
An Examination of CXL Memory Use Cases for In-Memory
Database Management Systems using SAP HANA
Minseon Ahn

minseon.ahn@sap.com
SAP Labs Korea

Thomas Willhalm
thomas.willhalm@intel.com
Intel Deutschland GmbH

Norman May
norman.may@sap.com

SAP SE

Donghun Lee
dong.hun.lee@sap.com

SAP Labs Korea

Suprasad Mutalik Desai
suprasad.desai@intel.com

Intel Technology India Pvt. Ltd.

Daniel Booss
daniel.booss@sap.com

SAP SE

Jungmin Kim
jimmy.kim@sap.com

SAP Labs Korea

Navneet Singh
navneet.singh@intel.com

Intel Technology India Pvt. Ltd.

Daniel Ritter
daniel.ritter@sap.com

SAP SE

Oliver Rebholz
oliver.rebholz@sap.com

SAP SE

ABSTRACT
CXL-based disaggregated memory systems offer options to expand
the memory beyond the limits of a single server via cache-coherent
memory expansion cards or memory pools. Especially, In-Memory
Database Management Systems (IMDBMSs) can benefit from alle-
viating two critical constraints: (1) limited memory capacity in a
server and (2) long restart time during failover to reload data to
memory. However, the usage and effectiveness of CXL memory in
enterprise-scale IMDBMSs has yet to be validated.

In this work—for the first time—we investigate dynamic mem-
ory expansion employing commercial CXL memory devices for
IMDBMSs. Our detailed performance analysis reveals that the per-
formance impact of higher latency and lower memory bandwidth
impact depends on the memory access patterns of data structures
(cf. (1)). Additionally, we present the feasibility of CXL shared mem-
ory between servers to improve restart times during failover (cf. (2)).

Our evaluation shows the effectiveness of CXL memory inte-
grated into the SAP HANA Cloud IMDBMS. OLTP workloads have
a negligible performance degradation while OLAP workloads have
a wide range of performance degradation. CXL shared memory
shows a 40% reduction of the restart time for TPC-H SF10 and 84%
potential reduction for TPC-H SF100.

PVLDB Reference Format:
Minseon Ahn, Thomas Willhalm, Norman May, Donghun Lee, Suprasad
Mutalik Desai, Daniel Booss, Jungmin Kim, Navneet Singh, Daniel Ritter,
and Oliver Rebholz. An Examination of CXL Memory Use Cases for
In-Memory Database Management Systems using SAP HANA. PVLDB,
17(12): 3827 - 3840, 2024.
doi:10.14778/3685800.3685809

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685809

1 INTRODUCTION
As memory devices become one of the most expensive components
in cloud data centers and stranded memory—parts of its DRAM
being unused—becomes the major reason of inefficiencies in the
cloud [25], numerous research are dedicated to investigating disag-
gregated memory systems [1, 16, 51, 53]. With the emergence of
CXL technology, disaggregated memory systems have the great po-
tential to relieve the constraints of limited memory space in a single
server, enabling efficient memory resource sharing within a rack,
offering advantages such as enhanced memory utilization, reduced
fragmentation, and lower operational costs [52]. Furthermore, it
holds particular significance for In-Memory Database Management
Systems (IMDBMSs) by alleviating constraints associated with lim-
ited memory space in a single server, extending beyond the capacity
of a single board to encompass an entire server rack [24]. While
there is extensive research on this area like [1, 16, 51, 53], to the
best of our knowledge, none of the previous work investigated
the actual performance effects employing commercial-grade CXL
memory on enterprise-level IMDBMSs.

In our previous work [22], we addressed a few elastic use cases
of CXL memory in SAP HANA. Using the two features i) moving
main table data to CXL memory and ii) allocating operational heap
memory in CXL memory, we investigated the performance impact
of CXL memory. We reported no performance degradation with
Online Transaction Processing (OLTP) workloads even with longer
latency of our CXL 1.1 compatible FPGA prototypes. However, a
wide range of performance degradation was noted across Online
Analytical Processing (OLAP) workloads, dependent on memory
access patterns. The associated experiments were constrained by
limitations inherent in our early FPGA-based prototypes.

In this study, we explore two operational use cases of CXL mem-
ory to mitigate two fundamental architectural constraints within
IMDBMSs by building upon our previous research, i.e., dynamic
memory expansion and failover with fast restart. The inherent lim-
itation of memory capacity due to a restricted number of slots for
memory DIMMs in a server poses a critical resource constraint

3827

https://doi.org/10.14778/3685800.3685809
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685809

in IMDBMSs. To alleviate this restriction, we investigate dynamic
memory expansion using CXL memory. Additionally, the time re-
quired to initialize an IMDBMS during server restarts or takeovers
in emergency, attributed to the data reloading of necessary tables
into memory, represents a significant operational challenge. To mit-
igate this issue, we propose a solution for failover with fast restart
by leveraging CXL shared memory among multiple servers.
Dynamic memory expansionWhile emerged CXL technology
easily supports dynamic memory expansion, we need further inves-
tigation on which data should move to CXL memory in IMDBMSs.
We select three dominant data structures from our real-world en-
terprise IMDBMS, SAP HANA: i) table data, ii) operational data, iii)
temporary tables, and conduct intensive performance experiments
employing commercial CXLmemory devices. Our experiments with
OLTP and OLAP workloads using a new SAP HANA prototype,
reveal diverse performance effects when placing the different data
structures in CXL memory. Our analysis of profiles reveals that
their performance depends on the memory access patterns, such as
sequential or random accesses.
Failover with fast restart CXL 3.0 [9] introduces memory sharing
among multiple hosts. This advancement allows multiple hosts to
collaboratively access and share data within a CXL shared memory.
We implement CXL shared memory supporting CXL 3.0 and build
a two-host high availability system to test failover with fast restart.
We show the feasibility of failover with fast restart by reusing the
table data in CXL shared memory, significantly reducing the server
restart time and improving overall system availability.
Contributions and key insights In summary, this work makes
the following main contributions:

• Specification of CXL memory use cases, i.e., dynamic mem-
ory expansion and failover with fast restart leveraging CXL
to alleviate two fundamental constraints of IMDBMSs.

• Experimental investigation of performance effects, when
employing CXL 2.0 compatible commercial CXL memory
devices in a real enterprise IMDBMS using various work-
loads, such as OLTP and OLAP, including a real-world sce-
nario.

• Insights into a wide range of performance degradation on
dynamic memory expansion according to the data struc-
tures and their memory access patterns.

• Implementation of CXL shared memory and demonstra-
tion of its feasibility to enable the failover with fast restart
between two servers, resolving slow restart to load the
data to memory on failover and improving overall system
availability.

Our extensive examination of the first commercial CXL mem-
ory devices that we integrate in the enterprise-scale SAP HANA
Cloud IMDBMS focuses on various workloads for the memory ex-
pansion. We report no significant performance degradation for
TPC-C [48] with 100 warehouses, but a wide range of degradation
for TPC-DS [49] SF100 due to limited bandwidth and long latency—
depending on the type of placed data—for current CXL devices.
Temporary table allocation in CXL memory was tested through
PaPM [41] and ProcBench [17], showing degradation up to 13% for
PaPM and nearly none for ProcBench. The failover with fast restart
with CXL shared memory, saves 85% preloading time with total

reductions of the restart time by 40% for TPC-H [50] scale factors
10. It is estimated to save 95% preloading time and 84% restart time
for TPC-H scale factor 100.

In addition, we find that a dynamic memory expansion via CXL
helps reducing the amount of host memory in each server / virtual
machine, and thus improving the overall memory utilization, al-
lowing for the usage of smaller, cheaper DIMMs, and reducing the
need for overprovisioning.
Outline The remainder of this paper is organized as follows: Sec-
tion 2 introduces CXL memory and SAP HANA. Section 3 discusses
use cases of CXL memory while Section 4 describes the details of
the commercial CXL memory devices and our FPGA-based CXL
shared memory. We conduct the performance evaluation and share
its analysis in Section 5 and discuss our insight in Section 6. We
give an overview of related work in Section 7. Finally, we conclude
our work in Section 8.

2 BACKGROUND
In this section, we clarify terminology and introduce relevant con-
cepts of SAP HANA, an IMDBMS, which we use in our experiments.

2.1 Disaggregated memory vs. CXL memory
Disaggregated memory is a new architecture expanding the mem-
ory hierarchy, for example, to a remote memory provided by sep-
arate memory blades. It offers several advantages, such as higher
memory utilization, reduced memory fragmentation, lower opera-
tional costs and lower total cost ownership utilizing cheaper mem-
ory devices [6, 24, 26, 52]. Disaggregated memory is being incar-
nated as a high speed cache-coherent interconnect is available, such
as CXL [8].

The Compute Express Link (CXL), with its evolution from ver-
sion 1.0 to 3.1, plays an important role in incarnating disaggregated
memory systems and augmenting the capabilities of IMDBMS [22].
CXL 1.0 and 1.1 enable memory expansion in a single server [10, 32]
alleviating a constraint of the limited memory capacity within a
single server. CXL 2.0 allocates memory to hosts on an "as-needed"
basis, optimizing utilization and enabling the creation of an inde-
pendent disaggregated memory pool. Each server is assigned a
portion of memory space in the pool. When IMDBMSs allocate
data in this memory pool, the data remains accessible even after an
IMDBMS instance restarts. CXL 3.0 and 3.1 [9] extend these capabil-
ities, introducing more flexible memory sharing and access modes
within a group of CXL devices. This expansion allows complex
connection topologies and fabrics, facilitating multiple instances of
IMDBMS to share data in the disaggregated memory pool.

