
Cloud Actor-Oriented Database Transactions in Orleans
Tamer Eldeeb

Columbia University
tamer.eldeeb@columbia.edu

Sebastian Burckhardt
Microsoft Research

sburckha@microsoft.com

Reuben Bond
Microsoft

reuben.bond@microsoft.com

Asaf Cidon
Columbia University

asaf.cidon@columbia.edu

Junfeng Yang
Columbia University

junfeng@cs.columbia.edu

Philip A. Bernstein
Microsoft Research

phil.bernstein@microsoft.com

ABSTRACT
Microsoft Orleans is a popular open source distributed program-
ming framework and platform which invented the virtual actor
model, and has since evolved into an actor-oriented database sys-
tem with the addition of database abstractions such as ACID trans-
actions. Properties of Orleans’ virtual actor model imply that any
ACID transaction mechanism for operations spanning multiple
actors must support distributed transactions on top of pluggable
cloud storage drivers. Unfortunately, distributed transactions usu-
ally perform poorly in this environment, partly because of the high
performance and contention overhead of performing two-phase
commit (2PC) on slow cloud storage systems.

In this paper we describe the design and implementation of ACID
transactions in Orleans. The system uses two primary techniques
to mask the high latency of cloud storage and enable high transac-
tion throughput. First, Orleans pioneered the use of a distributed
form of early lock release by releasing all of a transaction’s locks
during phase one of 2PC, and by tracking commit dependencies
to implement cascading abort. This avoids blocking transactions
while running 2PC and enables a distributed form of group commit.
Second, Orleans leverages reconnaissance queries to prefetch the
state of all actors involved in a transaction from cloud storage prior
to running the transaction and acquiring any locks, thus ensuring
no locks are held while blocking on high latency cloud storage in
most cases.

PVLDB Reference Format:
Tamer Eldeeb, Sebastian Burckhardt, Reuben Bond, Asaf Cidon, Junfeng
Yang, and Philip A. Bernstein. Cloud Actor-Oriented Database
Transactions in Orleans. PVLDB, 17(12): 3720 - 3730, 2024.
doi:10.14778/3685800.3685801

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dotnet/orleans.

1 INTRODUCTION
Many modern cloud services have a 3-tier architecture with a state-
less front-end, a stateful middle-tier that implements business logic,
and a storage layer. The stateful middle-tier is needed due to heavy

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685801

CPU andmemory requirements to execute the business logic, which
does much more than simply read or write the database. For exam-
ple, apps often manage a lot of state in the middle-tier, such as a
knowledge base or image cache. Some of this state needs to be read
and written at high rates. These apps may also perform heavy com-
putation, such as rendering images or computing over large graphs.
Such requirements make it infeasible to embed the application logic
as stored procedures in the storage layer [16]. The architecture also
allows computation and storage to scale independently.

The actor model [6] has become a popular choice for building
stateful middle-tier applications in the modern cloud, especially
interactive ones such as games, social networks, Internet of Things,
and telemetry [8, 13]. Actors are single-threaded objects that do not
share memory and interact only via asynchronous message passing.
The single-threaded nature of actors simplifies their implementa-
tion, and applications are typically made of many actors, which
are natural units of scaling that are spread over many servers for
scalability. Actors allow building a stateful middle tier with data
locality and the semantic and consistency benefits of encapsulated
entities via application-specific operations [13].

Orleans [5, 17] is an actor-based platform targeting stateful
middle-tier applications with a primary focus on scalability and
programmability. It simplifies the process of writing .NET scalable
stateful middle-tier services, making it accessible to developers who
are not necessarily distributed system experts. Orleans invented
the abstraction of virtual actors [13], where actors are transparently
loaded on demand, like pages in a virtual memory system. This
solves a number of the complex distributed systems problems, such
as reliability and distributed resource management, liberating the
developers from dealing with those concerns. The Orleans runtime
implements the virtual actor model, enabling applications to attain
high performance, reliability and scalability. Over time, Orleans
added support for automating the process of storing actor state
durably to the programmer’s choice of cloud storage systems.

By viewing an Orleans application as a collection of stateful ac-
tors, one can think of it as an actor-oriented database (AODB) [11,
14]. The distinguishing features of an AODB are that it scales out
elastically to hundreds of servers, can use a variety of cloud stor-
age services, and is compatible with the actor framework’s pro-
gramming model. Since application developers want to avoid being
locked into a specific storage service, such a database must be able
to use a wide variety of storage systems, such as page servers,
BLOB servers, key-value stores, JSON stores, and SQL databases.
An actor-oriented database needs to implement its own database
abstractions, to compensate for the lack of such abstractions in the
storage system and to ensure it integrates smoothly with the actor

3720

https://doi.org/10.14778/3685800.3685801
https://github.com/dotnet/orleans
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685801
https://www.acm.org/publications/policies/artifact-review-and-badging-current

programming model. This perspective has led to the evolution of
the system to add support for database abstractions as first class
concepts, such as geo-replication [12] and indexing [14], as depicted
in Figure 1. Prior work also investigated using the actor model for
query serving [30].

Applications often need to perform logically atomic operations
that span multiple actors. Because actors do not share memory,
adding general support for such multi-actor operations with isola-
tion and fault tolerance guarantees requires an ACID transaction
mechanism [15]. Since actors in Orleans are randomly distributed
across many servers for scalability and availability, most transac-
tions that access multiple actors will access multiple servers, and
hence must be distributed. The well-known challenges of scaling
distributed transactions [23, 29, 42, 45] have ledmany cloud systems
to offer limited transaction support (e.g., within a shard [18, 36] or
with weak semantics [9]) or no support at all [20]. On top of these
standard challenges, additional difficulties arise from implications
of the virtual actor model and requirements from Orleans users
(which we describe in detail in §3). However, opting not to offer
distributed transactions would put the burden on developers to use
ad-hoc methods to obtain cross-actor consistency, which is hard
to do well. ACID transactions are a key database abstraction, and
supporting them as a first-class concept in Orleans has been a major
step in its evolution into a fully-fledged actor-oriented database
system.

In this paper we describe the design and implementation of ACID
transactions in Orleans. We utilize a classic design that combines
two-phase locking [24] (2PL) for serializable isolation, with two-
phase commit [32] (2PC) for atomicity, to implement distributed
transactions, but with novel and unique twists. Our design does
not introduce any centralized components to Orleans such as a
shared log or an independent transaction manager system. Instead,
all durable transaction state is maintained in decentralized, per-
actor cloud storage accessible only via transactional storage drivers,
allowing developers to pick any cloud storage they prefer.

