
KGFabric: A Scalable Knowledge Graph Warehouse for
Enterprise Data Interconnection

Peng Yi∗, Lei Liang∗, Da Zhang, Yong Chen, Jinye Zhu, Xiangyu Liu, Kun Tang, Jialin Chen, Hao Lin,
Leijie Qiu, Jun Zhou†

{rongyan.yp,leywar.liang,jianyu.zd,liqi.cy,zhujinye.zjy,liuxiangyu.lxy,tangkun.tk,bingchu.cjl,linhao.linh}
{leijie.qlj,jun.zhoujun}@antgroup.com

Ant Group

ABSTRACT
Based on the diversified application scenarios at Ant Group, we
built the Ant Knowledge Graph Platform (AKGP). It has constructed
numerous domain-specific knowledge graphs related to merchants,
companies, accounts, products, and more. AKGP manages trillions
of structured knowledge graphs, serving search, recommendation,
risk control and other businesses. However, as the demand increas-
ing for various workloads such as graph pattern matching, graph
representation learning, and cross-domain knowledge reuse, the
existing warehouse systems based on relational DBMS or graph
databases are unable to meet the requirements. To address these
issues, we propose KGFabric, an industrial-scale knowledge graph
management system built on the distributed file system (DFS). KG-
Fabric offers a nearline knowledge storage engine that utilizes a
Semantic-enhanced Programmable Graph (SPG) model, which is
compatible with the Labeled Property Graph (LPG) model. The
data is persistently stored in DFS, such as HDFS, which leverages
the POSIX file system API, making it suitable for deployment in
multi-cloud environment at low cost. KGFabric provides a native
graph-based and hybrid storage format that can serve as a shared
backend for parallel graph computing systems, significantly ac-
celerating the analysis of multi-workload. Additionally, KGFabric
includes a graph fabric framework that minimizes data duplication
and guarantees data security.

KGFabric is able to manage Peta-scale data and has supported
graph fabric and analysis with over 100 billion relations at Ant
Group. We conduct experiments on various datasets to evaluate the
performance of KGFabric. Compared with popular relational DBMS
and graph databases, the storage space for semantic relations is
reduced by over 90%. The performance of graph fabric improves by
21× in real-world workloads. In multi-hop semantic graph analysis,
KGFabric enhances performance by 100×.

PVLDB Reference Format:
Peng Yi, Lei Liang, Da Zhang, Yong Chen, Jinye Zhu, Xiangyu Liu, Kun
Tang, Jialin Chen, Hao Lin, Leijie Qiu, Jun Zhou. KGFabric: A Scalable
Knowledge Graph Warehouse for Enterprise Data Interconnection. PVLDB,
17(12): 3841 - 3854, 2024.
doi:10.14778/3685800.3685810

∗Equal Contribution. †Corresponding Author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685810

Figure 1: The semantic enhancement from LPG to SPG

1 INTRODUCTION
Knowledge Graph (KG) was introduced by Google in 2012, primar-
ily for search system [27]. As a novel approach to data management,
KG leverages the combination of graph structure and knowledge
semantics to model, manage, reason, and make decisions about
the real world. This method has been widely used in many indus-
tries [1, 44], especially in fields such as finance, public security, and
medical care where enterprise data is rich and interconnected. With
the diversification of scenarios, Industry-scale KGs face more chal-
lenges [1, 52] including knowledge acquisition and disambiguation,
large-scale dynamic knowledge management, cross-domain knowl-
edge reuse, data security and privacy, complex graph analysis, and
graph representation learning.

AKGP manages a huge structured knowledge repository, which
is constructed from two types of data sources: a large amount of
structured data, such as user preference tags and transaction events,
and a smaller volume of unstructured data, such as news articles.
To process unstructured data, we use the knowledge extraction
tool OneKE [30]. The generated structured knowledge is classified
into three categories: entities, concepts [16, 41], and events. Entities
represent objective facts of multi-dimensional structures, such as ac-
counts, merchants, companies, and their associated properties and
relationships. Correspondingly, concepts represent abstract classes,
which are the induction of facts from the specific to the general.
They serve as taxonomic representations of a set of facts, such as
product categories, user groups, administrative divisions, etc. With
continuous enhancement of semantics, more and more relation-
ships are established between entities and concepts in different
knowledge graphs. Figure 1 shows how this semantic enhancement
increases the density and connectivity of graph data, facilitating the
exploration of potential relationships between persons and prod-
ucts. Events can capture dynamic behavior and reflect the state of

3841

https://doi.org/10.14778/3685800.3685810
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685810

things in different spatial and temporal intervals, such as industry
events, and user behavior events.