Previous work used different notations to refer to CXL-attached
memory, e.g., remote memory, far memory, or disaggregated mem-
ory [24]. In this work, we adopt the term ‘CXL memory’ as we deal
with the expanded memory via CXL technology in addition to the
‘native memory’, where the size is limited by the number of DIMM
slots in a server. CXL memory includes the expanded memory by
directly attached CXL memory expanders [32] in a server, called as
‘direct attached CXL memory’, the allocated memory into a server
within a disaggregated memory pool system, called as ‘pooled CXL
memory’, and finally the memory regions which are allocated in
a disaggregated memory pool and can be shared among multiple

3828

servers, called as ‘shared CXL memory’ [7]. Accesses to these addi-
tional memory spaces occur via the CXL layer, potentially incurring
additional latency through PCIe connections and, further, through
CXL switches. Furthermore, the limited bandwidth and long la-
tency constrained by the specifications of each system may reduce
the performance compared to native memory. Investigating this
performance impact on IMDBMS is one of the main topics of this
study.

2.2 SAP HANA In-memory database platform
As a full-fledged enterprise-class in-memory database platform, SAP
HANA [12, 13] has revolutionized the management of both trans-
actional and analytical workloads. SAP HANA, a leading Hybrid
Transaction/Analytical Processing (HTAP) system [38, 42] uniquely
supports both OLTP and OLAP workloads within a single system
offering low latency and high throughput. This unified approach
not only simplifies the overall system design but also significantly
reduces the total cost of ownership (TCO) [2, 34, 35, 37].

SAP HANA uses a compressed, columnar storage layout for both
fast read accesses and a low memory footprint. The columnar data
is stored in the read-optimized ‘main storage’ and maintains a sepa-
rate ‘delta storage’ for optimized writes. The main storage contains
table data and retrievals of these table data consume higher mem-
ory bandwidth, especially for OLAP workloads [21]. Fortunately,
accesses to the table data are mostly sequential [19], which enables
efficient prefetching hiding the access latency. The delta storage is
write-optimized columnar storage to save newly inserted or modi-
fied data. It is periodically merged with the main storage [12, 31].
In addition, a designated portion of memory is allocated for inter-
mediate data during query processing or other database operations.
This allocated space is referred to as ’operational memory’. Within
this category, a temporary table represents a specialized form of
operational memory, storing intermediate results in a columnar
structure while executing programs or procedures. In real-world
scenarios, temporary tables are often linked to out-of-memory sit-
uations resulting from large intermediate results. Consequently,
we distinguish temporary tables from other operational memory
areas and conduct an in-depth investigation into their performance
behavior when utilizing CXL memory. Section 3 dives deeper into
this topic detailing the issues that may arise when using disaggre-
gated memory. It also summarizes previous efforts to address these
challenges leveraging CXL technology.

3 CXL MEMORY USE CASES
IMDBMSs are designed to minimize latency overhead caused by
memory accesses and stalled CPU cores. To this end, they keep the
working set of data permanently in memory and use NUMA-aware
data organization and task scheduling as well as vectorized process-
ing on columnar tables to fully utilize the capabilities of modern
hardware. Relying on data being loaded into the main memory
makes the restricted memory size a critical resource constraint due
to a limited number of slots for memory devices (DIMMs). Addition-
ally, IMDBMSs encounter another constraint during scenarios like
DBMS restarts or server takeovers in emergencies, requiring long
server restart times to reload data to memory. Upcoming disaggre-
gated memory systems enabled by CXL are poised to alleviate these

constraints. This section addresses the existing efforts to surmount
these limitations and explores how CXL can enhance these two
fundamental constraints.

3.1 Dynamic memory expansion to CXL
memory

One of the main constraints of IMDBMSs revolves around the lim-
ited memory space in a single server, leading to several potential
issues. For example, when sizing their systems for some DBMS
workloads, customers risk to either overprovision the memory ca-
pacity of their systems when they want to avoid out-of-memory
situations, or choose a tight memory capacity resulting in the need
to add memory resources as their datasets grow or workload gets
more demanding. Dynamic memory expansion will resolve both the
high TCO issue by overprovisioning and the challenge to increase
the memory space as the data or workload grows.

One approach to extend the memory space of a single server
would be to explore utilizing memory in other servers, like Re-
mote Direct Memory Access (RDMA) [15]. However, implementing
RDMA necessitates modifying the application source code and in-
troduces extra communication overhead via the network system.
In contrast, CXL enables dynamic memory expansion, offering su-
perior latency and throughput compared to RDMA [15]. We have
three options to make CXL memory exposed to applications. First,
CXL memory is recognized as a memory only NUMA node by
default when a CXL memory device is attached. To directly allo-
cate within the CXL memory, applications use the mbind() system
call [47] with the NUMA node number of the CXL memory device.
Otherwise, this memory only NUMA node will not be used until
the local NUMA node is fully used. Second, the additional memory
space of the CXL device could be uniformly integrated with the
native memory via heterogeneous interleaving [4]. New memory
allocation will be done uniformly without any consideration of
the native or CXL memory. Third, CXL memory can be exposed
as a DAX [14] device by setting its address range within the CXL
memory devices.

From our prior research [22], we learned that limited bandwidth
and long latency of CXL memory devices can affect the overall data
access performance according to their access patterns. Therefore,
we need to decide the memory placement per data structure within
our IMDBMS and comprehend the performance implications.

As mentioned in Section 2, the whole memory space used in SAP
HANA is divided into the three parts – main storage, delta storage,
and operationalmemory. Themain storage in SAPHANA is the data
storage to store compressed, columnar tables. It is optimized for fast
read accesses and a small memory footprint. Our previous work
showed endurable performance impact when moving the main
storage to CXLmemory due to its sequential access patterns because
prefetching hides the long latency of CXL memory. We revisit the
performance evaluation using the commercial CXLmemory against
both OLTP and OLAP workloads. The delta storage maintains a
separate storage for optimized writes [12, 44] to store the updates of
columnar tables, of which size is usuallymuch smaller than themain
storage. As it is quite latency sensitive, it is highly recommended
to keep it in the local host memory, not in the CXL memory. Thus,
it is not included in this investigation.

3829

Operational memory refers to the allocated heap memory re-
served to store operational data and intermediate results during
query processing. Our prior research indicated a significant perfor-
mance impact when allocating operational heap memory to CXL
memory, particularly due to a higher portion of latency-sensitive
random accesses. We reassess and validate these findings in 5, incor-
porating the use of commercial CXL memory devices. Operational
memory encompasses all temporarily data used by the HANA Exe-
cution Engine (HEX) [43], excluding the main storage and the delta
storage. Here we distinguish temporary tables from operational
memory objects. Temporary tables store the intermediate results
in a columnar table format during the execution of a procedure.
The interim content of these tables is subsequently transferred to
the next step within the procedure. The substantial memory space
consumed by these tables can lead to operational challenges like
out-of-memory situations.

Many real-world systems have reportedmemory shortages caused
by large temporary table usages. For instance, planning processes
within SAP Analytics Cloud (SAC) applications generate numerous
one-time temporary tables during multiple rounds of its simulation
against their data cubes, often adjusting simulation parameters. The
financial services performance management system also reports
analogous issues. Our investigation utilizes a streamlined version of
the financial performancemanagement system. This system focuses
on expense evaluation and optimal distribution of the expenses to
individual cost centers. We evaluate its performance impact when
allocating the temporary tables into CXL memory.

Enabling dynamic memory expansion to CXL memory holds
great potential for advancing meaningful use cases within large-
scale IMDBMSs. For example, during application system upgrades,
it’s often necessary to modify the metadata of the base tables. One
effective strategy involves temporarily loading the main tables into
CXL memory, creating a bridge system that mimics the original
setup. This bridge system contains all the required data from the
production system, allowing users to seamlessly continue their
work. This approach enables near-zero downtime upgrades, ensur-
ing a smooth transition during the application system improvement
process. In addition, dynamic memory expansion will empower a
more flexible system configuration, ensuring an agile and efficient
allocation of resources, adapting to changing computational needs
and optimizing the overall system utilization in the Cloud.

3.2 Failover with fast restart using CXL memory
The initialization of an IMDBMS during restarts or takeovers takes
a long time to reload the necessary tables into the memory. Address-
ing the issue is crucial to enhance system efficiency and meet the
requirement of service level agreement (SLA) on system availability.
In addressing the challenge of slow restarts or takeovers, several
approaches have been investigated to mitigate the issue.

Persistent Memory. Utilizing persistent memory storage allows
IMDBMSs to retain data in a non-volatile state. Its most important
characteristics are that it’s byte addressable like DRAM. If persistent
memory storage is enabled in SAP HANA [3], data is still written to
the data volumes in the persistent storage. After a system restart, the
main data fragments saved in persistent storage are still available
in memory. Thus, it can reuse the data instead of reloading [39].