The high latency of cloud storage presents many performance
challenges and would typically limit transaction throughput. We
introduce two main techniques to mask the latency of cloud storage.
First, we apply a distributed form of early lock release [25, 38] to 2PC
by allowing a transaction to release locks at the start of phase-one
of the 2PC protocol. After a transaction T finishes executing, it will
not acquire more locks, so holding locks after this point has no value
from a 2PL perspective. By releasing its locks at the start of 2PC, T
avoids blocking other transactions that access T’s writeset while
T is executing its high-latency commit process. However, since
T releases write locks before it commits, subsequent transactions
can read “dirty” (i.e., uncommitted) data that will be invalid if T
aborts. To avoid this inconsistency, a transaction keeps track of its
dependencies on uncommitted transactions, and can only commit
if and when all its dependencies commit.

Second, we utilize reconnaissance queries [42], which run trans-
action logic in a low isolation, dry run mode to prefetch all of the
actor state in main memory prior to the actual transaction, so that
transaction execution does not block waiting for slow reads from
cloud storage while holding locks. Similar to prior work [23], the
reconnaissance query also collects the identities of all the actors

Figure 1: Actor-Oriented Database System [14].

involved in a transaction so that lock acquisition requests can be
ordered to avoid deadlocks.

While this paper focuses on transactions in an actor-oriented
database, we think these techniques are generally applicable in any
situation where 2PC commit is high. A summary of the techniques
described in this paper:

(1) Transactional extensions to theOrleans programmingmodel
(§4).

(2) Transactional extensions to the Orleans runtime (§5).
(3) Pipelined commit protocol and distributed early lock release

(§6).
(4) Reconnaissance queries for prefetching and deadlock avoid-

ance (§7).
We also describe our experience and lessons learned from devel-

oping a prototype solution and taking it all the way to production
in §3, including how feedback from users influenced the design
and led to revisiting important aspects of the system. Additionally,
as part of this paper, we are going to open source an Azure Cos-
mosDB [3] implementation of the transactional storage interface
described in §4.

2 BACKGROUND
2.1 Orleans
Orleans is a framework for writing actors, as well as a platform
that provides a set of runtime services to execute that actor code.
In this section we describe the parts of Orleans that are necessary
to explain how we added ACID transactions to it. More details can
be found in the Orleans documentation [5].

2.1.1 Runtime. An Orleans cluster is a set of servers running an
identical software service called a silo. The Orleans Runtime is a
set of subsystems that run on each silo of a cluster.

2.1.2 Grains. Actors in Orleans are known as grains. Each grain
has a location-transparent identity, called its key, which is the only
way to reference it. Grains cannot share state.

Like regular .NET types, grain types are defined using interfaces
and classes. A grain’s public interface can have only async methods,
and grains only communicate via these asynchronous method calls;
a grain can perform a system call to the Orleans runtime to obtain a

3721

reference to another grain using the target grain’s key, which is one
of its member attributes. It then can use the reference to call any
of the async methods on the target grain’s interface. The reference
returned by the runtime is in effect a proxy for the called grain, and
allows the runtime to intercept all communication between grains
in the system.

A method call immediately returns a promise, after which the
caller can continue executing. It can also choose to wait for fulfill-
ment of the promise (i.e., wait for the method call to finish executing
and return) using the standard .NET await mechanism. Under the
covers, this interaction is realized by messages in each direction.

Grains are single-threaded, and normally are non-reentrant. That
is, a method call must execute to completion before the next call
is processed. Optionally, a grain can be reentrant. In this case, the
steps of method calls can be interleaved. However, even in this case,
only one method call is allowed to be actively executing inside the
grain at any given time.

2.1.3 Activations. Since grains cannot share state and can only be
referenced via the location transparent key, the Orleans runtime
is able to place any grain on any server in the cluster. Typically, it
distributes grains randomly across servers to minimize the chance
that any server is a bottleneck, though users can customize grain
placement policies using plug-ins.

If a grain is not currently running when one of its methods is
invoked, the Orleans runtime activates the grain, which involves
choosing a server on which to execute the grain and executing the
grain’s constructor. It then performs the method call. It retains a
reference to the grain in its distributed fault-tolerant grain directory
so that future invocations can be directed to it. If a grain is idle for
too long, the Orleans runtime deactivates it by calling the grain’s
destructor and releasing its resources. Since, this model of activate-
on-demand is very similar to the demand-paging model of virtual
memory, Orleans calls it the Virtual Actor Model [13].

Notice that there is no notion of creating a grain in the Orleans
programming model. Grains are assumed to always exist, and are
instantiated only when referenced.

The mapping of grains to servers is dynamic. Each time a grain
is activated, it may (and often does) execute on a different server
than its previous activation.

Grains are fault tolerant. If a server fails, Orleans detects the
failure and updates its grain directory accordingly. The next invo-
cation of a grain that died on the failed server causes that grain
to be re-activated on another server, just like any invocation of an
inactive grain.

The grain directory is implemented as a decentralized, distributed
hash table where each server in the cluster is responsible for a por-
tion of the directory. The system strives to ensure there is at most
one active instance of a grain at any point in time. However, this can
be violated during periods of server failures, cluster reconfiguration,
or network partitions, which has implications for the correctness
of our transaction implementation, which we discuss in §6.

2.1.4 Persistence. Orleans offers a simple declarative model of
persistence, where a grain type identifies its persistent properties.
Orleans maps those properties to persistent storage via a storage
provider plug-in. The app specifies the storage provider (and hence
the storage system) to use via a configuration attribute. Orleans

Single Grain TX Two Grain TX
0

10

20

30

40

50

60

70

m
illi

se
co

nd
s

Activation
Execution
Commit

Figure 2: Breakdown of time spent in transactions

uses the storage provider to populate a grain’s state when the grain
is activated. A grain can call WriteStateAsync to save its state at any
time, e.g., just before returning from a method call that modifies its
state or just before it is deactivated.

This approach to persistence decouples actor implementation
from its storage. Developers can override this declarative persis-
tence model with their own mechanism. For example, the developer
can write custom code in the grain’s constructor to initialize the
grain state from any source, and can include code to save the grain’s
state in any method.

2.2 The Cost of Distributed Transactions
To understand the performance challenges of distributed transac-
tions, consider the classic distributed transaction protocol: 2PL for
isolation with 2PC for atomicity. To ensure isolation, a transaction
holds locks until it finishes executing. Each object in its readset can
release read-locks when it receives a prepare-request in phase-one
of 2PC. However, each object in its writeset must hold its write
locks until it receives a commit request in phase-two of 2PC.

2PC incurs significant performance overhead for two main rea-
sons. First, it requires at least two network round trips and two
synchronous log writes to persistent storage per transaction [28],
which incurs network and storage I/O overhead, as well as CPU
usage by the TCP/IP stack [45]. A typical cloud storage system
has high latency due to networking, disk, and replication overhead.
In our runs, a write to cloud storage takes on average around 20
milliseconds (ms) within a single region. Thus, a transaction run-
ning 2PC needs to hold locks for an additional ∼40 ms. This limits
throughput to 25 transactions/second (tps) on write-hot data. SSD-
based cloud storage is faster [2, 4], but it still incurs double-digit
millisecond 2PC latency, plus higher price.