Figure 2 shows KGs of specific domains managed by KGFab-
ric in Ant Group. The slogan of KG is "things, not strings". These
KGs utilize accurate domain types for entity and event property
values, such as IndustryCategory, Brand, and more. There are also
relationships between concepts such as hypernyms, hyponyms,
combinations, and causality. By standardizing the types of property
values, we enable connections across entities of different domain
KGs through public concepts. This capability is particularly valuable
for characterizing and gaining risk insights into long-tail merchants
which may have sparse relationships within the graph structure. Es-
tablishing relationships between entities in different KGs is indeed
an efficient way to achieve cross-domain data interconnection, such
as the (red) connection between Company and Merchant in Fig-
ure 2. Furthermore, entity fusion techniques can be employed to
implement a cross-domain data fabric. For instance, by identifying
identical accounts, connections can be established between Black
Market KG and Merchant KG.

Previously, we used ODPS [45] (i.e. relational warehouse of Al-
ibaba Cloud platform) and graph databases like Neo4j [48], as the
underlying architecture for managing KGs. However, these sys-
tems do not sufficiently meet the following needs. (1) Cross-domain
KG Fusion and Security: Financial data is distributed in multiple
domains and needs to support heterogeneous graph fusion. The
fusion process requires privacy field discernment and encryption
to ensure data security, which are lacking in existing graph engines.
While Neo4j has proposed graph federation, it only supports the
union of homogeneous entities and lacks data conflict resolution
capability. ODPS can achieve data fusion through multi-table join,
but its scalability and multi-hop analysis performance are bottle-
necks. (2) Semantic-enhanced Graph Storage and Computation: The
entity-centric basic relations and concept-centric semantic relations
have different graph densities, as shown in Figure 13. LPG-based
graph engines lack effective support for semantic models, resulting
in the difficulty of achieving high-performance analysis of semantic
graphs. Resource Description Framework (RDF) possesses strong se-
mantic characteristics and has been extensively studied in academia
as a solution for managing KGs. However, it has not widely applied
in large-scale industries. We will discuss the limitations of related
systems or solutions in Section 8. (3) Schema Evolution: As busi-
nesses grows, schema evolution is needed to enhance data connec-
tions. Graph engines that use LPG face challenges in ensuring data
consistency between vertices and edges during updates. For exam-
ple, transforming Person.city property into a relationship requires
adding an entity City and a relationship Person-[locateAt]->City,
while deleting Person.city.

KGFabric focuses on developing an industrial-scale knowledge
graph management system in finance and multi-domain scenarios.
The paper identifies the following as its main contributions.

• We propose a highly scalable KG storage engine based on
DFS, which incorporates the SPG [54] model to extend
semantic relationships between entities, events, and con-
cepts. The engine offers a native graph-based storage and
automates triple indexing to enable connections between
entities and concepts, and utilizes multi-indexing and time

Figure 2: Multi-domain knowledge graphs in Ant Group

Figure 3: The architecture of KGFabric

slicing to optimize query performance in eventic graphs.
Furthermore, our architecture employs an LSMTree-based
design for handling streaming and batch updates.

• We introduce a distributed graph fabric framework which
supports cross-tenant encryption and fusion of heteroge-
neous KGs. This framework enables the creation of virtual
graph views and user-defined operators. In the process of
merging relations and properties, conflicts are resolved by
using linking and fuse operators. Generally, linking opera-
tor can be a rule expression or an NLP-based entity similar-
ity algorithm, and fusion operator uses rule expressions.

• We present a shared backend for parallel graph analysis
systems like GeaFlow [57] and GraphX [26], to support var-
ious KG workloads, including second-level latency OLAP
and graph pattern matching [14, 17] with over 100 billion
relations. The backend eliminates data shuffling and trans-
formation overhead during the graph partition stage.

The paper’s organization is as follows: Section 2 outlines the system
architecture and design. Sections 3 and 4 describe the data model
and the storage engine. Section 5 introduces the cross-domain

3842

Figure 4: The query planning of KGFabric

graph fabric framework. Section 6 discusses the solutions for vari-
ous graph workloads and query optimizations. Section 7 presents
the evaluation results, comparing KGFabric with Neo4j [48] and
ODPS [45]. Sections 8 and 9 discuss related work and conclude the
paper, addressing future research directions.

2 OVERVIEW
KGFabric facilitates the creation of a large-scale data fabric within
semantic-enhanced graphs, enabling efficient management for en-
terprise data with complex connections, multi-source, dynamic, and
temporal characteristics. The architecture of KGFabric, as shown
in Figure 3, includes storage engine, graph fabric framework, back-
end and distributed tools for data reading/writing.

