often
makes up a large portion of the sum of the MCV frequencies for
both the benchmarking data sets as well as the fleet.
Null Fraction. Null fractions are depicted in the right most plot.
Similar to MCVs, there are generally more in the fleet than in the
synthetic benchmarks. TPC-H has no nulls at all and TPC-DS only
has a limited amount. Interestingly, TPC-DS appears to have a high
number of columns with a low frequency of null values, something
that we do not see in the fleet. In contrast, the fleet has (1) more
columns with null values and (2) those columns also have higher
fraction of null values (some with >99% of null values).
Histogram Skew.Next, we analyze the skew of the remaining data
(excluding null values and MCVs) by looking at the histograms
present in Redshifts’ statistics. We measure the mean Q-error [21]
over columns between the actual histogram bucket width and
the histogram bucket width if the data was distributed uniformly
(histogram max−histogram min

#buckets). Q-Error is the ratio between uniform
and true histogram bucket width. The lowest Q-Error value is 1,
which would imply a uniform distribution. The greater the Q-Error,
the more skewed the data represented by the histogram is. The
resulting data is shown in Figure 10. The trend of the fleet data
being significantly more skewed than the two benchmark’s data
continues here. Observe how TPC-H is very uniformly distributed
with a maximum Q-Error of two. 50% of TPC-DS tables are uni-
formly distributed, and the maximum Q-Error here is 500. This is
in stark contrast to the tables in the fleet where the Q-Errors are

3702

Figure 9: Most Common Value Skew & Null Fraction: Shows the fraction of the (up to) twenty most common values (left), the fraction of
the most common value (middle), the fraction of null values (right) over all columns in the fleet, TPC-H, and TPC-DS.

Figure 10: Histogram Skew: Shows the mean Q-Error between a
uniform distribution and a histogram of a column for all columns.

Figure 11: Distinct Value Ratio: Shows the distribution of the
distinct value ratio for all columns.

much higher, reaching up to 4.2 × 10239. These experiments con-
firm the widely assumed fact that actual data is seldom uniformly
distributed.
Table Uniqueness. Figure 11 shows the distribution of the distinct
value fraction (𝑁𝐷𝑉

#𝑟𝑜𝑤𝑠) for all columns excluding null values. 0%
means that all values of the depicted column hold the same value,
while 100% means that all values in the column are different. We
notice an overall trend shared by TPC-H/DS and the fleet that most
columns are not very unique. Further, only ≈10 % of columns have

Figure 12: Storage Format on S3: The format of external table
data, either read by COPY or within an external table scan.

extremely high cardinality (distinct value fraction close to 100%)
indicating that the column is entirely or mostly unique.

5.4 External Storage Formats
Lastly, we analyze external data sources for COPY and scans over S3
data. The results are depicted in Figure 12. We show both relative
bytes scanned (left) and relative query count (right) for different
external data formats. While column-optimized formats such as
parquet have been around for a while and are well integrated into
Redshift, they appear to be seldom used compared to the more
established and human-readable formats, such as CSV and JSON. It
appears that, here, the ease of use and interoperability of CSV and
JSON outweighs the better performance of parquet for customers.
Half of the queries reading from external sources target compressed
data, 99 % of which is stored in gzip format.

6 REDSET
To facilitate future research, we publish a new dataset of anonymized
query logs: the Redset1. It contains metadata for user queries from
200 serverless and provisioned clusters (each) over a three-month
period in 2024. We sampled clusters from our fleet such that the
published dataset contains representatives for the various levels of
observed busyness. This metric is computed as an equally weighted
sum of the number of user queries on the cluster 𝑛𝑐 and their total
execution time 𝑒𝑐 , normalized w.r.t. the maximum number of user
queries / total execution time out of all cluster in the fleet:
1https://github.com/amazon-science/redset

3703

https://github.com/amazon-science/redset

busyness(𝑐) = 𝑛𝑐
max𝑁 + 𝑒𝑐

max𝐸
Each row in Redset represents one query execution. For obvi-

ous customer privacy reasons, the dataset only comprises statistics.
The columns published in this release contain general information
(unique cluster-, user-, database-, and query id), timing informa-
tion (arrival time, compilation-, queuing-, and execution- duration),
query details (abort status, command type like SELECT, COPY, ...,
number of [permanent, external, and system-] tables accessed, and
the ids of permanent tables written to and read from), I/O infor-
mation (number of bytes scanned/spilled), operator information
(number of joins, scans, and aggregations in the plan), and cluster
information for provisioned (number of nodes in the cluster).