Second, the coordination necessary to guarantee isolation can
significantly decrease concurrency, which leads to performance
degradation as well as high abort rates [9]. This increased con-
tention due to 2PC is particularly harmful for short read-write
transactions, because of the high latency of the commit protocol

3722

relative to the time it takes to execute the transaction logic [42].
The impact of contention is evident in 2PL, but optimistic concur-
rency control (OCC) schemes are also not immune, and can in fact
perform worse under high contention [28, 33, 46].

Figure 2 shows the breakdown of where the time is spent in
the execution of a simple transaction that writes one or two ran-
domly selected grains, whose storage is backed by Azure storage.
As shown on the figure, the time to load the state and execute the
commit protocol is much larger than the time taken to execute the
transaction logic itself.

3 REQUIREMENTS
Here we discuss a set of requirements that we collected from Or-
leans users within and outside Microsoft.

First, to ensure the programming model for transactions is natu-
ral to Orleans users, transactions must be opt-in. They should affect
only the programming model and performance of applications that
use them.

Second, users want the ability to choose from a wide variety
of cloud storage solutions. Hence all transaction storage must be
external and pluggable.

Third, as reported in prior work [23, 42] and by our users, most
workloads have low contention most of the time, but many work-
loads sometimes have a few very hot grains. Hence the transactions
design needs to handle both high and low contention cases well.

We built an initial prototype satisfying these requirements [22].
However, when the Orleans team embarked on incorporating the
prototype into their product, they identified additional require-
ments. First, they wanted an application opt into transaction func-
tionality by using composition and dependency injection, rather
than by extending a base class, as was required in the prototype.
This allows better composability with other Orleans features that
is difficult to achieve with an inheritance-based model.

Second, the prototype had a disadvantage where even single-
grain transactions have to go through a two-phase commit process,
and they were keen to eliminate this overhead both for performance
reasons, and for integration with external one-phase systems that
do not support 2PC.

Third, transaction aborts due to deadlock timeouts were identi-
fied as a major source of performance problems. The possibility of
them occurring was often a surprise for users since locking is not
explicit in the programming model. Users were keen for a way to
avoid or reduce deadlocks.

Finally, they wanted there to be no additional components to
deploy beyond that of the existing Orleans setup, which deploys
one service (the Silo) per server. Users were quite unwilling to
take on the many complications of the deployment, versioning and
rollout story that would be necessary due to additional components.
This rules out architectures that include a dedicated transaction
manager service or a centralized sequencer [10, 23].

4 PROGRAMMING MODEL
In this section we describe the extensions we added to the Orleans
programming model to support transactions. We include a short
code sample in Appendix A to demonstrate how everything fits
together.

public interface ITransactionalState<TState>
where TState : class, new()

{
Task<TResult> PerformRead<TResult>(

Func<TState, TResult> readFunction);

Task<TResult> PerformUpdate<TResult>(
Func<TState, TResult> updateFunction);

}

Figure 3: Transactional Grain State Interface

4.1 Transactional Grain
A transactional grain is a stateful grain whose state is protected by
ACID transactions. Any grain type can become transactional by
declaring a field of type ITransactionalState in the class imple-
menting the grain, which is a wrapper providing transactional read
and write access to the grain state. The interface of ITransaction-
alState is shown in Figure 3. In Appendix A, the AccountGrain
class is an example of a transactional grain.

4.2 Transactional Methods
Transactions in Orleans are bracketed by method tags, similar to the
programming model of Java EE or .NET’s COM+. A method on any
grain interface can be declared as transactional by annotating it with
the Transaction attribute and specifying a TransactionOption
value indicating how this method behaves within a transaction.
We list the most common TransactionOptions here. The Orleans
documentation [5] contains a comprehensive list.

• Create. Every call to the method starts a new transaction,
T, and completes T on exit.

• Join. The method can be called only within an already
executing transaction.

• CreateOrJoin. If the method’s caller is executing within
a transaction, T, then it becomes part of T. If not, then the
call starts a new transaction, T′, and completes T′ on exit.

Once amethod that starts a transaction completes without throw-
ing any exceptions, the Orleans runtime will attempt to commit
the transaction. If it succeeds, the method returns normally. Oth-
erwise, an exception will be thrown to the caller. Transactional
methods should not have any side effects beyond changing the
state of transactional grains, so that if they need to be aborted they
can be rolled back cleanly. This is not enforced by Orleans, and left
to programmer discipline.

All methods accessing transactional grain state must be trans-
actional, but transactional methods can exist on non-transactional
grains as well. In Appendix A, the Transfer method of the ATM-
Grain is an example of a transactionalmethod on a non-transactional
grain.

4.3 Transactional Storage
As we discussed in §3, Orleans users require the flexibility to use a
cloud storage solution of their choice to store durable grain state,

3723

public interface ITransactionalStateStorage<TState>
where TState : class, new()

{
Task<TransactionalStorageLoadResponse<TState>>

Load();

Task<string> Store(
string expectedETag,
TransactionalStateMetaData metadata,
List<PendingTransactionState<TState>>

statesToPrepare,
long? commitUpTo,
long? abortAfter

);
}

Figure 4: Transactional State Storage Plugin Interface

including transactional grains. To this end, we augment the Orleans
framework with a pluggable transactional storage interface ITrans-
actionalStateStorage that users can implement, see Figure 4. The
interface requirements are quite minimal; it accommodates any
highly available cloud storage solution that supports conditional
writes based on an ETag check (which in practice means any cloud
storage can be used).

5 TRANSACTION EXECUTION
Orleans uses dependency injection to populate the transactional
state field of a transactional grain. In addition to the methods on
ITransactionalState’s public API to read and write the transactional
state (Figure 3), the injected object also has methods to prepare,
commit and abort, which are required for the 2PC protocol. In effect,
a transactional grain acts as a mini-database. It is the unit of access,
meaning that a transaction that reads or writes any part of the
grain’s state is considered to have read or written its entire state.
This is to simplify the bookkeeping required during transaction
execution; while it is conceptually possible that a transaction only
needs to access a part of the grain’s transactional state, grains are
meant to be small and developers naturally divide large state across
many grains. Orleans serialization features are used to generate
a deep copy of the state of arbitrary type TState so that working
copies can be created for transactions that can later be rolled back
if the transaction aborts.

Each silo in the Orleans cluster has a component called the
Transaction Agent (TA), which provides transaction functionality
within the Orleans runtime. It has APIs to start, commit, and abort
a transaction. The TA assigns a globally unique transaction ID to
each transaction.