CXL memory will be provided as a form of memory pool with
CXL 3.0 specification in the near future. If we assume the memory
pooling system has its own independent power domain, its behav-
ior would be nearly the same as persistent memory. The persistent
memory feature in SAP HANA includes cacheline writebacks and
store fences during writes to provide consistency and persistence.
This feature is also essential in the CXL memory pool. Thus, we use
this persistence memory feature. We expect that this implementa-
tion would be independent from the CXL memory mediumwhether
it is volatile DRAM or non-volatile PMEM. Thus, this approach can
easily exploit CXL memory.

Fast restart using tmpfs. SAP HANA provides a fast restart op-
tion [40], whichmakes it possible to reuse main data fragments after
an SAP HANA service restart without the need to reload the main
data from the persistent storage or disk. It leverages the persistent
memory implementation in SAP HANA with the key performance
benefit of greatly accelerated start-up time so that it quickly reuses
the data and minimizes system downtime. In contrast to persistent
memory which works with a DAX-enabled file system [14], the
fast restart option stores main data fragments in tmpfs with the
content in DRAM. It can grow and shrink dynamically and lives
completely in the page cache keeping all files in virtual memory.
However, the data in tmpfs is lost when the operating system needs
any update/service patch or the server reboots.

Incremental Loading. Rather than loading all tables at once, adopt-
ing an incremental loading approach involves loading critical tables
progressively. This allows the system to become operational faster
while still loading less critical data in the background. SAP HANA
also provides a preload option for entire column store tables or
individual columns, which allows you to mark important data con-
tainers for in-memory preload after startup. As expected, the first
query execution which accesses the tables not loaded into mem-
ory yet can be delayed until all the required tables are loaded into
memory.

CXL 3.0. The introduction of peer-to-peer direct memory ac-
cesses in CXL 3.0, will enhance memory pooling capabilities, en-
abling multiple hosts to collaboratively share a memory space on
a CXL 3.0 device. This allows a specific portion of memory to be
attached to a particular server, and the ownership of the memory
region within the memory pool can be dynamically modified among
multiple servers. In the context of an IMDBMS, if we assume the
memory pooling system has its own independent power domain, it
would behave similarly to persistent memory storage. This means
data remains intact during power cycles or system restarts of the
DBMS servers, regardless of the storage medium, such as persistent
memory, fast DDR5 DRAMs, or slower DDR4 DRAMs, used in the
memory pool.

This work presents our experiments demonstrating that CXL 3.0
can ensure fast restarts during failover in an IMDBMS by effectively
utilizing CXL shared memory between two servers. We leverage the
SAP HANA persistent memory implementation and the columnar
tables in the main storage are moved to CXL memory. When a
failover is invoked, the standby server attaches the CXL shared
memory during its restart and IMDBMS reads the tables without
reloading the data into its local memory.

Beyond restart or failover, numerous similar use cases can emerge
in cloud environments. For example, in scenarios like distributed

3830

query processing across multiple compute nodes, instances often re-
quire sharing intermediate results among nodes. A CXL-basedmem-
ory pool proves advantageous in such situations, offering lower
latency and improved bandwidth compared to network commu-
nication. This enhances overall efficiency in handling distributed
processing tasks, such as result buffers and file caches, in the cloud.

4 IMPLEMENTATION OF USE CASES USING
CXL MEMORY

This section describes the details of the CXL memory devices em-
ployed in SAP HANA. For the investigation of performance impact
on dynamic memory expansion, CXL memory devices are directly
attached to an IMDBMS server. For failover with fast restart, we
develop our own CXL 3.0 featured prototype in response to the un-
availability of commercially accessible memory devices supporting
CXL 3.0.

4.1 Dynamic memory expansion via CXL
This section describes how to employ dynamic memory expansion
in SAP HANA and how to modify SAP HANA to access the CXL
memory. During our experiments, we employ engineering samples
of Samsung CMM-D (CXL Memory Module-DRAM), cutting-edge
commercial CXL memory devices supporting CXL 2.0 [32]. Each
CXL memory device consists of a 256GB DDR5 DIMM supporting
5200 MT/s, an internal memory controller, an ASIC logic converting
CXL protocols to DDR5, and a PCIe Gen5x8 interface. The overall
access latency is about 2.3x of the local NUMA latency, while the
FPGA implementation in our previous work [22] has about 4x
latency. These devices are connected as CXL type 3 devices in the
test machine. Each memory device is exposed as a memory-only
NUMA node by default in the Linux Kernel 6.4.0.

To move the main storage to CXL memory, we leverage the
persistent memory feature in SAP HANA [3]. After creating an
fsdax [36] in a memory-only NUMA node and a working directory
within the fsdax, this working directory is configured as the path
to the main storage in SAP HANA. Once we change the memory
storage preference, the main storage will be created in this path.

To allocate HEX heap memory and temporary tables in CXL
memory, we modify the existing memory allocator in our SAP
HANAprototype.When enabling it, we set thememory onlyNUMA
node number to specify where to allocate the memory, instead of
the local NUMA node number. Once a new query processing starts,
SAP HANA uses the mbind() system call [47] with the NUMA node
number to initiate the allocation and trigger a page fault.

4.2 FPGA-based emulation of CXL shared
memory

This section introduces our implementation of our FPGA-based
CXL shared memory prototype, which is used for our experiments
on failover with fast restart in Section 5.3.

The CXL 3.0 specification released onAugust 2022, has additional
features to support memory sharing of the same memory region
among multiple hosts and enhanced coherency within the con-
nected hosts. Memory sharing enables multiple servers to connect
the same CXL memory region. We leverage the implementation of
the persistent memory feature in SAP HANA to move the table data

Figure 1: CXL shared memory architecture [22]

into CXL shared memory. When the instance restarts, it reads the
table data right away in the CXL shared memory without reload-
ing the data into memory. To enable failover with fast restart, all
involved servers need to connect the same CXL memory region in
the CXL shared memory. However, failover among multiple servers
requires a more sophisticated ownership change on the specific
memory area in CXL shared memory. An IMDBMS instance in a
primary server has the ownership of the CXL memory to read and
write the data in the CXL memory. When the primary server fails
and cannot restart by itself, another instance in a standby server
needs to take over the role of the instance in the primary server.
After changing the ownership to the standby server, the standby
server can take over the role and access the data in the CXL shared
memory.

The CXL memory pool is realized using an Altera® Agilex™
AGI027 FPGA development board which supports PCIe Gen5 x16
CXL spec 1.1 connectivity. Figure 1 shows the overall diagram of
the implementation. The R-Tile Altera® FPGA CXL IP implements
the CXL data link layer management functions. Each R-tile is con-
nected to a host with a PCIe Gen5x16 interface and supports up to
a 64GB/s theoretical bandwidth. The Soft IP manages transaction
layer functions. To support CXL type 3, it manages two transaction
layers, CXL.mem and CXL.io. The CXL.mem transaction layer is
linked to host-managed device memory (HDM) subsystems while
the CXL.io transaction layer is connected to register interfaces. Our
memory prototype implemented on the FPGA acts as a software
development vehicle (SDV) for the emulating selected functionality
of CXL 3.0. The Altera® development board has two interfaces to
connect the memory to two servers, (1) the original PCIe edge fin-
ger interface supporting 16 PCIe/CXL lanes and (2) the additional
interface using two MCIO cables. It allows both servers to read CXL
memory at the same time. Our failover test scenario does not have
simultaneous accesses from both servers as the main storage is read
mostly. We use software-managed coherency in this experiment.

3831

Figure 2: CXLmemory configurations formain storage (Main
FAR) and HEX heap memory (HEX FAR)

5 PERFORMANCE EVALUATION
In this section, we evaluate the performance impact of the CXL
use cases introduced in Section 3. First, we examine the dynamic
memory expansion on moving the main storage to CXL memory
and allocating HEX heap memory in CXL memory. Analytical and
transactional workloads are assessed using the TPC-DS and TPC-C
benchmarks, respectively. Subsequently, we evaluate the allocation
of temporary tables in CXL memory using procedural workloads,
such as PaPM [41] and ProcBench [17]. Lastly, we explore failover
with fast restart using our CXL implementation.

5.1 Memory expansion for main storage and
operational data

5.1.1 System configuration. We set up the system with Intel 5th
generation Xeon® processor code-named Emerald Rapids. The sys-
tem is equipped with one processor with 56 physical cores using
Hyper-Threading. The processor has one 128GB DDR5 4800 MT/s
DIMM per channel, totally 1024GB in 8 channels.

To study the performance effects on two different CXL memory
usage types, (i) moving the main storage and (ii) allocating HEX
heap memory, we divide the CXL memory into two parts, (A) fsdax
for the main storage and (B) memory only NUMA node for the HEX
heapmemory. Figure 2 shows the basic CXLmemory configurations
in this experiment. First, the baseline (I) has both the main storage
and the HEX heap memory in native memory (host DRAM), which
is the same as Both DRAM in [22]. Second, Main FAR (II) moves
the main storage to the CXL memory and the HEX heap memory
remains in the native memory, whileHEX FAR (III) keeps the main
storage in the native memory and allocates the HEX heap memory
in the CXL memory.