At the storage layer, The data from different domains is persis-
tently stored in separate DFS clusters or directories. Data isolation
and management are achieved through namespaces. MetaServer
offers CRUD services specifically for metadata management, in-
cluding schema, namespaces and task manager. It can be easily
deployed on K8s-based cloud services such as SofaStack [63]. We
provide directory-level versions and schema-level MVCC to vali-
date data updates in pre-release environments, including scenarios
such as dynamic graphs, semantic evolution. The features support
task-level resolution of conflicts arising from read-write and write-
write operations. We offer a nearline storage architecture based on
LSMTree[40], which supports incremental updates of graph data,
and leverages offload compaction [2] to optimize read amplifica-
tion. To achieve low-latency random reading and high-throughput
distributed scanning, KGFabric employs a block-based persistent
storage architecture. This approach is similar to disk-based storage
engines like RocksDB [19]. As shown in Figure 4, the persistence
layer consists of two types of files: PGFile (Property Graph format
File) and SGFile (Semantic Graph format File), which consist of
multiple PGBlocks and SGBlocks. Each block stores the relations,
properties, and indexes of a continuous range of vertexIDs. We uti-
lize PGBlock Iterator and SGBlock Iterator to read the blocks, and
merge different graph formats by PGJoin (Property Graph format
Join) and SGJoin (Property Graph format Join). SPG Executor com-
municates with MetaServer and generates a multi-namespace fabric

Figure 5: Data model of SPG

plan, called GMT (Graph Merge Tree). GMT is used to generate a
complete graph data structure.

The shared backend offers graph-structured query or scan APIs.
The APIs enable on-demand access to the data managed by KGFab-
ric in parallel graph computing systems like GeaFlow [57], while
supporting graph query languages such as Gremlin [61]. The query
API is designed to support multi-hop KG OLAP, which involves
traversing the graph step by step, starting from several vertices. It
is particularly useful for ad-hoc visual graph analysis, such as anti-
fraud cases. The scan API is employed for parallel-graph computing,
like detecting cycle pattern. It allows for the specification of parame-
ters like workerNumber and workerIndex, enabling the loading and
processing of subgraph data on different workers. This capability
supports edge-cut [43] and vertex-cut [25, 26] partition. To enhance
performance, the backend provides configurable caching options,
which include replica caching for meta data and LRU caching for
data blocks. The importer is an incremental bulkload tool that can
run on various big data platforms like Hadoop [32] and Flink [22].

KGFabric, a storage-computing separated architecture, is well-
suited for nearline and offline management of graph data, providing
scalability, high-throughput and cost-effectiveness. KGFabric also
has following limitations and design compromises. (1) Schema Con-
straints: KGFabric enforces a strict schema for domain-specific KGs
in finance, improving knowledge accuracy and storage compression.
However, this approach is not friendly to schema-free KGs with
dynamic properties and predicates. Some graph databases, such as
Neo4j, support schema-free. (2) Throughput and Latency Tradeoff :
Our nearline LSMTree-based [40] storage architecture supports
maximum updates of over 100 billion graphs per day. The Shared-
Backend supports parallel graph analysis systems, like GeaFlow, for
multi-workload KG Analysis. However, a large number of real-time
read and write operations may not be efficient in this architecture.
(3) Version Control: KGFabric offers directory-level versions for cen-
tralized data management of streaming window and batch updates
in DFS, providing cost-effectiveness and scalability. However, fine-
grained transaction capabilities, available in graph engines like
LiveGraph [71], are lacking.

3 DATA MODEL
The data model of KGFabric is SPG1, which supports three types of
graph model: Entity, Concept, and Event, as shown in Figure 5.
1SPG is an industrial semantic framework and has been jointly released by Ant Group
and OpenKG at the CCKS conference on August, 2023

3843

Figure 6: the LSMTree-based architecture on DFS

1 Entity: It is represented as entityType and properties, similar
to the nodes in Neo4j. The entityType denotes the entity
class, such as User, Shop, etc.
1.1 properties consist of multiple <name, value> pairs. The

value can be basic types such as integers, doubles,
strings, or semantic types like standardized or con-
cept class. It also supports List. For instance, the sports
preferences of an user include basketball, tennis, etc.
Unlike LPG, the semantic property will be converted
into a relation by default. For instance, when the prop-
erty values of User.email are identical between two
entities of User type, semantic relations can be estab-
lished between the two entities.

1.2 relation is expressed as <relationName, sourceType, tar-
getType, properties>. It is similar to the edges in Neo4j,
connecting different entity instances.

2 Concept: Concepts [16] represent abstract collections of
entities, such as user preference categories, which are rel-
atively static and reusable. The concepts are represented
as a hierarchical graph structure connected by predicates
such as hypernyms and hyponyms, typically forming a tree
structure. A concept instance consists of conceptName and
parent. The parent indicates the hypernyms concept. It is
possible to have duplicate conceptNames, but the paths gen-
erated by traversing hypernyms relationships to the root
concept will not contain duplicates.