Recall from §2.1.2 that the Orleans runtime intercepts all grain
method calls via grain reference objects. When a transactional
method M is invoked, the runtime uses M’s transaction tag to
determine whether to start a transaction or propagate the caller’s
transaction to M. Figure 5 illustrates how a transaction starts and
propagates. To start a transaction, the runtime calls the local TA
on the server running M. Once M completes, the runtime calls its

Figure 5: Transaction Execution

local TA to coordinate running the commit protocol to commit the
transaction, which we describe in §6. Optionally, the runtime might
also run M in reconnaissance mode prior to starting the transaction,
as explained in §7.

5.1 Transaction Context
Each transactional method call carries a hidden parameter called the
transaction context to record information about the transaction’s
execution. The transaction context includes the identity of the
caller’s transaction, T, and of the grains and versions accessed by
T. A transaction context is created when the runtime starts a new
transaction.

The transaction context is passed back and forth between the
grain that started T and other grains T accesses (which all happen
via grain async method calls). The transaction context supports a
Union method, which accepts another transaction context with the
same transaction id and unions its readset, writeset. After a method
call is completed, the callee returns an updated transaction context
which the caller unions with its own. If a method M1 running
within a transaction T calls another method M2 within T, M1 must
await M2’s return so that it can union the updated context down
M2’s path. Otherwise, the call down M2 could have made some
changes that are not recorded and updates by the transaction can
be lost, breaking atomicity. If M1 fails to await M2, we call this an
orphaned call. The system is able to detect such calls and abort the
transaction if they occur.

5.2 Concurrency Control
We use 2PL with grain-granularity for concurrency control. When
the runtime propagates a transaction, T, to a transactional grain,
G, it locks G on behalf of T. While T holds the lock, only method
calls that are part of T may execute. Other calls are queued. This is
susceptible to deadlocks. Our reconnaissance queries (§7) allow us
to avoid deadlocks in most cases. When this fails, we use timeouts
as the fallback mechanism.

3724

Figure 6: Pipelined 2PC with two participants (left) and one
participant (right). Showing transfer of coordination from
TA to TM. PR is PrepareRecord and CR is CommitRecord.

Since locks are not persisted, if a server hosting a transactional
grain G fails, a transaction T holding the lock on G will lose the lock
and T’s in-flight updates of G. If G recovers before T starts 2PC, then
T must avoid being fooled into committing and thereby breaking
atomicity. As we explain in §6, the prepare-phase ensures this by
checking whether T still holds its locks; if not, it aborts T. It is also
possible for T to lose a lock due to a failure and then re-acquire the
lock by accessing G again before it finishes, perhaps via a different
callpath. In this case, T’s context will refer to two versions of G.
To handle this, if the union operation on T’s transaction context
has seen more than one version of any grain, it will abort T. This
also handles the rare cases mentioned in §2.1.3, where there are
multiple activations of G simultaneously.

6 COMMIT PROTOCOL
After a method that starts a transaction T completes without throw-
ing any exceptions, the runtime initiates the commit process by in-
voking the local Transaction Agent (TA) and passing it the complete
transaction context, which contains the full readset and writeset
(i.e., participant transactional grains) of T. Figure 6 illustrates the
full commit protocol.

Recall that the transactional grain state object has methods to
implement 2PC. The TA designates one of the participant grains as
the transaction manager (TM) of the transaction, which will be the
authority on T’s outcome. The TA then issues prepare RPCs to all
participants, except the TM. The RPC includes the identity of the
TM as one of its parameters. Each participant grain G that receives
a prepare RPC first validates that T still holds its lock, and if it is
part of the writeset, validates that it still has all the writes made by
T. If this validation passes, G immediately releases the transaction’s
lock on it, which allows other transactions to access G and take
a dependency on T (since T is not yet committed). T is now said
to be pending at G. Asynchronously, G will submit a write to its

transactional storage to record a prepare record for T, which persists
T’s writes as well as the identity of the TM to durable storage. If
and when that write returns successfully, and G has committed all
its pending transactions prior to T, G notifies the TM that it is done
with its prepare phase. Alternatively, if the validation fails, G rolls
back the writes of T and any subsequent pending transaction.

In parallel to the prepare RPCs, the TA also sends a commit RPC
to the TM. The TM handles that call similarly to how other par-
ticipants handle the prepare RPC, except it also has the additional
responsibility of deciding T’s outcome. The TM waits for all the
other participants to successfully finish their prepare phase. Af-
ter the TM receives notifications from all participants that they
have successfully prepared, it asynchronously submits a write to
its transactional storage to store the commit record for T. After that
write is successful, the TM replies to the TA so it can notify the
client that the transaction completed. Additionally, the TM notifies
all the participants of T’s outcome so they can clean up their logs
and mark T as no longer pending. The persisted commit record
includes the identity of all the transaction participants that need
to be notified, so that the TM grain can perform this duty despite
failures. Once all participants have been notified of the transaction
commit, the TM can remove the commit record from its storage to
reclaim space.

As illustrated in Figure 6, transactions that only touch a single
grain only need one RPC to commit, instead of the usual two rounds
of 2PC.

One subtle issue in Orleans’ commit protocol is that even read-
only participants have to go through the process of persisting a
prepare record. Recall from §2.1.3 that multiple instances of the
same grain might be active simultaneously in some failure cases.
It is therefore necessary to do a write to transaction storage to
perform an ETag check and ensure that the grain version read by
the transaction is indeed the latest and not a stale version.

Apart from the above considerations that arise from the early
release of locks, the recovery actions required when participant
fails, a storage write fails, or a message is lost are the same as in
other 2PC protocols. A detailed description appears in Chapter 7 of
Bernstein et al. [15].

6.1 Discussion
Orleans’ pipelined 2PC variant enables two major benefits. First,
transaction locks need not be held during the high latency 2PC.
Second, since persisting prepare and commit records to storage
is asynchronous, writes can be efficiently batched, enabling a dis-
tributed form of the group commit optimization. Together, these
reduce the contention of transactions dramatically and allow for
much higher transaction throughput despite the high latency of
2PC over cloud storage compared to a standard 2PL/2PC implemen-
tation.

On the other hand, a potential drawback of this design is that it al-
lows cascading aborts. However, since a transaction only releases its
locks after it has already finished executing, transaction program
failures and deadlocks are no longer possible. Hence, cascading
aborts only happen only due to server failures, e.g., a hardware or
operating system failure, which are relatively rare. Additionally,

3725

when a server S fails, there is significant delay in cluster reconfig-
uration, since other servers need to wait long enough to be sure
that S failed and is not simply slow. Then they must work around
S’s failure until S recovers. Thus, independent of the existence of
transactions, application execution will be disrupted. Cascading
aborts will add to the period of unavailability, but we argue that the
effect is incremental, not a fundamentally new effect to be coped
with.