To see the performance effect on CXL bandwidth, we use two
different CXL memory setups, (1) single CXL with one CXL device
and (2) double CXL with two CXL devices. First, in the configu-
rations with a single CXL memory device, we install one 256 GB
CXL device. The CXL memory is exposed as a single NUMA node
with 256 GB at NUMA node 1. Second, in the configurations with
two CXL memory devices, we install two CXL devices (256 GB per
device), and activate CXL homogeneous interleaving upon them to
double up the CXL bandwidth. Then, the CXL memory is exposed
as a single NUMA node with 512 GB at NUMA node 1. In both

setups, we create an fsdax as 50% of the CXL memory for moving
the main storage. The other 50% remains in a NUMA node 1 for
allocating HEX heap memory.

To combine CXL memory usage types and CXL memory setups,
we use the following naming rule in the configurations. When
Main FAR and HEX FAR are used in the single CXL setup, no
postfix is attached in the configuration name. When Main FAR
and HEX FAR are used in the double CXL setup, a postfix x2 is
attached in the configuration name. Therefore, we have five differ-
ent configurations as follows. (1) Baseline means both the main
storage and HEX heap memory remain in the native memory. (2)
Main FAR puts the main storage in the single CXL configuration.
(3) Main FAR x2 puts the main storage in the double CXL config-
uration. (4) HEX FAR allocates HEX heap memory in the single
CXL configuration. (5) HEX FAR x2 allocates HEX heap memory
in the double CXL configuration.

This experiment explores both a transactional (OLTP) and an
analytical (OLAP) benchmark. One is TPC-C [48] with 100 ware-
houses for OLTP workloads and the other one is TPC-DS [49] with
scale factor 100 for evaluating OLAP workloads. We measure the
throughput of each benchmark test and the amount of CXL traffic
with Intel® Performance Counter Monitor (PCM) [33]. Unlike the
previous work [22], we use the officially released version of Intel
PCM to monitor CXL traffic of type 3 devices in this experiment.

5.1.2 Evaluation results. First, we evaluate the TPC-C benchmark
with 100 warehouses for OLTP workload evaluation. We mea-
sure the total number of transactions and CXL traffic including
read/write traffic, while increasing the number of client threads
within a single client process. Figure 3 shows the overall perfor-
mance and CXL traffic in TPC-C. The throughput is normalized to
the value at the 256-thread configuration of the baseline. The results
show that the overall performance of the baseline, Main FAR and
HEX FAR are the same and there is no performance degradation in
CXL memory. It is well known that TPC-C has a lot of lock conflicts
during transactions as mentioned in the previous work [22]. Our
analysis with Intel® VTune™ Profiler confirms this high synchro-
nization overhead too. Since highly contended OLTP workloads
are sensitive to neither bandwidth nor latency of CXL memory, no
performance degradation is observed in the TPC-C benchmark.

TPC-C measurements in both Main FAR x2 and HEX FAR x2
are excluded intentionally because the workload is not bound by
the CXL memory bandwidth. In the previous work [22], the FPGA-
based CXL prototype having smaller bandwidth and higher latency
than the current CXL memory device also showed no significant
performance degradation in TPC-C. Therefore, no meaningful per-
formance difference from the baseline is naturally expected in the
doubled CXL bandwidth.

Second, we execute the TPC-DS benchmark with scale factor 100
for OLAP workload evaluation. Figure 4 shows the overall perfor-
mance and CXL traffic in TPC-DS. The throughput is normalized to
the value at the 8-stream configuration of the baseline. We observe
that Main FAR has 27% performance degradation with around 19
GB/s of CXL traffic due to the CXL bandwidth limitation. After
doubling the CXL bandwidth by CXL interleaving, the performance
degradation is reduced to 10% in Main FAR x2 with around 26
GB/s of CXL traffic, which is smaller than the full bandwidth of

3832

32 64 128 192 256
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Client Threads

N
or
m
al
iz
ed

Th
ro
ug

hp
ut

Baseline Main FAR HEX FAR

(a) Normalized throughput

32 64 128 192 256
0.0

0.5

1.0

1.5

2.0

Client Threads

Tr
affi

c
(G
B/
s)

(b) CXL total traffic

32 64 128 192 256
0.0

0.5

1.0

1.5

2.0

Client Threads

Tr
affi

c
(G
B/
s)

(c) CXL write traffic

32 64 128 192 256
0.0

0.5

1.0

1.5

2.0

Client Threads

Tr
affi

c
(G
B/
s)

(d) CXL read traffic

Figure 3: TPC-C throughput and CXL traffic

1 2 4 8
0.0

0.2

0.4

0.6

0.8

1.0

Parallel Streams

N
or
m
al
iz
ed

Th
ro
ug

hp
ut

Baseline Main FAR Main FAR x2 HEX FAR HEX FAR x2

(a) Normalized throughput

1 2 4 8
0

10

20

30

40

50

Parallel Streams

Tr
affi

c
(G
B/
s)

(b) CXL total traffic

1 2 4 8
0

10

20

30

40

50

Parallel Streams

Tr
affi

c
(G
B/
s)

(c) CXL write traffic

1 2 4 8
0

10

20

30

40

50

Parallel Streams

Tr
affi

c
(G
B/
s)

(d) CXL read traffic

Figure 4: TPC-DS throughput and CXL traffic

Baseline Main
FAR

Main
FAR x2

HEX
FAR

HEX
FAR x2

0

30

60

90

CP
U
St
al
l(
%)

DRAM Bound
Memory Bandwidth Bound
Memory Latency Bound

Figure 5: Microarchitecture analysis on 8-stream TPC-DS

CXL interleaving. About 10% of performance degradation is quite
aligned with the emulation results in the previous work [22], where
we observed about 10% performance degradation on moving the
main storage into the remote NUMA node in a two-socket server.
Figure 5 shows the percentage of the CPU time stalled by mem-
ory accesses during the execution of 8-stream TPC-DS according
to the top-down microarchitectural analysis[55] using the Intel®
VTune™ Profiler. It shows that Main FAR x2 has lower mem-
ory bandwidth bound thanMain FAR due to increased available
bandwidth, while they have a similar amount of memory latency
bound. Thus, doubling CXL bandwidth in Main FAR x2 provides

enough bandwidth for moving the main storage in this benchmark.
Basically, sequential accesses have no performance degradation
because prefetching hides the higher latency of sequential accesses
as discussed in [2] if the CXL memory bandwidth is large enough to
support all CXL traffic. However, random accesses to CXL memory
may have a performance impact because of their higher latency. As
discussed in [20], accessing the main storage has a small portion of
random accesses to dictionaries in general. Thus, the performance
degradation in Main FAR x2 mainly comes from these random
accesses.

UnlikeMain FAR,HEX FAR has 78% performance degradation
with around 27 GB/s of CXL traffic. Our analysis with Intel VTune
Profiler shows that HEX FAR is much more bound by memory
latency than Main FAR, which is primarily caused by random
memory accesses of HEX heap memory. One more interesting ob-
servation is thatHEX FAR has a larger amount of CXL traffic than
Main FAR unlike our previous work [22]. Since the CXL memory
device has 1.7x lower latency than the FPGA implementation in the
previous work, it increases the amount of CXL traffic in HEX FAR.
In addition, HEX FAR has CXL write traffic as well as CXL read
traffic, whileMain FAR has no CXL write traffic because it only
reads the table data in the main storage. Thus, HEX FAR has more
CXL traffic thanMain FAR in the same CXL memory bandwidth
limitation because it utilizes both the transmit data line and the

3833

Figure 6: CXL memory configurations for temporary tables

Table 1: Temporary table usages in PaPM

Test procedure CXL memory usage (MB)
(A) 1,335.329
(B) 628.359
(C) 600.617

Table 2: Temporary table usages in ProcBench

Procedure CXL memory usage (MB)
custTotalLoss 3,031.582
unsatisfiedCustomersCat 1,510.766
unsatisfiedCustomerStore 2,165.340

receive data line in the PCI express bus. Our microarchitectural
analysis also shows that HEX FAR is similarly bound by memory
bandwidth with Main FAR due to the increased amount of CXL
traffic, resulting in CXL traffic saturation in HEX FAR. After dou-
bling up the CXL bandwidth by CXL interleaving, the performance
degradation in HEX FAR x2 is reduced to 65% with around 45
GB/s of CXL traffic. Increased CXL bandwidth also increases the
overall throughput in HEX FAR x2. However, our Intel VTune
analysis shows thatHEX FAR x2 has a similar amount of memory
bandwidth bound with HEX FAR, indicating that doubled CXL
bandwidth inHEX FAR x2 is not enough to support all CXL traffic
for allocating all HEX heap memory in CXL memory. In summary,
HEX FAR x2 requires more CXL bandwidth thanMain FAR x2
and the bandwidth requirement would be increased if the latency
to the CXL memory device is improved.

In the evaluation with the TPC-DS benchmark, a wide range
of performance degradation is observed. When moving the main
storage to CXL, sequential accesses are dominant, but the band-
width requirement is met by doubling CXL bandwidth. Thus, it
has 10% performance degradation in Main FAR x2. When allo-
cating HEX heap memory in CXL, random accesses are dominant
and a larger amount of CXL traffic is observed due to improved
latency in the CXL memory device. Consequently, it has 65% per-
formance degradation in HEX FAR x2. It will be further discussed
in Section 6.