With Redset we want to specifically encourage drawing further
conclusions about real world workloads, conducting research on
ML-based techniques such as query prediction models and work-
load forecasting and creating novel benchmarks that closer mimic
the observed real-world workloads. We believe this dataset can help
with the latter, e.g., because it contains arrival timestamps for each
query. Compared to CAB [34], this permits creating more realistic
benchmarks which exhibit similar spikes in activity compared to
real workloads instead of randomly approximating arrival times.
We plan to refresh and expand the dataset’s features over time.

7 CONCLUSIONS
As we have shown in this paper real analytical workloads differ
vastly from our current TPC-H/DS benchmarks. As systems start
to adapt more aggressively to the workload and data, standardized
benchmarks like TPC-H/DS become less and less suited for evalu-
ating the actually performance data warehouses provide to their
users. For example, Redshift’s Multidimensional Data Layouts [10]
leverage the fact that many scans and predicates repeat by organiz-
ing the storage layout based on the usage patterns. Compared to
traditional techniques (e.g., single column sort-keys or z-order en-
coding) it can be orders of magnitudes faster for real workload, but
on TPC-H/DS the impact is much more limited. Similarly, Redshift’s
Automated Materialized Views (Auto-MV) [5] takes advantage of
the fact that many queries are repeating beyond what is observed in
TPC-H/DS. Hence, the database which is the fasted on TPC-H/DS is
not necessarily the fastest for actual customer workloads. Similarly,
if TPC-H/DS are used to prioritize what techniques to implement,
it will not necessarily be the best prioritization to improve actual
customer workloads. In the following, we summarize our findings
and differences to TPC-H/DS in more detail.

7.1 On Queries
Analytics = Updates. We showed that a significant portion of
work in Redshift is spent on updates. This shows that even data in
analytical warehouses can not be considered static or unchanging.
Therefore, it is important that this aspect is better reflected in bench-
marks, and proposed data structures or algorithms for warehouses
should consider updates. For benchmarking, TPC-H/DS should be
used with its data freshness functions, at the very least. Unfortu-
nately, updates in TPC-H are difficult to use: Each insert/delete
requires a unique set of delete keys/new tuples (usually loaded
from a CSV file). Further, performing the TPC-H’s data freshness
functions requires to reload significant portions of the database

before the next benchmark can be executed. Future benchmarks
should consider writes an essential part and make them easy to use
to ensure they will actually be used and [34] already represents a
step in the right directions.
Heavy Tails. As a general trend throughout this paper we have
shown that the distribution on query runtime, SQL statement length,
and most distributions over aspects of data processing have very
long and heavy tails. This means that only reporting the 99th per-
centile, would often leave out critical edge cases (1 in 100). Instead,
an industry-ready system needs to support more than the 99th (or
even 99.999th) percentile, as those points in a distribution are often
a critical use case. For instance, we showed that most queries in
Redshift have a very short run time (in fact, more than 50% of
queries finish in less than 100ms). In fact, the p99 percentile of
queries finish within 1min. Those only account for roughly a fifth
of the overall query runtime, however.