7 RECONNAISSANCE QUERIES
A guiding principle in the design of Orleans transactions is to
avoid holding locks while waiting on high latency cloud storage
access. Orleans’ pipelined 2PC removes the latency of the commit
protocol from a transaction contention period. The other cause
of cloud storage access is reading grain state from storage when
activating a grain. Hot grains will typically have been activated by
the system and hence have in-memory instances. However, this
does not fully address the issue because a transaction might access
hot grains along with other cold grains that have not been recently
activated. There are several well-known techniques to work around
this problem [15]. For example, the programmer could manually
prefetch grains before executing the transaction. Another technique
is to ensure hot grains are the last to be accessed. This is beneficial
because it minimizes the execution time during which access to the
hot grains causes a conflict. Unfortunately, these are are not always
applicable, and they push a lot of complexity to programmers.

To deal with this problem in a general way, we added reconnais-
sance queries [23, 42], which is currently an experimental feature.
When a grain method is supposed to start a new transaction T, the
system can first start T in reconnaissance mode. In this mode, T
executes in lock-free repeatable read isolation. Transactional grains,
which are multi-versioned and keep track of stable, committed ver-
sions, return a known committed value to serve the read operations
without waiting on any locks. Any writes made by T in recon-
naissance mode are staged at the grain state, and discarded at the
end of execution. After the reconnaissance phase, the system then
starts T normally in lock-acquiring mode. Note that this does not
require any changes to the application code, and is done completely
transparently.

As shown in prior work [23, 42], it is rare for the readset of
a transaction to change between the reconnaissance query and
the actual transaction. As a result, running the reconnaissance
query serves the important purpose of activating the grains in the
transaction’s readset which ensures their state is loaded from cloud
storage prior to acquiring any locks. In the uncommon case where
the readset does change, transactions will potentially have to hold
locks while reading from slow cloud storage, but the system does
not face any correctness problems.

Reconnaissance queries have two main disadvantages. First, they
add to the query latency, although this additional latency does not
lead to increased the contention. Second, they require executing the
transaction logic twice before committing. While transactions tend
to be short, this could still be wasteful if the transaction is compute-
intensive, particularly in low contention cases. Hence, we allow
users to opt-out of reconnaissance queries on a per transactional
method basis.

Table 1: Single Silo Write Throughput.

Single Grain Two Grains

Writes (KTPS) 430 212
Persistent Writes (KTPS) 126 61
Transactions (KTPS) 46 11

7.1 Deadlock Avoidance
Since transactions in Orleans use locking for concurrency control,
the system must deal with the potential for deadlocks. Deadlocks
in Orleans transactions have been identified as a major source of
performance issues by prior work [34], and by our users. Further-
more, that they can occur at all is often a surprise for Orleans users
since locking is not explicit in the programming model.

The most general mechanism used in the system to handle dead-
locks is transaction timeouts, since these are required to handle
other possible failures. However, requiring transactions to wait for
the entire timeout duration to resolve deadlocks can be too slow
and in practice leads users to set their transaction timeouts to con-
servatively short values, resulting in many transaction aborts and
restarts.

By making all transactions acquire their locks in the same or-
der, we can prevent deadlocks. The system leverages the fact that
the readsets and writesets of the transaction are (approximately)
computed by the reconnaissance queries, prior to acquiring any
locks. After the reconnaissance query, the runtime will issue RPCs
to acquire the locks on the participant grains in a defined order be-
fore executing the transaction. A naive implementation of this idea
would require adding |readset ∪writeset| round-trips to time under
locks, which increases contention. Instead, as in prior work [23],
the Orleans runtime uses an RPC Chains [40] style approach, which
cuts the round-trips required roughly in half compared to the naive
approach. The way this works is that the lock acquisition RPC to
a grain contains an ordered list of subsequent grains that need to
be locked. When the silo locks a grain, it forwards the remainder
of the list to the next grain and so on until the last grain is locked,
which will then notify the first grain that all the locks have been
acquired, at which point the transaction execution can start.

It is again possible that the transaction’s readset or writeset
changes between the reconnaissance query and actual transaction.
We fall back to timeouts to resolve any potential deadlocks that
might arise as a result.

This ordered lock acquisition scheme can actually increase a
transaction’s contention period, because lock acquisition has to be
serialized. We allow the programmer to disable the scheme on a per
transaction basis. Note that there is no overhead for the common
case of transactions accessing a single grain.

8 EXPERIMENTS
In this section we study the overhead of transactions by comparing
transactional operations to regular persistent non-transactional
grains (§8.1) and the effectiveness of the pipelined commit protocol
(§8.2) using micro-benchmarks. We also evaluate effectiveness of
reconnaissance queries in Orleans using the Smallbank benchmark
(§8.3).

3726

All Silos and clients are running on Azure Standard D8as v5 VMs,
which promise 8 cores and 32GB of RAM. We use Orleans 7. Unless
otherwise stated, we use Azure Storage for grain persistent storage.
Throughput numbers are computed by running the workload for 5
minutes and taking the average.

8.1 Transaction Overhead
Transactions incur overhead since transactional state has to create
copies of itself to support rollbacks andmulti-versioning, in addition
to the RPCs and write needed for the commit protocol. To measure
that overhead, we devise a simple micro-benchmark. Grains in this
workload have a very simple 64-bit integer state. Each operation
can either write the state of one or two grains, selected at random
from a large universe of grains. In this experiment, storage for
grain state is in-memory, since we want to measure the overhead
of Orleans’ transactions operations, not the cost of IO.

The results are shown in Table 1. The first row shows the total
throughput for regular non-persistent grain operations, the second
row shows the throughput for the same operations when performed
with persistence, and the third row shows the throughput when
performed within a transaction.Transactions have significant over-
head compared to plain grain operations and even persistent grains.
One notable thing about the results is that the throughput of single
grain workload is significantly more than double the throughput of
the two-grain transaction workload. This shows that single-grain
transactions are significantly more efficient than multi-grain ones,
which is due to the transfer of coordination from TA to TM in the
single-grain case, as described in §6.

8.2 Single Grain Microbenchmarks
Hot data is a worst case for transaction performance and often
arises in practice. Orleans’ commit protocol is designed to support
high throughput for hot data. In this experiment we evaluate its
performance for a single hot grain and compare it to a standard
2PL/2PC baseline as well as non-transactional persistent grains.
The workload involves writing a single grain which has 1KB state.
We plot the results in Figure 7.

With its early lock release and pipelined commit, Orleans is
able to sustain much higher throughput than a baseline 2PL/2PC
implementation. Furthermore, it also greatly outperforms even the
throughput of non-transactional grain writes, which still have to
lock the grain for every individual write during the entire duration
of performing the write to cloud storage.