5.2 Moving temporary tables to CXL memory
In this section, we present the performance evaluation of the CXL
memory usage for temporary tables.

0 4 8 12 16 20
0

4

8

12

Processes

N
or
m
al
iz
ed

U
sa
ge

Figure 7: Normalized temporary table usage of PaPM

5.2.1 System configuration. Temporary tables are normally used
in procedural workloads to keep the intermediate results and pass
them to the next processing steps. As addressed in Section 3.1,
numerous real-world systems suffer from memory shortages, pri-
marily attributed to the extensive usage of large temporary tables.
To investigate the performance effects on allocating the temporary
tables in CXL memory, we evaluate two workloads, (1) SAP Prof-
itability and Performance Management (PaPM) [41], a real-world
scenario formerly known as Financial Services Performance Man-
agement, and (2) ProcBench [17], a publicly available benchmark
test for procedural workloads.

In this experiment, we use the same system as shown in Sec-
tion 5.1. Our memory allocator for temporary tables has the option
to utilize the designated memory only NUMA node for its tem-
porary table placement in CXL memory like HEX FAR. Figure 6
shows two configurations used in this experiment. (I) Baseline
allocates the temporary tables in the native memory (host DRAM).
(II) Temp FAR allocates the temporary tables in the CXL memory.
The main storage and the delta storage are located in the native
memory as well as all the other heap memory except temporary
tables.

PaPM [41] is a real-world scenario for financial services to ef-
fectively process the voluminous granular data using robust data
modeling and calculation engines. This experiment uses a simpler
version for expense evaluation and cost distribution to each cost
center. Each process consists of three internal procedures using its
own data set. The first procedure populates the required data into a
base table, and the other two procedures simulate the expense eval-
uation and cost distribution using various simulation parameters.
Table 1 shows its CXL memory usage of temporary tables for each
procedure in a single process. Each process allocates its own tem-
porary tables while executing three procedures in it. We measure
the throughput while increasing the number of processes having
the different user information. As shown in Fig. 7, the amount of
temporary tables allocated in the CXL memory in 20 processes
goes up to more than 10 times of its data size, which indicates that
allocating temporary tables may cause out-of-memory situations
due to the limited native memory.

ProcBench [17] is an open benchmark for procedural workloads,
based on TPC-DS [49] and its history tables. We select the scale
factor 100 for TPC-DS data in this experiment. To evaluate the
performance impact, we select 3 procedures showing higher tem-
porary table usages more than 1 GB in SAP HANA. Table 2 shows

3834

0 4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

1.0

Processes

N
or
m
al
iz
ed

Th
ro
ug

hp
ut

Baseline Temp FAR

(a) Normalized throughput

0 4 8 12 16 20
0.0

2.0

4.0

6.0

8.0

10.0

Processes

Tr
affi

c
(G
B/
s)

CXL Write CXL Read CXL Total

(b) CXL traffic in Temp FAR

Figure 8: PaPM throughput and CXL traffic

0 8 16 24 32 40 48
0.0

0.2

0.4

0.6

0.8

1.0

Processes

N
or
m
al
iz
ed

Th
ro
ug

hp
ut

Baseline Temp FAR

(a) Normalized throughput

0 8 16 24 32 40 48
0.00

0.05

0.10

0.15

0.20

Processes

Tr
affi

c
(G
B/
s)

CXL Write CXL Read CXL Total

(b) CXL traffic in Temp FAR

Figure 9: ProcBench throughput and CXL traffic

the selected procedures and their temporary table usages. For the
throughput test of this benchmark, we create streams by randomly
permuting the selected 3 procedures.

5.2.2 Evaluation results. Figure 8 shows the overall performance
and CXL traffic in PaPM. The throughput is normalized to the
value at the 20-process configuration of the baseline. The workload
is data-intensive and allocates large temporary tables. However,
overall throughput is limited by the mixed transactions consisting
of insert and select queries against the same tables, showing less
than 50% of CPU usage in the baseline. It is aligned with our In-
tel VTune analysis where intensive transactional interference is
observed within SAP HANA. When we move temporary tables to
CXL memory, 4% ∼ 13% performance degradation is observed while
the amount of CXL traffic is saturated at around 8 GB/s in CXL
total traffic, which is much less than available bandwidth. Our Intel
VTune analysis shows that the temporary table accesses in the CXL
memory contain a certain portion of random accesses sensitive to
longer latency of the CXL memory. Therefore, the transactional
interference limits the overall CPU usage, saturating performance
throughput and the amount of CXL traffic, while a small portion of
random accesses to temporary tables contributes to about 10% of
performance loss.

The overall performance and CXL traffic in ProcBench is shown
in Fig. 9. The throughput is normalized to the value at the 20 par-
allel stream configuration of the baseline. Unlike PaPM, there is
no performance degradation in ProcBench. We observe a signif-
icant amount of temporary table usage in the CXL memory, but
the selected procedures repeatedly allocate and deallocate a small
temporary table for each iteration in their loop body. Because of
their long execution time, the total amount of CXL traffic is around
0.11 GB/s, much smaller than the offered CXL bandwidth unlike
PaPM. Thus, we could not find any significant performance impact
in these selected procedures of ProcBench.

In summary, the performance effects on allocating temporary
tables in the CXL memory would mostly depend on the amount
of CXL traffic and the transactional interference within the cor-
responding workloads. Additionally, random accesses to the CXL
memory are more bound by memory latency, resulting in more
contribution to the performance degradation.

5.3 Failover with fast restart
5.3.1 System configuration. In this experiment, we use two servers
with Intel 4th generation Xeon® processor Platinum 8468H code-
named Sapphire Rapids. Each server is equippedwith two processors

3835

Figure 10: System overview for failover with fast restart

with a base frequency of 2.0GHz and 48 cores each plus Hyper-
Threading. Each processor has 128GB in 8 channels, one 16GB
DDR5 4800 MT/s DIMM per channel. When the standby server
takes over operations from the primary server, it needs to access
the same database volumes. Thus, another file server for distributed
file systems is needed to share database volumes, including data
volumes and log volumes, between two servers. Figure 10 shows
the detailed view of the experimental system. Since it is symmetric
between two servers, fast restart is applicable to both i) failover to
the standby server and ii) failback to the primary server.

The experimental CXL shared memory is implemented in the
Altera® Agilex™ AGI027 FPGA development board which supports
PCIe Gen5 x16 CXL spec 1.1 connectivity. The FPGA board hosts
2x 8GB on-board DDR4 1333 MHz memory, which is exposed to
the servers as memory. It is connected to the first server by directly
inserting it in a PCIe slot of the primary server with 16 PCIe lanes
and connected to the standby server through two MCIO cables. In
each server, we create an fsdax for the whole memory in the FPGA
to store the table data in the main storage. In this experiment, we
use TPC-H [50] with scale factor 10 due to the limited capacity of
the CXL memory in our FPGA implementation.

To activate the fast restart, the data should be located in the
fsdax instead of the native memory. Since the FPGA does not fully
provide coherency on writes between servers due to the resource
limitation in the FPGA, we mount the CXL memory only in one
server at a time to avoid any access violation. Thus, we manually
mount and unmount the fsdax of CXL memory during the transi-
tions of both failover and failback. For each server, we mount the
fsdax before starting the database instance and unmount it after
stopping the instance.

Our scenario used in this experiment has three steps to conduct
successful fast restart during failover and failback. (A) In the initial
preparation step, we set up a two-host high availability system
with the two servers as shown in Fig. 10. After setting up the

Preload none
w/o fast restart

Preload all w/o
fast restart

Preload all w/
fast restart

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

Re
st
ar
tT

im
e

Restart to Ready Ready to Completed

Figure 11: Normalized failover restart time

mount path of the fsdax in each instance, we shut down the both
database instances before mounting the fsdax to avoid any access
violation. To load the data into the shared CXL memory, we mount
the fsdax and start the instance in the primary server. Then, we
move the main storage for table data into the fsdax. Since we
are not considering the delta storage in this work, we execute the
delta merge and savepoint to make the delta storage empty and the
main storage up-to-date. (B) In the failover step, we manually shut
down the database instance and unmount the fsdax in the primary
server. Then, we mount the fsdax and start the instance in the
standby server. (C) In the failback step, we manually shut down the
database instance and unmount the fsdax in the standby server.
Then, we mount the fsdax and start the instance in the primary
server. After the failover and failback, we confirm the results of
the whole TPC-H queries to check the consistency of the database.
During the restart, each database instance records the timestamps
in the trace log (1) when the instance begins the restart (Restart), (2)
when the instance completes its initialization and takeover (Ready),
and (3) when data preload is completed (Completed). To measure
the elapsed time, we collect these timestamps and calculate the
elapsed time. In this experiment, we consider only the main storage.
In many real-world scenarios, the size of the delta storage is much
smaller than that of the main storage because the delta storage is
periodically merged into the main storage. Thus, failover spends
most of time in recovering the main storage, and the performance
impact on the delta storage during failover is negligible.