7.2 On Workloads
Elasticity. We analyzed the varying load over time and found
that there often is a weekly pattern: Within a cluster, the load on
weekdays is somewhat stable with a drop on the weekend. How-
ever, within a single day there are often severe spikes in the load
from hour to hour. Using these patterns can be very beneficial in
a serverless setting to automatically adjust resources to customer
demands [23]. Using the dataset published as part of this paper,
researchers have the opportunity to experiment with these pat-
terns of varying load over time. The large presence of short query
workload (Section 3.4) and spikiness (Section 4.2) motivates Au-
toWLM’s [27] policy to prioritize short query execution over long
queries using techniques like SQA in order to keep their latency
low. This policy of AutoWLM cannot be motivated by TPC-H/DS.
Repeating Queries.We showed that queries are often repeating
within a cluster (80% of queries repeat in 50% of clusters). This
presents great opportunities for caching, but requires accurate tun-
ing of cache size, retention time, and fine grained invalidation in
case of updates. Future work should also investigate how writes
interact with these repeating queries. Repeating scans can be ex-
ploited via indexing [28] or storage techniques like Redshift Mul-
tidimensional Data Layouts [10]. Note that TPC-H/DS does not
capture these patterns when executed once. Multiple reruns can
approximate similar repetition rates, however, it is questionable
how representative this would really be.

7.3 On Data
Types. Variable length strings are the most dominant datatype
in Redshift, begging the question how many of those strings are
true strings versus other types (numbers or timestamps) stored as
strings. According to [35], string columns often contain boolean or
non-existent enumeration types such as gender or airplane codes.
Either way, efficient string storage [7, 22] and processing (such as
late materialization) is needed.
Skew.We showed that skewed data distributions, especially ones
with a small number of heavy hitters are prominent in customer
tables. This can be beneficial for column encodings (e.g. run-length
or dictionary encoding), distributed query execution [26], or storage

3704

layouts [10, 12]. Nevertheless, skew can also present a challenge
for join ordering or multi-threading if not detected or dealt with.
External Data. For external data sources, CSV is clearly the dom-
inant format in Redshift. Other column-oriented and/or binary
formats have not replaced this simple text-based format yet. Con-
sequently, techniques for automatic schema inference, on-the-fly
statistics [8, 25], and fast, distributed CSV [16] parsing are still vital
to efficiently support real world data lake queries.

7.4 On Benchmarking
We draw two conclusions with regards to benchmarking from the
presented data: (1) A cloud data warehouses consists of a large
number of components, such as scaling, data ingestion and migra-
tion, multi-tenancy, query execution, privacy, and more. Given this
high dimensional feature space, we argue for the need of dedicated
benchmarks for the individual features. We summarize other pro-
posed benchmarks in related work (cf. Section 8). (2) Assuming we
build benchmarks for all aspects of a cloud data warehouse, we still
need a TPC-*-like benchmark for the database’s core component –
the query execution engine.

Given the large spectrum of clusters with heavily tailed distri-
butions over essentially all attributes (cluster size, data size, query
count, query complexity, etc.), a single benchmark can only eval-
uate the system against one point in this distribution. Therefore,
we propose to work towards a benchmark generator capable of
instantiating benchmarks for a number of different points in the
distribution to be able to evaluate different usage scenarios.

8 RELATEDWORK
In an ever evolving field such as databases, we always need to
adjust the benchmarks to accurately reflect the latest workload
demands [24, 30]. As benchmarking and datasets are essential in
database research, there has been a lot of work on this topic as
summarized by an earlier study [20]. With the move to the cloud,
new demands [6] have emerged. In this section, we highlight some
recent and influential work in this area and compare it to ours.
Snowset. In 2020 Snowflake published the “Snowset” [36] – a
dataset containing information about ≈69million queries that ran
on their system throughout a two week period. Alongside they
published an in-depth analysis on of the Snowset [37]. While the
study was done with a systems/network perspective, they also pro-
vided valuable insights for the database community into cloud data
warehouse workloads. Most notably, they reported the high ratio of
write queries in analytical workloads and the oscillating pattern of
query arrival times. Interestingly, they found this pattern to be most
prominent for read-only queries, while write queries were much
more constant over time. They further reported a high fluctuation
in the workload demands of individual customers, while the overall
resource demand of all customers together did not vary more than
2x over a day in various dimensions, such as network, CPU, and
memory. In contrast to this paper, their analysis was limited to
the data that they published in the Snowset. While this allows for
full reproducibility of their results, we go a step further by digging
into more details of our internal the telemetry. Doing so allows us
to confirm many of their results, and add additional insights (e.g.,
query repetition rate, filter expression complexity or data skew).