3 Event: As a special type of entity, event is represented as
<subject, objects, eventTime, properties>, and it can support
HyperEdge [21, 38]. The eventTime indicates the timestamp
when the event occurs, that is usually used as a condition
for query expressions. The subject and objects represent
multiple elements associated with the event. For instance,
TransactionEvent may be associated with entity objects
such as User, Shop, Goods and AOI (Area of Interest).

4 STORAGE ENGINE
Instead of using Write Ahead Log (WAL) by online graph databases,
we offer nearline LSMTree-based [40] storage architecture. We exe-
cute multiple import tasks to handle high throughput write requests,
and employs offload compaction [2], which reduces the impact of
serialization and IO operations on read performance. The storage
layer of KGFabric implements a hybrid storage to support SPG mod-
els. Semantic graph storage adopts triple index [3] solution used
in RDF storages such as Jena-TDB [55]. We also optimize massive
storage redundancy and update efficiency of triple index. Property

Figure 7: The data layout

graph storage employs a CSR(Compressed Sparse Row) solution,
similar to LLAMA [42] and LiveGraph [71]. We also supports super-
vertex (i.e., vertex with a large number of neighbors) sharding and
temporal graph.

4.1 LSMTree-based Architecture
Figure 6 shows the storage architecture in KGFabric, which consists
of two layers in DFS: the base layer and the delta layer. The importer
tasks can handle different data sources. The delta layer is divided
into two levels: level-0 and level-1. Level-0 is primarily utilized for
streaming updates, where data is received frommessage queues like
Kafka. In this situation, data is persisted through minutely mini-
batches. Periodic (e.g., Hourly) compaction is executed to compact
the level-0 data into the level-1. For frequent mini-batch tasks at
level-0, we also use tiering merging [40] strategy. Batch processing
is employed for data obtained from Hive or ODPS. We merge tasks
to control the number of delta files in the level-1. In Ant Group, more
than 1,000 tasks per day are scheduled. The compaction strategy
effectively controls IO amplification of query within 5×, while also
keeping IO amplification of scan within 1.6×, due to the updating
data size of importer tasks being <10% of the base.

KGFabric has a directory-level version manager, that can resolve
mutual exclusion problems related to task-level read and write
operations. Whenever a new data directory is generated, it creates
a new version file called "version.$ID". This version file maintains
a checkpoint pointer. By using a Timestamp, the corresponding
version ID generates, which can access the data at any snapshot.
The "current" file always keeps track of the latest version ID.

Figure 7 shows the data layout of KGFabric, which follows a
directory tree structure.It consists of various types, as follows.

(1) Namespace: It isolates and manages graph data from dif-
ferent domains. The metadata of namespace is managed
by MetaServer, including tenant information, DFS cluster
details, directory names, etc.

(2) RelationGroup (RG): RG is responsible for managing data
groups. It includes grouping by entity or relation types and

3844

Figure 8: The hybrid storage format on DFS file

indexing slices of time range. RG is similar to Column Fam-
ily [9], providing IO optimization. For example, the large-
scale relation MKG.User-[visit]->MKG.Shop is configured
as an independent RG to enhance data update and com-
paction efficiency. MKG.User stores properties and other
relations related to entities of MKG.User. The "manifest" file
records the metadata of RGs and the range of vertexIDs/<s,
p, o> in KGFiles (i.e., PGFiles or SGFiles) in RGs.

(3) base_%Y%m%d: It manages periodical snapshots. The RG di-
rectory of static data in the base layer is only a soft link that
points to the corresponding RG directory in the historical
base layer, as it does not exist in the delta layer.

(4) delta_%Y%m%d: It manages incremental data for a specific
period, typically with one directory created per day.

(5) streaming_%H%M: It manages streaming data, with mini-
batch directories created at regular intervals, such as 10
minutes.

(6) batch_$jobID: It manages batch imported data by mapre-
duce or flink jobs.

4.2 Property Graph Storage
Property graphs is stored in PGFiles, which consists of PGBlocks,
Block Index and Footer, as shown in Figure 8a. Footer is a fixed-
length section that stores information such as format version. Block
Index maintains the offset of PGBlocks in DFS file. PGBlocks are
sorted by vertexID. To find the PGBlocks of the desired entity, we
utilize a binary search on the block index. The block size varies
according to data type and graph density, usually from 64KB to
1MB. For example, a smaller block size is set for a simple graph,
and a larger block size is set for a dense graph. PGBlock consists
of VertexTable, EdgeTable (incoming and outgoing), and Proper-
tyTable (for vertices and edges). VertexTable and EdgeTable utilize
a CSR format to compress temporal graph data. PropertyTable sup-
ports row or column storage, such as column storage for encoded
semantic properties. PropertyTable includes a bit matrix to identify
property cells with NULL value. BlockHeader records the offsets
of different tables in the block. The block is the writing IO unit,
while the tables act as the compression unit. The format supports
on-demand reading of property and edge tables.