5.3.2 Experimental results. Figure 11 shows the normalized restart
time during failover to the standby server. In the first configuration,
fast restart is not activated and none of the table data is set to preload
during the restart. Then, it spends most of its time to initialize the
database instance during the restart. In the second configuration,
fast restart is not activated, but all the data is set to preload during
the restart. Since the table data is not set to place in the CXL shared
memory, it takes nearly half of the restart time to preload the table
data from the data volumes to the local DRAM. In this experiment, a
gigabit Ethernet is used between servers because of the limitation of
our test machines. The third configuration activates fast restart and
all the data is set to preload during the restart. It has the table data in
the fsdax of the CXL shared memory before failover. Thus, it saves
85% of data preloading time, totally reducing 40% of the restart time,
compared to the second configuration because there is no need to

3836

load the data again. Compared to the first configuration, it takes
only 7% longer time during the restart because of the consistency
check of the table data in the CXL shared memory. However, the
first configuration could take more time for the initial query. Since
the data are not yet loaded in the memory, it needs to load the table
data during its first execution, resulting in higher latency and no
benefit on the short restart time.

Our experiment shows 40% reduction in the restart time because
of the small data size (4.7GB) of TPC-H scale factor 10. The larger
the database size is, the longer time it takes to preload all the table
data into the native memory. Thus, fast restart can achieve more
gains as the database size is increased. For example, it is estimated to
save 95% of data preloading time in TPC-H scale factor 100, reducing
around 84% of the restart time in the emulation with the same
distributed file systems. In summary, failover with fast restart using
the CXL shared memory can reduce a significant amount of the
restart time during failover, improving overall system availability.

We are expecting further performance enhancement in failover
with fast restart with ASIC-based commercial CXLmemory because
the CXL memory used in Section 5.1 yields 1.6x lower latency and
2.6x larger bandwidth (1.3x per device) than our FPGA implemen-
tation. Our previous work [22] showed that the FPGA-based CXL
memory has around 40% performance degradation in TPC-H SF10
when moving the main storage. However, the commercial CXL
memory achieves up to 10% performance degradation in TPC-DS
SF100 in the same use case.

6 DISCUSSION
To alleviate the constraint of limited memory capacity in a server,
we evaluated dynamic memory expansion leveraging CXL memory.
We analyzed the performance impact according to memory access
patterns against the main storage, operational memory, and tempo-
rary tables used in SAP HANA, and shared our insights on which
data structures should move to CXL memory. Each data structure
showed a different performance impact according to workloads.
Performance impact forOLTP andOLAPTherewas no negative
impact for OLTP workloads due to transactional interference and
small CXL traffic. It is well known as the inherent characteristics of
OLTP workloads, with regardless of the data structures. However,
we observed a wide range of performance degradation for OLAP
workloads due to the limited bandwidth and long latency of CXL
memory. Accessing table data showed less performance degradation
because sequential accesses are dominant and prefetching hides the
long latency of the CXL memory device. Its performance is limited
by available bandwidth of CXL memory. Accessing operational data
showed more performance degradation because random accesses
are dominant and they are sensitive to the latency.

We showed the different performance impact according to the
workloads and data objects within an IMDBMS. Based on the perfor-
mance impact guided by our experimental results, we can move the
data objects having less performance impact first (like the main stor-
age) to CXL memory and estimate the possible performance impact
of the selective placement of these database objects. Even though
SAP HANA can place table data in CXL memory per column, we
may further investigate the performance impact by moving more

fine-grained data objects, such as dictionaries or value arrays, to a
remote memory as a next study, as we did in our previous work [20].
Not only bandwidth but also latency The performance impact
is significantly reduced with improved latency and bandwidth. Per-
formance degradation from sequential accesses is easily improved
by increasing the offered bandwidth of the memory devices. Per-
formance degradation from random accesses cannot be simply im-
proved by reducing the access latency because the improved latency
also increases the amount of traffic resulting in the performance
saturation due to the bandwidth limitation in the memory device.
More importantly, most data structures in database management
systems have both sequential accesses and random accesses [28].
Therefore, it is imperative to improve both latency and bandwidth
of CXL memory devices.
Overall TCO reduction Dynamic memory expansion via CXL
memory also contributes to several operational benefits in IMDBMSs.
It reduces the amount of host memory consumption in each server
or each virtual machine, which alleviates the stranded memory
issue improving the overall system utilization. In addition, it will
contribute to system-wide lower TCO by relieving the overprovi-
sioning issue and accepting smaller and cheaper DIMMs.
Fast restart at the industrial scale As a resolution of the long
restart time to reload data to memory in IMDBMSs, we employ CXL
shared memory. Section 5.3 showed that CXL 3.0 enables failover
with fast restart by sharing the table data in the CXL memory with
the independent power domain. It was impossible with the conven-
tional systems with local DRAMs and persistent memory because
they are a part of a host and their contents cannot be accessed once
the host suffers from any failure. As one of the representative use
cases of CXL 3.0, we presented failover with fast restart among
multiple servers in a complex IMDBMS, reducing the restart time
during failover or failback and improving overall system availability.
In this work, we implemented software-managed coherency to test
our failover scenario. If the enhanced coherency is fully provided,
failover and failback could be automatically conveyed without any
human involvement. This part remains as future work.

7 RELATEDWORK
Several innovative approaches utilizing Compute Express Link
(CXL) technology have emerged regarding simple memory expan-
sion. Al Maruf et al. [29] highlighted the potential of Transparent
Page Placement (TPP) for CXL-enabled tiered memory. Despite
promising performance rivaling ideal systems, the technology needs
further refinement to manage less frequently accessed ’cold’ page
data. Subsequently, Sun et al. [46] present an in-depth research
study comparing the performance of actual CXL memory and its
emulated counterpart. While their findings prompt reconsideration
of previous assessments of emulated CXL, they also signal that
the real-world performance of their proposed CXL-memory-aware
dynamic page allocation technology remains uncertain.

Similarly, Benson et al. [5] indicate the need for future systems
to grasp various memory performance aspects for optimal overall
performance. However, their study is limited by the absence of
tests involving actual CXL devices. Lastly, Park et al. [32] present a
CXL memory expander offering high-bandwidth access to remote

3837

memory resources, yet its practical scalability in complex systems
calls for further empirical validation.

In the domain of CXL memory pools, numerous studies have
explored the potential of CXL technology. Aguilera et al. [1] make
a compelling case for memory disaggregation, though they iden-
tify software compatibility hurdles to be addressed. Approaching
from a different angle, Gouk et al. [16] trace the development of
DirectCXL, a system enabling direct access between the host pro-
cessor complex and remote memory resources via CXL’s memory
protocol. Nevertheless, this system’s feasibility and scalability call
for further verification. Li et al. [25] introduces Pond, a CXL-based
full-stack memory pool suitable for cloud deployment; however,
challenges persist in predicting memory latency and large-scale
resource management. Similarly, Wahlgren et al. [51] evaluate CXL-
enabled memory pooling for high-performance computing systems,
but their study needs empirical research using real CXL memory
hardware. Lastly, Yang et al. [54] assessed a CXL-enabled hybrid
memory pool, and while they showed promising results, further
testing is needed to confirm their consistency and long-term effec-
tiveness.

Some studies offer insights on adapting to this new paradigm in
the context of DBMS with disaggregated memory. Notably, Lerner
and Alonso [24] discuss the potential impact of the CXL specifica-
tion on database engines and data processing systems. However,
they note that integrating existing systems with CXL’s capabilities
remains challenging. In a similar context, Wang et al. [52] highlight
the potential of memory disaggregation to influence distributed
shared-memory databases positively. However, implementing such
systems presents challenges, particularly with DSM layer design,
multi-node concurrency control, buffer management, and index
design.

Several studies highlight different findings when discussing ac-
celerators with global cache coherency via CXL. Dally et al. [11]
explore the promise of domain-specific hardware accelerators and
the efficiency of parallelism through specialization. However, meet-
ing the demands of reduced memory bandwidth requires significant
algorithmic changes. Meanwhile, Zhao et al. [57] stress the need
for comprehensive research on DSI (Data Storage and Ingestion)
pipeline scaling for large-scale ML training infrastructures. Sim et
al. [45] propose an innovative solution using computational CXL
memory to accelerate memory-intensive applications, but its scal-
ability and adaptability still require verification. Lastly, Kwon et
al. [18] propose a fault-tolerant training method utilizing persis-
tent memory disaggregation over CXL technology, whose broad-
spectrum adaptability needs further exploration.

In the realm of near-data processing, several studies have ex-
plored various techniques and technologies. Lee et al. [23] introduce
a modular Solid-State Drive (SSD) architecture and the concept of
Database Kernels (DBKs) using CXL technology, but practical im-
plementation of DBKs requires more research. Meanwhile, Maschi
and Alonso [30] conducted an in-depth study on using FPGA-based
accelerators on commercial search engines, revealing that the im-
balance between system CPUs limits improvements and could make
deployments economically less attractive.

Lastly, research papers focused on GPU functionalities and data
management [27, 56] have shed light on promising co-processing
strategies for extensive data management on GPUs and techniques

to enhance datawarehousing queries’ performance onGPU systems.
However, they underline the reliance on fast interconnects and
suggest that simply investing in superior GPU hardware may not
significantly improve query performance.