Cloud Analytics Benchmark. Later, in 2022, the Snowset was
picked up by the database community and analyzed through a
database lens [34]. The authors compared the published workload
in the Snowset to TPC-H and found many differences. First and
foremost, they reported on the long-tails when it comes to query
resource consumption (in terms of runtime, memory, CPU, database
size etc.), the multi-tenancy of cloud databases with vastly varying
customers, and the elasticity of workloads over time. In addition,
they used those insights to design a new benchmark for analytical
cloud data warehouses – the Cloud Analytics Benchmark (CAB).
The benchmark builds on TPC-H and models multiple tenants that
issue queries with commonly observed arrival times over multiple
hours. The goal of the benchmark is to minimize query latencies
for each individual customer, while minimizing the overall cost of
the system under test (i.e., the cloud data warehouse). Thus, the
benchmark captures how well a cloud data warehouse can adopt
to elastic workloads of multiple different tenants at the same time.
In contrast, our paper builds on internal Redshift fleet data that is
more detailed and captures more aspects than the publicly available
Snowset. We are again able to confirm many results of this study
while adding more insights into cloud data warehouse workloads
like the adoption of data lakes, rates at which tables grow time, and
statistics about table data (skew, uniqueness, most common values).
Other Cloud AnalysisWorks.Most recently, beyond the Snowset
and CAB, Leis et al. [19] proposed amodel to dynamically determine
the optimal environment for a given workload. Further, the move of
many workloads to the cloud has changed the workloads’ demands
on a data warehouse system significantly, as described by Binnig et
al. [6]. They set forward a list of demands for cloud systems such
as scalability and varying load patterns in 2009, many of which
are still valid and could be confirmed in our analysis. In another
body of work, Tableau [35] published statistics on their datasets
in comparison with TPC-H/DS. We confirm their findings in our
experiments and provide further insights. They highlight the long-
tailed distribution of query text length, number of joined relations,
and the omnipresence of text-based column types. Further, in [18]
the authors performed a multi-year study where they offered a
database-as-a-service front end to other scientists. They found
that even for non SQL experts the complexity of queries quickly
reached a high level and that the life time of datasets was shorter
than in classical workloads. We observed a similar trend in the
usage of CTAS expressions, which suggests an interactive usage of
the data warehouse with intermediate results. Further, there have
been several proposals for new benchmarks. Some focus on the
ability of the system to be scaled [13, 17, 33], which is crucial to
adjust to changing workloads within a day, but less of an issue for
longer time periods (Section 4.2). Going one step further, Poggi et
al. [24] propose a benchmark that tests how well systems adopt to
varying workloads, which requires scalability as a building block.

ACKNOWLEDGMENTS
We extend our thanks to the Redshift team members Mohammed
Al-Kateb, Matt Abrams, Naresh Chainani, George Erickson, Bruce
McGaughy, Davide Pagano, Ippokratis Pandis, and Rahul Pathak,
all of whom played a part in making this paper possible.

3705

REFERENCES
[1] [n.d.]. ANALYZE - Amazon Redshift — docs.aws.amazon.com. https://docs.aws.

amazon.com/redshift/latest/dg/r_ANALYZE.html. [Accessed 2023-11-27].
[2] Amazon. [n.d.]. Amazon Redshift continues its price-performance leader-

ship. https://aws.amazon.com/blogs/big-data/amazon-redshift-continues-its-
price-performance-leadership/. [Accessed 2023-12-14].

[3] Amazon. [n.d.]. Amazon Redshift SQL. https://docs.aws.amazon.com/redshift/
latest/dg/c_redshift-sql.html. [Accessed 2023-12-18].

[4] Amazon. [n.d.]. What is Zero ETL? https://aws.amazon.com/what-is/zero-etl/.
[Accessed 2024-1-26].

[5] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, TJ Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subrama-
nian, and Doug Terry. 2022. Amazon Redshift re-invented. In SIGMOD/PODS
2022. https://www.amazon.science/publications/amazon-redshift-re-invented

[6] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. 2009. How
is the weather tomorrow?: towards a benchmark for the cloud. In DBTest.