Figure 9: The high-degree vertices storage and processing

The incoming and outgoing edges from a super-vertex cannot be
stored in one block. To address this, we propose splitting the edges
of the super-vertex into multiple blocks. Block index records the
range of <s, p, o> (equivalent to <vertexID, relationType, targetID> in
LPG) for each block. This approach allows for precisely calculating
the blocks in which different types of relations within a super-vertex
are stored. Splitting boundary blocks is possible when converting
physical blocks to memory graph structures. As shown in Figure 9,
the data of relationB of vertexID2 store in physical blocks #1 to
#95. The boundary blocks #1 and #95 will trigger splitting. This
solution is beneficial for sequential writing, enhancing IO efficiency
of query limits by relation types, and vertex-cut graph partition.

4.3 Semantic Graph Storage
Semantic graphs include Concept graphs and Eventic graphs. Con-
cept graphs have three storage components, as follows.

❶ Dictionary. It maintains the mapping between ConceptName
and ConceptID, storing them in distinct DFS files according to
concept types. We use LogStructure [40] storage to support effi-
cient updates. The structure of log records consists of actionFlag,
ConceptID, nameSize, nameStr, and parentID fields. The action-
Flag identifies add/delete/modify operations. ConceptID is sequen-
tially encoded, and deleted IDs are not recycled. The nameSize and
nameStr record the variable-length concept name, only storing the
leaf (e.g., "Hangzhou"). The parentID records the ID of hypernyms
concept, enabling the generation of complete paths (e.g., "China-
Zhejiang-Hangzhou") by tracing to the root. Concept trees are
typically characterized by small-scale and low-frequency updates,
and have tens of million concept instances in Ant Group. Subtrees
are loaded by concept type and persisted in batches to ensure the
atomicity of ID encoding.

❷ Semantic Property. It stores only the ConceptID in PG-
Block, which allows for linking to a unique concept instance. This
approach reduces the storage cost compared to physical edges be-
tween entities and concepts. The storage space required for one
ConceptID is typically 2-8 bytes. With varint compression, most
ConceptIDs only require 2 bytes, whereas graph databases like
Nebula [69] consume 30 bytes for each edges. Additionally, we can
decode ConceptID from the dictionary and get the property value.

❸ Triple Index. It enables connections from concepts to enti-
ties and stores in SGFiles. As shown in Figure 8b, SGFile is com-
prised of SGBlocks. each SGBlock consists of TripleTable and Prop-
ertyTable. TripleTable stores many semantic relations, which can
have properties such as confidence score. The concept graph being
dense, we have implemented a bitmap index based on RBM (Roar-
ing BitMap) [15]. This approach aims to enhance the compression
rate and computing performance of the semantic graph. Figure 10
shows how the bitmap index is utilized through bitwise operations

3845

Figure 10: A combining-concepts query based on triple index
and bitwise operations

such as AND/OR/NOT, along with buckets-based parallel computa-
tions. These operations help accelerate the complex graph queries
of combining concepts conditions. It also supports graph partition
techniques such as vertex-cut and ghost vertex (redundant target
vertex in each worker). We store spo (Subject-Predicate-Object) and
ops indexes. Semantic properties support the spo index, while RG
supports predicates groups to achieve the effects of the pos and
pso indexes. In industrial scenarios, the predicate (or relationName)
is typically utilized as a query condition rather than a matching
result. Therefore, we do not construct osp and sop indexes. In ad-
dition to reducing storage space, this approach improves index
update efficiency and consistency. When a semantic property is
updated, it triggers the update of triple indexes. Updating the ops
index requires a read-modify-write (RMW) operation. For instance,
when "John-[p:prefers]->Football" is changed to "John-[p:prefers]-
>Tennis", three operations are needed: (1) read relation (i.e., spo)
"John-[p:prefers]->Football", (2) delete ops <Football, p:prefers, John>,
and (3) add ops <Tennis, p:prefers, John>. We offer the BaseJoin
mechanism, which uses a sort-merge join algorithm to convert
RMW operations into sequential reads and writes. The mechanism
improves the throughput of triple index updates and supports over
100 billion RMWs per day. However, if we use graph database, to
ensure that query latency is not affected, the RMW operations are
limited to less than 100 million per day.

Eventic graphs have two storage components: ❶ Multi-index,
which is employed to facilitate the connections of types of entities
to events, includes <entityType1, p1, eventType>, <entityType2, p2,
eventType>, etc. ❷ Time slice. It enables queries based on windows
and other timing diagrams, and TTL (Time-to-Live). The events and
their indexes are divided into multiple slices based on eventTime.
However, as the number of slices increases, the efficiency may
decrease due to IO amplification. To avoid accessing invalid slices,
we generate a bloom filter for each slice’s related entities.