8 CONCLUSION
We presented the two use cases of CXL memory for IMDBMSs to al-
leviate two fundamental constraints of IMDBMSs. First, we evaluate
dynamic memory expansion using the commercial CXL memory
devices as the solution for the limited memory space in a server.
Performance measurements using various workloads showed a
wide range of performance degradation according to the data struc-
tures and memory access patterns. No performance impact was
observed with OLTP workloads. However, OLAP workloads have
performance degradation. Moving table data to CXLmemory shows
less performance degradation than allocating operational data. Sec-
ond, we showed that CXL 3.0 enables fast restart during failover or
failback between two servers, reducing the long restart time and
improving overall system availability. We presented our implemen-
tation details to incarnate CXL shared memory, and confirmed that
memory sharing among multiple hosts allow IMDBMSs to share
the data in CXL memory. In conclusion, we emphasize that CXL
is not only a straightforward memory disaggregation technology
but also plays a crucial role in reducing total cost of ownership and
enabling fast restarts in many use cases.

IMDBMSs deployed in the cloud havemore requirements to share
the data among multiple servers or instances, such as result buffers
and file caches. As future work, we aim to explore the additional
use cases using CXL shared memory. Moreover, we expect that CXL
switches could play an important role in the flexible disaggregated
memory system. Investigation of the performance impact on the
CXL switches is a good candidate for our future work. In addition,
investigation on hardware-managed tiered memory techniques,
such as Intel Flat Memory Mode [58], is one of our crucial future
work to automatically place the data according to their temperature,
reducing the overall access latency and improving throughput in
dynamic memory expansion.

ACKNOWLEDGEMENT
The authors would like to thank Hojun Shim, Seungwoo Lim, Kyu-
min Park, Youjin Jang, and Byeonghun Hwang at Samsung Elec-
tronics for providing us commercialized CXL memory devices. We
also thank Mehul Wagle, Sergej Hardock, and Jinsub Ahn at SAP
for their dedicated supports in SAP HANA.

REFERENCES
[1] Marcos K Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff, Anil Yelam,

and Gerd Zellweger. 2023. Memory disaggregation: Why now and what are the
challenges. ACM SIGOPS Operating Systems Review 57, 1 (2023), 38–46.

[2] Minseon Ahn, AndrewChang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Oliver Rebholz, Vincent Pham, Krishna T. Malladi, and Yang-Seok Ki.
2022. Enabling CXL Memory Expansion for In-Memory Database Management
Systems. In DaMoN. ACM, 8:1–8:5. https://doi.org/10.1145/3533737.3535090

[3] Mihnea Andrei, Christian Lemke, Günter Radestock, et al. 2017. SAP HANA
adoption of non-volatile memory. Proceedings of the VLDB Endowment 10, 12
(2017), 1754–1765. https://doi.org/10.14778/3137765.3137780

[4] AsteraLabs. 2024. Breaking Through the Memory Wall. https://www.asteralabs.
com/general/breaking-through-the-memory-wall/

[5] Lawrence Benson, Marcel Weisgut, and Tilmann Rabl. 2023. What We Can Learn
from Persistent Memory for CXL. BTW 2023 (2023).

3838

https://doi.org/10.1145/3533737.3535090
https://doi.org/10.14778/3137765.3137780
https://www.asteralabs.com/general/breaking-through-the-memory-wall/
https://www.asteralabs.com/general/breaking-through-the-memory-wall/

[6] Daniel S. Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish Shah,
Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D. Hill, and Ricardo
Bianchini. 2023. Design Tradeoffs in CXL-Based Memory Pools for Public Cloud
Platforms. IEEE Micro 43, 2 (2023), 30–38. https://doi.org/10.1109/MM.2023.
3241586

[7] Prakash Chauhan and Mahesh Wagh. 2022. CXL Memory Challenges.
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%
202022%20CXL%20MemoryChallenges.pdf

[8] Compute Express Link Consortium. 2019. CXL. https://www.
computeexpresslink.org/

[9] CXL. 2024. CXL 3.1 Specification. https://computeexpresslink.org/cxl-
specification/

[10] CXL. 2024. Past CXL Specifications. https://computeexpresslink.org/past-cxl-
specifications/

[11] William J Dally, Yatish Turakhia, and Song Han. 2020. Domain-specific hardware
accelerators. Commun. ACM 63, 7 (2020), 48–57.

[12] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas
Neumann, and Andrew Pavlo. 2017. Main Memory Database Systems. Found.
Trends Databases 8, 1-2 (2017), 1–130. https://doi.org/10.1561/1900000058

[13] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, IngoMüller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database–An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[14] The LINUX Foundation. 2021. Direct Access for files. https://www.kernel.org/
doc/Documentation/filesystems/dax.txt

[15] Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk,
Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2023. Working with
Disaggregated Systems. What are the Challenges and Opportunities of RDMA
and CXL?. In BTW (LNI, Vol. P-331). Gesellschaft für Informatik e.V., 751–755.
https://doi.org/10.18420/BTW2023-47

[16] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct access, High-Performance memory disaggregation with DirectCXL. In
USENIX ATC. 287–294. https://www.usenix.org/conference/atc22/presentation/
gouk

[17] Surabhi Gupta and Karthik Ramachandra. 2021. Procedural Extensions of SQL:
Understanding their usage in the wild. Proceedings of the VLDB Endowment 14, 8
(2021), 1378–1391.

[18] Miryeong Kwon, Junhyeok Jang, Hanjin Choi, Sangwon Lee, and Myoungsoo
Jung. 2023. Failure Tolerant Training With Persistent Memory Disaggregation
Over CXL. IEEE Micro 43, 2 (2023), 66–75.

[19] Robert Lasch, Suleyman S. Demirsoy, Norman May, Veeraraghavan Rama-
murthy, Christian Färber, and Kai-Uwe Sattler. 2020. Accelerating Re-Pair
Compression Using FPGAs. In Proceedings of the 16th International Workshop
on Data Management on New Hardware (Portland, Oregon) (DaMoN ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 8 pages.
https://doi.org/10.1145/3399666.3399931

[20] Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and Kai-Uwe
Sattler. 2022. Cost modelling for optimal data placement in heterogeneous
main memory. Proceedings of the VLDB Endowment 15, 11 (2022), 2867–2880.
https://www.vldb.org/pvldb/vol15/p2867-lasch.pdf

[21] Donghun Lee, AndrewChang, Minseon Ahn, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Kang-Woo Choi, Vincent Pham, Oliver Rebholz, Krishna Malladi, et al. 2020.
Optimizing Data Movement with Near-Memory Acceleration of In-memory
DBMS.. In EDBT. 371–374.

[22] Donghun Lee, Thomas Willhalm, Minseon Ahn, Suprasad Mutalik Desai, Daniel
Booss, Navneet Singh, Daniel Ritter, Jungmin Kim, and Oliver Rebholz. 2023.
Elastic Use of Far Memory for In-Memory Database Management Systems. In
DaMoN (DaMoN ’23). ACM, 35—-43. https://doi.org/10.1145/3592980.3595311

[23] Sangjin Lee, Alberto Lerner, Philippe Bonnet, and Philippe Cudré-Mauroux. 2024.
Database Kernels: Seamless Integration of Database Systems and Fast Storage
via CXL. In CIDR.

[24] Alberto Lerner and Gustavo Alonso. 2024. CXL and the Return of Scale-Up
Database Engines. arXiv:2401.01150 [cs.DB]

[25] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al. 2023.
Pond: Cxl-based memory pooling systems for cloud platforms. In ASPLOS. ACM,
574–587. https://doi.org/10.1145/3575693.3578835

[26] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F Wenisch. 2012. System-level im-
plications of disaggregated memory. In IEEE International Symposium on High-
Performance Comp Architecture. IEEE, 1–12.

[27] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump up the volume: Processing large data on GPUswith fast interconnects.
In SIGMOD. 1633–1649.

[28] Stefan Manegold, Peter Boncz, and Martin L Kersten. 2002. Generic database
cost models for hierarchical memory systems. In VLDB’02: Proceedings of the
28th International Conference on Very Large Databases. Elsevier, 191–202.