[7] Peter A. Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: Fast Random
Access String Compression. VLDB (2020).

[8] Graham Cormode and Ke Yi. 2020. Small summaries for big data.
[9] Databricks. [n.d.]. Databricks Sets Official Data Warehousing Performance

Record. https://www.databricks.com/blog/2021/11/02/databricks-sets-official-
data-warehousing-performance-record.html. [Accessed 2023-12-14].

[10] Jialin Ding, Matt Abrams, Sanghita Bandyopadhyay, Luciano Di Palma, Yanzhu Ji,
Davide Pagano, Gopal Paliwal, Panos Parchas, Pascal Pfeil, Orestis Polychroniou,
Gaurav Saxena, Aamer Shah, Amina Voloder, Sherry Xiao, Davis Zhang, and Tim
Kraska. 2024. Automated multidimensional data layouts in Amazon Redshift.
In SIGMOD/PODS 2024. https://www.amazon.science/publications/automated-
multidimensional-data-layouts-in-amazon-redshift

[11] Jialin Ding, Ryan Marcus, Andreas Kipf, Vikram Nathan, Aniruddha Nrusimha,
Kapil Vaidya, Alexander van Renen, and Tim Kraska. 2022. SageDB: An Instance-
Optimized Data Analytics System. VLDB (2022).

[12] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. VLDB (2020).

[13] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçberber, Stavros Volos, Moham-
mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ASPLOS.

[14] Sérgio Fernandes and Jorge Bernardino. 2015. What is BigQuery?. In International
Database Engineering & Applications Symposium.

[15] Fivetran. [n.d.]. Cloud Data Warehouse Benchmark. https://www.fivetran.com/
blog/warehouse-benchmark. [Accessed 2023-12-14].

[16] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. 2019. Speculative Distributed CSV Data Parsing for Big Data Analytics.
In SIGMOD.

[17] Kai Hwang, Xiaoying Bai, Yue Shi, Muyang Li, Wen-Guang Chen, and Yongwei
Wu. 2016. Cloud Performance Modeling with Benchmark Evaluation of Elastic
Scaling Strategies. IEEE Trans. Parallel Distributed Syst. (2016).

[18] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska.
2016. SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment. In
SIGMOD.

[19] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query
Processing in the Cloud. VLDB (2021).

[20] Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. 2012. On a Catalogue of
Metrics for Evaluating Commercial Cloud Services. In GRID.

[21] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. VLDB (2009).

[22] IngoMüller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictionary
Compression in In-Memory Column-Store Database Systems. In EDBT.

[23] Vikram Nathan, Vikramank Singh, Zhengchun Liu, Mohammad Rahman, An-
dreas Kipf, Dominik Horn, Davide Pagano, Gaurav Saxena, Balakrishnan (Murali)
Narayanaswamy, and Tim Kraska. 2024. Intelligent scaling in Amazon Redshift.
In SIGMOD/PODS 2024. https://www.amazon.science/publications/intelligent-
scaling-in-amazon-redshift

[24] Nicolás Poggi, Víctor Cuevas-Vicenttín, Josep Lluis Berral, Thomas Fenech,
Gonzalo Gómez, Davide Brini, Alejandro Montero, David Carrera, Umar Fa-
rooq Minhas, José A. Blakeley, Donald Kossmann, Raghu Ramakrishnan, and
Clemens A. Szyperski. 2019. Benchmarking Elastic Cloud Big Data Services
Under SLA Constraints. In TPCTC.

[25] Alice Rey, Michael Freitag, and Thomas Neumann. 2023. Seamless Integration
of Parquet Files into Data Processing. In BTW.

[26] Wolf Rödiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. 2016. Flow-
Join: Adaptive skew handling for distributed joins over high-speed networks. In
ICDE.