8.3 Smallbank Multi-Transfer
Here we use the Smallbank [7] benchmark to evaluate the effec-
tiveness of reconnaissance queries in addressing high contention
and deadlock aborts, by comparing the performance when con-
figured to use reconnaissance queries vs. a baseline where they
are disabled. SmallBank is an OLTP benchmark simulating basic
operations on bank accounts, and is a good fit for simulating ac-
tor workloads which are write-intensive and interactive [34]. We
use a similar setup to prior work [34]; in particular, we also use a
MultiTransfer transaction that withdraws money from one account
and deposits money to multiple other accounts in parallel. In this
workload, each account is modeled as a separate grain, and there

2PL/2PC Persistent Grain Transactional Grain
0

200

400

600

800

1000

TP
S

Figure 7: Single Grain Throughput

are 10k accounts in total. The grains accessed by each transaction
are selected randomly using zipfian distribution. We vary the zipf
parameter to generate different levels of skewness to measure the
effect of contention. In a highly skewed workload, transactions
access only a small set of grains, which causes them to be highly
contended. We plot the throughput and abort rates under different
workload skewness in Figure 8.

Analysis. As expected, under low contention, the reconnaissance
queries in Orleans are mostly wasteful and consequently the base-
line configuration has better throughput. As contention increases,
however, they become crucial. Throughput of the baseline drops
significantly and deadlock aborts become frequent, even with a
modest increase in skewness, whereas the performance of the vari-
ant with reconnaissance queries holds steady and is able to avoid
deadlock aborts completely.

9 RELATEDWORK
Early Lock Release. Relaxing strict 2PL to increase concurrency
by releasing locks at earlier stages [38, 39] is a technique that was
applied to single-node databases with large buffer pools, since a
transaction may run in less time than it takes to log the transac-
tion’s commit record on stable storage [25], and was later rigorously
formalized and further developed in works like controlled lock vio-
lation [25] and Bamboo [27]. Distributed forms of this technique
were recently proposed to optimize performance in distributed
databases [26]. Orleans pioneered the use of a distributed form
of early lock release by releasing all of a transaction’s locks dur-
ing phase one of 2PC, and by tracking commit dependencies to
implement cascading abort. Conceptually this is also similar to
MongoDB’s speculative execution model [37].

Commit Dependencies. The notion of commit dependency
was introduced in the ACTA framework [19]. We know of two
prior works that use the concept.

In Speculative Locking (SL) [31], if a transaction 𝑇1 updates x
and a later transaction 𝑇2 reads x, then 𝑇2 speculates by having

3727

uniform low medium high very high
Workload Skewness

0

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (T

PS
)

Baseline
Reconnaissance Queries

(a) Throughput.

uniform low medium high very high
Contention Index

0

10

20

30

40

50

Ab
or

t R
at

e
(%

)

Baseline
Reconnaissance Queries

(b) Abort Rate.

Figure 8: Smallbank Multi-Transfer Results

two incarnations, 𝑇21 that reads 𝑇1’s before-image of x and 𝑇22
that reads its after-image [42]. 𝑇21 and 𝑇22 both take a commit
dependency on𝑇1. If𝑇1 commits,𝑇22 is retained, else𝑇21 is retained.
The simulation study [31] of a distributed DBMS shows that SL gets
better throughput than 2PL by overlapping speculative executions
of𝑇2 with𝑇1, at the cost of more CPU load. By contrast, in Orleans,
𝑇2 only takes a dependency on 𝑇1 after 𝑇1 terminates so it has no
more CPU load.

Microsoft’s Hekaton uses a more limited form of commit depen-
dency [21]. It allows 𝑇2 to take a commit dependency on 𝑇1 if 𝑇2
started after𝑇1 finished execution and entered the validation phase
but has not yet committed. Thus, it benefits from overlapping 𝑇2’s
execution with𝑇1’s validation. Unlike Orleans, Hekaton is a DBMS,
not a programming framework, and is not distributed.

Deterministic Execution. Deterministic execution has been
explored as an alternative to distributed commit in systems such as
Calvin [42] and Aria [35]. Systems based on deterministic execution
typically have to restrict the programming model to one-shot stored
procedures, and need to know the transaction’s readset and writeset
ahead of time. This makes it impractical to adopt in a stateful middle-
tier system like Orleans.

Reconnaissance Queries. Reconnaissance queries were pro-
posed in deterministic database systems [41, 42] as a mechanism to
support dependent queries, which are queries whose read and write-
sets cannot be determined before executing the query. The idea is
to execute the query first in a low isolation mode to (approximately)
collect the identities of records accessed. Chardonnay [23] uses a
similar idea in order to prefetch the readset from disk into memory
before executing the transaction, and to schedule lock acquisition
to avoid deadlocks. We adopt this technique in Orleans.

Transactional Actor Frameworks. An earlier design of Or-
leans had a transaction mechanism based on multi-master repli-
cation [17]. It only provided snapshot isolation, not serializability.
It was dropped before Orleans was released because it performed

poorly and users found it too complex [13]. Akka is a Java-based
actor framework that has transactions, but only on a single ma-
chine [1]. Orleans is compared to Akka in Bernstein et. al. [13].
Snapper [34] is a transaction library for single-node systems based
on the Actor model, which enables deterministic execution for
transactions that can be labeled with their readsets and writesets,
while simultaneously supporting non-deterministic execution for
transactions where this is not possible.

Co-designing commit and replication. A typical implemen-
tation of 2PC on top of a consensus-based replication protocol
requires 4 round-trips to run the full 2PC protocol [47]. The ad-
ditional RPCs come from having to go through a leader replica
to perform replication. To eliminate these RPCs, TAPIR [47] in-
troduces a leaderless, inconsistent replication protocol (IR) and a
complex commit protocol that is tightly integrated with IR and uses
Optimistic Concurrency Control. This work is complementary to
ours, and in principle we could use TAPIR optimizations to reduce
2PC latency. Carousel [43] reduces latency by overlapping running
portions of the consensus and commit protocols, but limits the pro-
gramming model to only support two-round Fixed-set Interactive
transactions. Natto [44] builds on Carousel by introducing prioriti-
zation and scheduling techniques to improve performance for high
contention workloads.

10 CONCLUSIONS AND FUTUREWORK
We presented the design of ACID transactions mechanism in Or-
leans, an actor framework and platform that has evolved into an
actor-oriented database system. Orleans transactions have to be
distributed over external high-latency cloud storage, yet we have
shown how to mask the high latency of cloud storage using early
lock release, pipelined 2PC and reconnaissance queries to achieve
high throughput and good performance. We shared many experi-
ences from our journey to productionize transactions in Orleans,

3728

including how much considerations like extensibility, ease of de-
ployment and ease of integration with existing workflows often
trump pure performance once the system achieves performance
acceptable to customers.