4.4 Updates and Versions
Schema updates may require data conversion. For instance, chang-
ing property typeswill trigger the construction of SGFiles.MetaServer
provides schema-level MVCC to handle conflicts between adaptive
schema updates and data import. Evolution jobs (i.e., E-Jobs) related

Table 1: Schema-level MVCC (* timestamp refers to job start
status. I-Job and E-Job refers to importer and evolution job).

(a)

status ST DT

Initial T0 T1
I-Job start T0* T2*
E-Job start T3* T1*
E-Job finish T3 T1
I-Job finish T0*<T3
trigger E-Job’ T3* T2*
E-Job finish T3 T2

(b)

status ST DT

Initial T0 T1
I-Job start T0* T2*
E-Job start T3* T1*
I-Job finish T0 T2
E-Job finish T1*<T2
trigger E-Job’ T3* T2*
E-Job’ finish T3 T2

to the same property must be executed sequentially. To manage
schema and data versions, each property is associated with two
timestamp fields: ST and DT. ST records the schema version, while
DT records the data version. Importer jobs (i.e., I-Jobs) update DT,
and E-Jobs update ST. As shown in Table 1a, when the I-Job is
executed, if there is an E-Job update ST, it will trigger the automatic
execution of an E-Job for the imported data at time T2. Table 1b
describes another situation. If the I-Job updates DT during the exe-
cution of the E-Job, it will also trigger another E-Job task for the
data produced during (T1, T2]. Despite the low frequency of E-Job,
it may be continuously triggered without successful completion,
such as in streaming import scenarios. This could block new I-Jobs.

As concepts change can affect the graph distribution, such as
mount rate (number of semantic relations / number of properties), it
is necessary first to verify the impact in a pre-release environment.
Unlike costly snapshot setting for rollback in Relational/Graph DBs,
we utilize directory-level versions to achieve this. We use "cur-
rent.online" file and "current.pre-release" file to point to different
concept dictionaries and data directories, enabling isolation of the
impact of concept changes on online graphs. When resulting in an
increased mount rate, the ID record of current.online file is modified
and points to the new concept dictionary.

5 GRAPH FABRIC
Traditionally, data fabric in relational warehouse and graph data-
base is achieved through data copying between clusters. In contrast,
we provide a graph fabric framework to reduce the cost of data
copying. Firstly, source entities are selected from different names-
paces. These source entities can generate a fusion entity (called
FusedType) through link and fuse operators.When reading data, the
graph structure of FusedType is constructed by GMT, that enables
the connection of source entities.

5.1 Graph View
The graph view defines three components that facilitate cross-
namespace data interconnection.

(1) FusedType: This component represents a fused entity
type, which includes its corresponding source entity types
(SourceType1, SourceType2, etc.) from different namespaces.
FusedType incorporates the relations and properties from
the source types. It is notable that FusedType is a virtual
entity and not persistent data.

(2) LinkOp: Link operator is responsible for identifying simi-
lar entities from different KGs. It utilizes techniques such

3846

Figure 11: Distributed graph fabric. SPG[i] refers to the prop-
erties, basic and semantic relations of Entity[i]

as user-defined rules, and text/LBS(Location-Based Ser-
vices)/vector similarity. To accomplish this, we can leverage
search engines like ElasticSearch.

(3) FuseOp: Fuse operator merges two or more source entities
into one entity. It handles the logic for combining properties
and relations. The operator can define QLExpress [59] rules
for merging and resolving conflicts among source entities.

We also provide a SQL-like method (similar to GQL [29] or
TypeQL [67]) for creating graph view and supporting user-programmable
operators through Java/Python interfaces, as follows.
CREATE LINK OPERATOR linkusers {

main_class:"com.alipay.kgfabric.view.UserLinker"
jar:"kgfabric-operator-linker-1.0.0-shaded.jar"

}
CREATE FUSE OPERATOR fuseusers [type=RULE params=e1,e2,e3] {

$e3.name = ($e1.name != NULL) ? $e1.name : $e2.name
$e3.prefers = union($e1.prefers, $e2.prefers)
($e3)-[transfer]->($e3) = copy(($e1)-[transfer]->($e1))
($e3)-[visit]->Shop = copy(($e2)-[visit]->(Shop))

}
CREATE GRAPH VIEW fabricview {

(e1:SourceType1)-[transfer]->(e1) AS r1
(e2:SourceType2)-[visit]->(Shop) AS r2

} WHERE {
e1.age>30 and e2.age>30 and r1.amount>100 and r2.count>1

} WITH OPERATOR {
linkusers(e1, e2, FusedType)
fuseusers(e1, e2, FusedType)

}

5.2 Graph Merge Tree
Graph analysis system invokes query/scan API to access KGFabric.
SPG Executor parses the query conditions and generates the GMT,
which consists of graph join and graph fabric. GMT is a multi-
way tree, and graph fabric stage may perform nested processing.
Algorithm 1 shows the GMT’s post-order traversal algorithm. If the
entity is a FusedType, a recursive traversal is performed on that
entity. Otherwise, a one-hop query is executed on the entity. Graph
join is triggered by the query, involving PGJoin and SGJoin, which
are responsible for merging hybrid formats in RGs of the delta and
base layers. After collecting the entities and relations of all children,
the rule of FuseOp is executed to generate the fused graph.