[27] Gaurav Saxena, Mohammad Arifur Rahman, Naresh Chainani, Chunbin Lin,
George Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pan-
dis, and Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine
learning enhanced workloadmanagement in Amazon Redshift. In SIGMOD/PODS
2023. https://www.amazon.science/publications/auto-wlm-machine-learning-
enhanced-workload-management-in-amazon-redshift

[28] Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and
Tim Kraska. 2024. Predicate caching: Query-driven secondary in-
dexing for cloud data warehouses. In SIGMOD/PODS 2024. https:
//www.amazon.science/publications/predicate-caching-query-driven-
secondary-indexing-for-cloud-data-warehouses

[29] Snowflake. [n.d.]. Industry Benchmarks and Competing with Integrity.
https://www.snowflake.com/blog/industry-benchmarks-and-competing-with-
integrity. [Accessed 2023-12-14].

[30] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stone-
braker, David J. DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska.
2019. Choosing A Cloud DBMS: Architectures and Tradeoffs. PVLDB (2019).

[31] Transaction Processing Performance Council (TPC). 2021. TPC BENCHMARK™
DS Standard Specification Version 3.2.0. https://www.tpc.org/TPC_Documents_
Current_Versions/pdf/TPC-DS_v3.2.0.pdf. [Accessed 2023-11-28].

[32] Transaction Processing Performance Council (TPC). 2022. TPC BENCHMARK™
H Standard Specification Revision 3.0.1. https://www.tpc.org/TPC_Documents_
Current_Versions/pdf/TPC-H_v3.0.1.pdf. [Accessed 2023-11-28].

[33] Wei-Tek Tsai, Yu Huang, and Qihong Shao. 2011. Testing the scalability of SaaS
applications. In SOCA.

[34] Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. VLDB
(2023).

[35] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest@SIGMOD.

[36] Midhul Vuppalapati. [n.d.]. Snowflake dataset containing statistics for 70 million
queries over 14 day period. https://github.com/resource-disaggregation/snowset.
[Accessed 2022-04-15].

[37] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,
and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated
Storage. In USENIX NSDI.

3706

https://docs.aws.amazon.com/redshift/latest/dg/r_ANALYZE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ANALYZE.html
https://aws.amazon.com/blogs/big-data/amazon-redshift-continues-its-price-performance-leadership/
https://aws.amazon.com/blogs/big-data/amazon-redshift-continues-its-price-performance-leadership/
https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-sql.html
https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-sql.html
https://aws.amazon.com/what-is/zero-etl/
https://www.amazon.science/publications/amazon-redshift-re-invented
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://www.databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://www.amazon.science/publications/automated-multidimensional-data-layouts-in-amazon-redshift
https://www.amazon.science/publications/automated-multidimensional-data-layouts-in-amazon-redshift
https://www.fivetran.com/blog/warehouse-benchmark
https://www.fivetran.com/blog/warehouse-benchmark
https://www.amazon.science/publications/intelligent-scaling-in-amazon-redshift
https://www.amazon.science/publications/intelligent-scaling-in-amazon-redshift
https://www.amazon.science/publications/auto-wlm-machine-learning-enhanced-workload-management-in-amazon-redshift
https://www.amazon.science/publications/auto-wlm-machine-learning-enhanced-workload-management-in-amazon-redshift
https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
https://www.snowflake.com/blog/industry- benchmarks- and- competing- with- integrity
https://www.snowflake.com/blog/industry- benchmarks- and- competing- with- integrity
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://github.com/resource-disaggregation/snowset

	Abstract
	1 Introduction
	2 Experimental Methodology
	3 How do the queries differ?
	3.1 A qualitative impression
	3.2 Analytics = Updates
	3.3 CTAS
	3.4 Query Complexity
	3.5 Scan Types

	4 How do the workloads differ?
	4.1 Query Elasticity (daily)
	4.2 Query Elasticity (hourly)
	4.3 Workload Tail-Distribution
	4.4 Repeating Queries
	4.5 Common Table Sets
	4.6 Dealing with Repeating Queries

	5 How does the data differ?
	5.1 Data Types
	5.2 Table Sizes and Change
	5.3 Data Distribution
	5.4 External Storage Formats

	6 Redset
	7 Conclusions
	7.1 On Queries
	7.2 On Workloads
	7.3 On Data
	7.4 On Benchmarking

	8 Related Work
	Acknowledgments
	References