There is much that can be done to extend this work. On the
research side, one could experiment with variations of our tech-
nique to identify further optimizations. For example, one could
try multi-version optimistic concurrency control, so transactions
can read or overwrite data that was last written by a still active
transaction. This should increase the maximum throughput when
the transaction conflict rate is low. On the practical side, it would
be beneficial to avoid deep copying the entire object state when
a small update is made to a big structure, e.g., a dictionary. One
way is to implement a custom transactional variation of the data
structure that can log and undo incremental updates.

11 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their useful comments
and suggestions. Orleans Transactions was a joint effort by Phil
Bernstein, Reuben Bond, Jason Bragg, Sebastian Burckhardt, Sergey
Bykov, Tamer Eldeeb, Christopher Meiklejohn, Alejandro Tomsic,
and Xiao Zeng. We also benefited greatly from feedback from our
users: Josh Collins, Maryam Mohammadzadeh, and Allen Xiao.

A ATM APP EXAMPLE

public interface IAccountGrain {
[Transaction(TransactionOption.Join)]
Task Increment(int amount);

[Transaction(TransactionOption.CreateOrJoin)]
Task<uint> GetBalance();

}
public class AccountGrain : Grain, IAccountGrain {

private readonly ITransactionalState<Balance> _balance;

Task Increment(int amount) {
return _balance.PerformUpdate(x => x.Value +=

amount);
}
Task<uint> GetBalance() {

return _balance.PerformRead(x => x.Value);
}

}
public interface IATMGrain {

[Transaction(TransactionOption.Create)]
Task Transfer(Guid from, Guid to, uint

amountToTransfer);
}
public class ATMGrain : Grain, IATMGrain {

async void Transfer(Guid from, Guid to, uint amount) {
var sender = client.GetGrain<IAccountGrain>(from);
var receiver = client.GetGrain<IAccountGrain>(to);
await sender.Increment(-amount);
await receiver.Increment(amount);

}
}

REFERENCES
[1] 2023. Akka documentation. http://akka.io/docs.
[2] 2023. Amazon DynamoDB. https://aws.amazon.com/dynamodb/.
[3] 2023. Azure CosmosDB. https://azure.microsoft.com/en-us/products/cosmos-db.
[4] 2023. Google Cloud BigTable. https://cloud.google.com/bigtable.
[5] 2023. Microsoft Orleans. docs.microsoft.com/dotnet/orleans.
[6] Gul Agha. 1986. Actors: AModel of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, MA, USA.
[7] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The

Cost of Serializability on Platforms That Use Snapshot Isolation. In 2008 IEEE
24th International Conference on Data Engineering. 576–585. https://doi.org/10.
1109/ICDE.2008.4497466

[8] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (sep 2010), 68–75. https:
//doi.org/10.1145/1810891.1810910

[9] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.
HAT, Not CAP: Towards Highly Available Transactions. In 14th Workshop on
Hot Topics in Operating Systems (HotOS XIV). USENIX Association, Santa Ana
Pueblo, NM. https://www.usenix.org/conference/hotos13/session/bailis

[10] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prab-
hakaran, Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck.
2013. Tango: Distributed Data Structures over a Shared Log. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 325–340. https://doi.org/10.1145/2517349.2522732

[11] Philip A. Bernstein. 2018. Actor-Oriented Database Systems. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). 13–14. https://doi.org/10.
1109/ICDE.2018.00010

[12] Philip A. Bernstein, Sebastian Burckhardt, Sergey Bykov, Natacha Crooks, Jose M.
Faleiro, Gabriel Kliot, Alok Kumbhare, Muntasir Raihan Rahman, Vivek Shah,
Adriana Szekeres, and Jorgen Thelin. 2017. Geo-Distribution of Actor-Based
Services. Proc. ACM Program. Lang. 1, OOPSLA, Article 107 (oct 2017), 26 pages.
https://doi.org/10.1145/3133931

[13] Philip A. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and
Jorgen Thelin. 2014. Orleans: Distributed Virtual Actors for Pro-
grammability and Scalability. Technical Report MSR-TR-2014-41.
https://www.microsoft.com/en-us/research/publication/orleans-distributed-
virtual-actors-for-programmability-and-scalability/

[14] Philip A. Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. 2017.
Indexing in an Actor-Oriented Database. In CIDR.

[15] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[16] Philip B Bernstein. 2019. Resurrecting Middle-Tier Distributed Transactions.
IEEE Data Eng. Bull. 42 (2019), 3–6.

[17] Sergey Bykov, Alan Geller, Gabriel Kliot, Jim Larus, Ravi Pandya, and Jorgen
Thelin. 2011. Orleans: Cloud Computing for Everyone. In ACM Symposium on
Cloud Computing (SOCC 2011) (acm symposium on cloud computing (socc 2011)
ed.). ACM. https://www.microsoft.com/en-us/research/publication/orleans-
cloud-computing-for-everyone/

[18] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Be-
dekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muham-
mad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,
MarvinMcNett, Sriram Sankaran, KavithaManivannan, and Leonidas Rigas. 2011.
Windows Azure Storage: A Highly Available Cloud Storage Service with Strong
Consistency. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-
chinery, New York, NY, USA, 143–157. https://doi.org/10.1145/2043556.2043571

[19] Panayiotis K. Chrysanthis and Krithi Ramamritham. 1990. ACTA: A Framework
for Specifying and Reasoning about Transaction Structure and Behavior. SIGMOD
Rec. 19, 2 (may 1990), 194–203. https://doi.org/10.1145/93605.98729

[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value
Store. In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating
Systems Principles (Stevenson, Washington, USA) (SOSP ’07). Association for
Computing Machinery, New York, NY, USA, 205–220. https://doi.org/10.1145/
1294261.1294281

[21] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine (SIGMOD ’13). Association for Computing
Machinery, New York, NY, USA, 1243–1254. https://doi.org/10.1145/2463676.
2463710

[22] Tamer Eldeeb and Philip A. Bernstein. 2016. Transactions for Distributed Actors in
the Cloud. Technical Report MSR-TR-2016-1001. https://www.microsoft.com/en-
us/research/publication/transactions-distributed-actors-cloud-2/

3729

http://akka.io/docs
https://aws.amazon.com/dynamodb/
https://azure.microsoft.com/en-us/products/cosmos-db
https://cloud.google.com/bigtable
docs.microsoft.com/dotnet/orleans
https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1109/ICDE.2008.4497466
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
https://www.usenix.org/conference/hotos13/session/bailis
https://doi.org/10.1145/2517349.2522732
https://doi.org/10.1109/ICDE.2018.00010
https://doi.org/10.1109/ICDE.2018.00010
https://doi.org/10.1145/3133931
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-cloud-computing-for-everyone/
https://www.microsoft.com/en-us/research/publication/orleans-cloud-computing-for-everyone/
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/93605.98729
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/
https://www.microsoft.com/en-us/research/publication/transactions-distributed-actors-cloud-2/