In query processing of the FuseOp, the FusedType can be used as
the source or target vertex. However, it is notable that the specified
fused entity C and its source entities A and B cannot appear in one
graph structure. The in and out edges of A and B will become the
edges of C. For example, r1:A->X and r2:V->B will be transformed

Algorithm 1 GMT-traversal
Input: V← graph view, e← query entity, x← isMultiTenant(V, e)
Output: g← fused graph

if e = FUSEDTYPE then
G’← ∅
for s ∈ SourceTypes do

g’← GMT-traversal(V, s)
G’.append(g’)

end for
rule← FuseOp(V)
g← rule(G’)

else
g← query(e)
if x = TRUE then

encrypt(g)
end if

end if
return g

to r1’:C->X and r2’: V->C. Similarly, the ring edge r:A->A or r:B->B
will be transformed to r’: C->C.

GMT has two execution modes: Fuse on Read (FOR) and Fuse on
Write (FOW). In FOW mode, the GMT is executed when the source
data is updated. This mode provides low-latency querying but may
result in data redundancy and does not support FuseOp updates. The
FOR mode executes the GMT during the read operation, reducing
storage redundancy and enabling FuseOp updates. In graph analysis
applications (e.g., KG OLAP), the FOR mode is commonly used. the
FOW mode is high-cost and inflexibility, so it is only used in ultra-
low latency online scenarios.

The LinkOp includes two types: IDE (ID Equivalent) and UDL
(User-Defined Link). IDE is a situation where multi-domain enti-
ties share the same primary key but have different properties or
relationships. For example, the primary key of BMKG.User and
MKG.User are based on the alipay account ID. As Figure 11a shows,
in IDE situation, execute fuse operators by local-join. UDL refers
to linking entities based on custom rules or algorithms, such as
vector similarity. The UDL generates linkpairs (the linked entity
IDs) randomly. As shown in Figure 11b, remote-join is performed
through random reading across workers. To reduce I/O operations,
configuring a block cache can be beneficial. In dense scenarios with
numerous linkpairs, we employ a technique called rindex (Resorted
Index) to convert remote-join to local-join, which can speed up the
fusion. As shown in Figure 11c, the rindex only stores data of the
source entities, such as TypeB fused with TypeA. It only resorts
and stores the entity data of TypeB in the linkpairs.

5.3 Data Security
We provide permission control at the property level, allowing users
to set permissions for reader, writer and manager. In order to create
a graph view, users must apply for the read permissions. We have
integratedAntPrivacy encryption interface into our SDK to enhance
data security. This interface can identify fields that contain personal
privacy information, such as certNo. Before graph fabric stage of
GMT, the query graph is encrypted, as shown in Algorithm 1. The
encryption key depends on the tenant of the reader. Consequently,
the encryption keys for different domain KGs in the graph fabric
stage remain consistent and do not interfere with the local-join

3847

operation of FOR. This solution enables efficient cross-domain data
fabric while ensuring the confidentiality and integrity of the data.

Even though the entity properties are encrypted, some graph
analysis tasks, such as detecting cycle patterns and multi-hop in-
direct associations, can still be accomplished. The permission con-
firmation and decryption are completed in real-time interaction
with AntPrivacy Service, and we strictly adhere to the minimiza-
tion principle. For example, in the case of abnormal graph patterns,
only the properties of Accounts that can assist the public security
anti-fraud investigation will be allowed to be decrypted.

6 GRAPH ANALYSIS
We utilize a centralized approach based on DFS to manage knowl-
edge graph data effectively, and provide a shared backend for graph
analysis systems like GeaFlow [57], enabling support for graph anal-
ysis multi-workload in financial scenarios. Presently, we support
two graph analysis languages, Gremlin [61] and KGDSL2.