[29] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket
Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shob-
hit O. Kanaujia, and Prakash Chauhan. 2022. TPP: Transparent Page Place-
ment for CXL-Enabled Tiered Memory. CoRR abs/2206.02878 (2022). https:
//doi.org/10.48550/arXiv.2206.02878 arXiv:2206.02878

[30] Fabio Maschi and Gustavo Alonso. 2023. The Difficult Balance Between Mod-
ern Hardware and Conventional CPUs. In Proceedings of the 19th International
Workshop on Data Management on New Hardware. ACM, Seattle WA USA, 53–62.
https://doi.org/10.1145/3592980.3595314

[31] J. McGlone, P. Palazzari, and J. B. Leclere. 2018. Accelerating Key In-memory
Database Functionality with FPGA Technology. In ReConFig. 1–8. https://doi.
org/10.1109/RECONFIG.2018.8641722

[32] S. J. Park, H. Kim, K.-S. Kim, J. So, J. Ahn, W.-J. Lee, D. Kim, Y.-J. Kim, J. Seok, J.-G.
Lee, H.-Y. Ryu, C. Y. Lee, J. Prout, K.-C. Ryoo, S.-J. Han, M.-K. Kook, J. S. Choi, J.
Gim, Y. S. Ki, S. Ryu, C. Park, D.-G. Lee, J. Cho, H. Song, and J. Y. Lee. 2022. Scaling
of Memory Performance and Capacity with CXL Memory Expander. In 2022 IEEE
Hot Chips 34 Symposium (HCS). 1–27. https://doi.org/10.1109/HCS55958.2022.
9895633

[33] Intel® PCM. 2023. Intel® Performance Counter Monitor. https://github.com/intel/
pcm

[34] Hasso Plattner. 2009. A common database approach for OLTP and OLAP using
an in-memory column database. In SIGMOD. ACM, 1–2. https://doi.org/10.1145/
1559845.1559846

[35] Hasso Plattner. 2014. The impact of columnar in-memory databases on enter-
prise systems: implications of eliminating transaction-maintained aggregates.
Proceedings of the VLDB Endowment 7, 13 (2014), 1722–1729.

[36] PMDK. 2004. Persistent Memory Development Kit. https://pmem.io/pmdk/
[37] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexan-

der Boehm, Anastasia Ailamaki, and Kai-Uwe Sattler. 2015. Scaling Up Mixed
Workloads: A Battle of Data Freshness, Flexibility, and Scheduling. Performance
Characterization And Benchmarking: Traditional To Big Data 8904 (2015), 16.
97–112. https://doi.org/10.1007/978-3-319-15350-6_7

[38] SAP. 2012. translytical-data-platforms-forrester-wave-sap-a-leader. https://news.
sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/

[39] SAP. 2024. Persistent Memory in SAP HANA. https://help.sap.com/
docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/
1f61b13e096d4ef98e62c676debf117e.html

[40] SAP. 2024. SAP HANA Fast Restart Option. https://help.sap.com/
docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/
ce158d28135147f099b761f8b1ee43fc.html

[41] SAP. 2024. SAP Profitability and Performance Management. https:
//www.sap.com/products/financial-management/profitability-and-
performance-management.html

[42] SAP. 2024. Why SAP data and analytics? https://www.sap.com/products/
technology-platform/analytics.html

[43] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dra-
gusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke,
Sebastian Seifert, Sarika Iyer, Sasikanth Gottapu, Robert Schulze, Chaitanya
Gottipati, Nirvik Basak, Yanhong Wang, Vivek Kandiyanallur, Santosh Pen-
dap, Dheren Gala, Rajesh Almeida, and Prasanta Ghosh. 2019. Native store
extension for SAP HANA. Proc. VLDB Endow. 12, 12 (aug 2019), 2047–2058.
https://doi.org/10.14778/3352063.3352123

[44] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In SIGMOD. ACM, 731–742. https:
//doi.org/10.1145/2213836.2213946

[45] Joonseop Sim, Soohong Ahn, Taeyoung Ahn, Seungyong Lee, Myunghyun Rhee,
Jooyoung Kim, Kwangsik Shin, Donguk Moon, Euiseok Kim, and Kyoung Park.
2023. Computational CXL-Memory Solution for Accelerating Memory-Intensive
Applications. IEEE Comput. Archit. Lett. 22, 1 (2023), 5–8. https://doi.org/10.
1109/LCA.2022.3226482

[46] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al. 2023. Demystifying
cxl memory with genuine cxl-ready systems and devices. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture. 105–121.

[47] Inc. the Linux Kernel Organization. 2024. NUMA memory policy. https://www.
kernel.org/doc/Documentation/vm/numa_memory_policy.txt

[48] TPC-C. 2023. TPC-C. https://www.tpc.org/tpcc/
[49] TPC-DS. 2023. TPC-DS. https://www.tpc.org/tpcds/
[50] TPC-H. 2023. TPC-H. https://www.tpc.org/tpch/
[51] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. 2022. Evaluating Emerging

CXL-enabled Memory Pooling for HPC Systems. In 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE, 11–20.

[52] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G.
Aref. 2022. The case for distributed shared-memory databases with RDMA-
enabled memory disaggregation. Proc. VLDB Endow. 16, 1 (sep 2022), 15–22.
https://doi.org/10.14778/3561261.3561263

3839

https://doi.org/10.1109/MM.2023.3241586
https://doi.org/10.1109/MM.2023.3241586
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://hc34.hotchips.org/assets/program/tutorials/CXL/Hot%20Chips%202022%20CXL%20MemoryChallenges.pdf
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/past-cxl-specifications/
https://computeexpresslink.org/past-cxl-specifications/
https://doi.org/10.1561/1900000058
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.18420/BTW2023-47
https://www.usenix.org/conference/atc22/presentation/gouk
https://www.usenix.org/conference/atc22/presentation/gouk
https://doi.org/10.1145/3399666.3399931
https://www.vldb.org/pvldb/vol15/p2867-lasch.pdf
https://doi.org/10.1145/3592980.3595311
https://arxiv.org/abs/2401.01150
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.48550/arXiv.2206.02878
https://doi.org/10.48550/arXiv.2206.02878
https://arxiv.org/abs/2206.02878
https://doi.org/10.1145/3592980.3595314
https://doi.org/10.1109/RECONFIG.2018.8641722
https://doi.org/10.1109/RECONFIG.2018.8641722
https://doi.org/10.1109/HCS55958.2022.9895633
https://doi.org/10.1109/HCS55958.2022.9895633
https://github.com/intel/pcm
https://github.com/intel/pcm
https://doi.org/10.1145/1559845.1559846
https://doi.org/10.1145/1559845.1559846
https://pmem.io/pmdk/
https://doi.org/10.1007/978-3-319-15350-6_7
https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/
https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/1f61b13e096d4ef98e62c676debf117e.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/1f61b13e096d4ef98e62c676debf117e.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/1f61b13e096d4ef98e62c676debf117e.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/ce158d28135147f099b761f8b1ee43fc.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/ce158d28135147f099b761f8b1ee43fc.html
https://help.sap.com/docs/SAP_HANA_PLATFORM/6b94445c94ae495c83a19646e7c3fd56/ce158d28135147f099b761f8b1ee43fc.html
https://www.sap.com/products/financial-management/profitability-and-performance-management.html
https://www.sap.com/products/financial-management/profitability-and-performance-management.html
https://www.sap.com/products/financial-management/profitability-and-performance-management.html
https://www.sap.com/products/technology-platform/analytics.html
https://www.sap.com/products/technology-platform/analytics.html
https://doi.org/10.14778/3352063.3352123
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1109/LCA.2022.3226482
https://doi.org/10.1109/LCA.2022.3226482
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://doi.org/10.14778/3561261.3561263

[53] Marcel Weisgut, Daniel Ritter, Martin Boissier, and Michael Perscheid. 2022.
Separated Allocator Metadata in Disaggregated In-Memory Databases: Friend
or Foe?. In IEEE International Parallel and Distributed Processing Symposium,
IPDPS Workshops 2022, Lyon, France, May 30 - June 3, 2022. IEEE, 1202–1208.
https://doi.org/10.1109/IPDPSW55747.2022.00207

[54] Qirui Yang, Runyu Jin, Bridget Davis, Devasena Inupakutika, and Ming Zhao.
2022. Performance Evaluation on CXL-enabled Hybrid Memory Pool. In NAS.
IEEE, 1–5. https://doi.org/10.1109/NAS55553.2022.9925356

[55] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 35–44.

[56] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of pro-
cessing data warehousing queries on GPU devices. Proceedings of the VLDB

Endowment 6, 10 (Aug. 2013), 817–828. https://doi.org/10.14778/2536206.2536210
[57] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa

Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. 2022.
Understanding data storage and ingestion for large-scale deep recommendation
model training: Industrial product. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. 1042–1057.

[58] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ishwar Agarwal, Rajat Agar-
wal, Frank Hady, Karthik Kumar, Mark D. Hill, Mosharaf Chowdhury, and
Asaf Cidon. 2024. Managing Memory Tiers with CXL in Virtualized Envi-
ronments. In 18th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 24). USENIX Association, Santa Clara, CA, 37–56. https:
//www.usenix.org/conference/osdi24/presentation/zhong-yuhong

,

3840

https://doi.org/10.1109/IPDPSW55747.2022.00207
https://doi.org/10.1109/NAS55553.2022.9925356
https://doi.org/10.14778/2536206.2536210
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong

	Abstract
	1 Introduction
	2 Background
	2.1 Disaggregated memory vs. CXL memory
	2.2 SAP HANA In-memory database platform

	3 CXL memory Use Cases
	3.1 Dynamic memory expansion to CXL memory
	3.2 Failover with fast restart using CXL memory

	4 Implementation of Use Cases using CXL memory
	4.1 Dynamic memory expansion via CXL
	4.2 FPGA-based emulation of CXL shared memory

	5 Performance evaluation
	5.1 Memory expansion for main storage and operational data
	5.2 Moving temporary tables to CXL memory
	5.3 Failover with fast restart

	6 Discussion
	7 Related Work
	8 Conclusion
	References