[23] Tamer Eldeeb, Xincheng Xie, Philip A. Bernstein, Asaf Cidon, and Junfeng Yang.
2023. Chardonnay: Fast and General Datacenter Transactions for On-Disk
Databases. In 17th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 23). USENIX Association, Boston, MA. https://www.usenix.
org/conference/osdi23/presentation/eldeeb

[24] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of
Consistency and Predicate Locks in a Database System. Commun. ACM 19, 11
(nov 1976), 624–633. https://doi.org/10.1145/360363.360369

[25] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.
2013. Controlled Lock Violation. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 85–96.
https://doi.org/10.1145/2463676.2465325

[26] Hua Guo, Xuan Zhou, and Le Cai. 2021. Lock Violation for Fault-tolerant Dis-
tributed Database System. In 2021 IEEE 37th International Conference on Data
Engineering (ICDE). 1416–1427. https://doi.org/10.1109/ICDE51399.2021.00126

[27] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMachinery,
New York, NY, USA, 658–670. https://doi.org/10.1145/3448016.3457294

[28] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow. 10, 5 (jan
2017), 553–564. https://doi.org/10.14778/3055540.3055548

[29] Pat Helland. 2007. Life beyond Distributed Transactions: an Apostate’s Opinion.
In CIDR.

[30] Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, and Matei Zaharia. 2022. Data-
Parallel Actors: A Programming Model for Scalable Query Serving Systems. In
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1059–1074. https://www.usenix.org/
conference/nsdi22/presentation/kraft

[31] P. Krishna Reddy and M. Kitsuregawa. 2004. Speculative locking protocols to
improve performance for distributed database systems. IEEE Transactions on
Knowledge and Data Engineering 16, 2 (2004), 154–169. https://doi.org/10.1109/
TKDE.2004.1269595

[32] Butler W. Lampson and David B. Lomet. 1993. A New Presumed Commit Opti-
mization for Two Phase Commit. In Proceedings of the 19th International Con-
ference on Very Large Data Bases (VLDB ’93). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 630–640.

[33] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data (Chicago, Illinois, USA)
(SIGMOD ’17). Association for Computing Machinery, New York, NY, USA, 21–35.
https://doi.org/10.1145/3035918.3064015

[34] Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, and Marcos Antonio Vaz Salles.
2022. Hybrid Deterministic and Nondeterministic Execution of Transactions in
Actor Systems (SIGMOD ’22). Association for Computing Machinery, New York,
NY, USA, 65–78. https://doi.org/10.1145/3514221.3526172

[35] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047–2060.

https://doi.org/10.14778/3407790.3407808
[36] Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using Paxos to Build a

Scalable, Consistent, and Highly Available Datastore. Proc. VLDB Endow. 4, 4
(jan 2011), 243–254. https://doi.org/10.14778/1938545.1938549

[37] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable consistency
in MongoDB. Proc. VLDB Endow. 12, 12 (aug 2019), 2071–2081. https://doi.org/
10.14778/3352063.3352125

[38] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial Strictness in Two-Phase
Locking. In Proceedings of the 5th International Conference on Database Theory
(ICDT ’95). Springer-Verlag, Berlin, Heidelberg, 139–147.

[39] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial Strictness in Two-Phase
Locking. In Proceedings of the 5th International Conference on Database Theory
(ICDT ’95). Springer-Verlag, Berlin, Heidelberg, 139–147.

[40] Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. 2009.
RPC Chains: Efficient Client-Server Communication in Geodistributed Systems.
In 6th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’09) (6th usenix symposium on networked systems design and implemen-
tation (nsdi ’09) ed.). USENIX.

[41] Alexander Thomson and Daniel J. Abadi. 2010. The Case for Determinism in
Database Systems. Proc. VLDB Endow. 3, 1–2 (sep 2010), 70–80. https://doi.org/
10.14778/1920841.1920855

[42] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems (SIGMOD ’12). Association for Computing Machinery, New
York, NY, USA, 1–12. https://doi.org/10.1145/2213836.2213838

[43] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,
Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency Transaction
Processing for Globally-Distributed Data (SIGMOD ’18). Association for Comput-
ing Machinery, New York, NY, USA, 231–243. https://doi.org/10.1145/3183713.
3196912

[44] Linguan Yang, Xinan Yan, and Bernard Wong. 2022. Natto: Providing Distributed
Transaction Prioritization for High-Contention Workloads. In Proceedings of
the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
715–729. https://doi.org/10.1145/3514221.3526161

[45] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (feb 2017),
685–696. https://doi.org/10.14778/3055330.3055335

[46] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-Centric Transaction Execution and Data Partitioning for Modern
Networks. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for
Computing Machinery, New York, NY, USA, 511–526. https://doi.org/10.1145/
3318464.3389724

[47] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent
Replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New
York, NY, USA, 263–278. https://doi.org/10.1145/2815400.2815404

3730

https://www.usenix.org/conference/osdi23/presentation/eldeeb
https://www.usenix.org/conference/osdi23/presentation/eldeeb
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/2463676.2465325
https://doi.org/10.1109/ICDE51399.2021.00126
https://doi.org/10.1145/3448016.3457294
https://doi.org/10.14778/3055540.3055548
https://www.usenix.org/conference/nsdi22/presentation/kraft
https://www.usenix.org/conference/nsdi22/presentation/kraft
https://doi.org/10.1109/TKDE.2004.1269595
https://doi.org/10.1109/TKDE.2004.1269595
https://doi.org/10.1145/3035918.3064015
https://doi.org/10.1145/3514221.3526172
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/1938545.1938549
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.14778/3352063.3352125
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3183713.3196912
https://doi.org/10.1145/3183713.3196912
https://doi.org/10.1145/3514221.3526161
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.1145/3318464.3389724
https://doi.org/10.1145/3318464.3389724
https://doi.org/10.1145/2815400.2815404

	Abstract
	1 Introduction
	2 Background
	2.1 Orleans
	2.2 The Cost of Distributed Transactions

	3 Requirements
	4 Programming Model
	4.1 Transactional Grain
	4.2 Transactional Methods
	4.3 Transactional Storage

	5 Transaction Execution
	5.1 Transaction Context
	5.2 Concurrency Control

	6 Commit Protocol
	6.1 Discussion

	7 Reconnaissance Queries
	7.1 Deadlock Avoidance

	8 Experiments
	8.1 Transaction Overhead
	8.2 Single Grain Microbenchmarks
	8.3 Smallbank Multi-Transfer

	9 Related Work
	10 Conclusions and Future Work
	11 Acknowledgments
	A ATM App Example
	References