6.1 The Workloads
The applications and characteristics of various KG analysis work-
loads in Ant Group, as follows.

KG OLAP. It is commonly used in ad-hoc graph analysis sce-
narios, for example, ❶ transaction tracing for anti-fraud cases.
With over 1 billion transaction events daily in Ant Group, we en-
counter frequent data updates and high timeliness requirements,
requiring queries with second-level latency and traversal of 2 to
10 hops. The depth of transaction tracing significantly impacts the
recall rate for target accounts, with the recall rate rising from 60.67%
to 99.98% as the depth of transaction tracing increases from 2 to
10. ❷ pairwise paths analysis. Often used to discover indirect
associations among entities such as merchants, companies, it is
also applied in interpretability of link prediction. When identify an
increasing number of entity pairs, batch calculations is required for
optimization.

KG OLAP focuses on request latency. So we deploy resident tasks
or services to support users initiate real-time query requests. For
KG OLAP, we perform random read KGBlocks (i.e., PGBlocks or
SGBlocks). A 1MB KGBlock can store over 100,000 compressed rela-
tions, handling most one-hop queries. The super-vertex processing
supports truncation based on relation type, and parallel query of
multiple neighbors.

GPM (Graph PatternMatching). It is applied in complex graph
analysis scenarios. For example, ❶ detecting anomaly patterns
for identifying risky merchants. Mining cycle, many-to-one,
one-to-many, and other graph patterns in transaction graphs can
facilitate the detection of money laundering and fraudulent mer-
chants. Cycle pattern is a significant and representative type of
multi-hop GPM workloads. ❷ semantic crowd analysis. It refers
to identifying target users based on user tags and the relationships
between these tags. Tags are mapped to concepts, and relation-
ships are established between these concepts. For example, when
providing marketing recommendations for NBA-related products,
inputting the NBA tag can lead to the discovery of tags associated

2KGDSL is a GQL-like KG-reasoner language developed by Ant Group. It is suitable
for symbolic representation of logic rules. The paper will not go into details.

with different concepts, such as basketball, etc., through combining-
concepts and multi-hop reasoning. This helps to expand the recall
of relevant users. Additionally, this approach supports cold start
recommendation scenarios without any seed users.

In GPM tasks, a large number of vertices are involved in graph
computation, necessitating high throughput. The super-vertex pro-
cessing includes vertex-cut or properties filtering/truncation to
enhance patterns recall. Presently, AKGP manages hundreds of
tasks, with the largest graph scale reaching 100 billion. When the
number of starting vertices reaches 1 billion, the QPS can reach
tens of millions. GPM tasks frequently employ algorithms such as
binary join and worst-case optimal join [14, 46], requiring high-
throughput access via parallel graph computing. The runtime of
GPM tasks is approximately within 10 hours, and the tasks are
executed periodically.

6.2 Query Optimization
We offer a shared backend for different graph analysis tasks. It en-
ables parallel graph computing through graph partitioning, utilizes
a backend cache to enhance query throughput, optimizes graph
operator performance through pushdown, and supports zero-copy
serialization to reduce memory and CPU consumption.

Graph Partition. GPM task consists of two stages: partition and
iteration. Partitioning involves loading a portion of KGBlocks from
DFS into the local disk andmemory of the workers to improve query
throughput. KGBlocks represent the graph format and support Map-
only distributed loading. In contrast to relational warehouses like
ODPS [45] or Hive [35] that require data shuffling to build vertex
set and edge set, KGBlock enables continuous storage of vertexID
ranges, and allows for edge-cut [25, 26] partitioning, with better IO
balance based on block size. In caseswhere a super-vertex has a block
array, it can be divided across multiple workers to support vertex-
cut [43] partitioning. By default, the business primary key is the
entity ID, such as alipay account ID. To enhance graph storage and
partitioning locality, we also support the use-defined ID generator,
such as the 30-level S2CellID [28] of AOI center point, and graph
embedding.

Backend cache. It consists of meta and data cache. The meta
cache reduces access to the metafile of RGs and block index. In
the case of KG OLAP, supported by resident tasks or services, the
watcher triggers the update of the meta cache when the current
version switches. In the case of GPM, the version is determined, and
the meta cache is preloaded when the task starts. The data cache
employs a dual-layer approach with disk and memory caches. The
disk cache as a files cache cannot swap in and out, while thememory
cache is an LRU cache with KGBlocks. Typically, super-vertices have
higher hit rates in the cache.

Pushdown. It supports filter, aggregate and window opera-
tors. Filter involves entity/relation/property type filtering, which
is pushed down to the leaf node (i.e., RGs) of the GMT. Window
operator supports event and index reading based on time slices.
Aggregate includes operations like sum, max, min, count, etc. Addi-
tionally, a metrics file records statistics for different properties for
each block. The mechanisms are similar to the indexing functions
in graph databases like JanusGraph [36].

3848

Zero-copy serialization. It is employed to minimize IO and
data transformation when executing GMT in graph analysis or com-
paction. Thememory data structure aligns with the graph format on
disk, reducing the need for serialization from disk to memory. This
approach consumes less memory by avoiding using Java objects
like Maps. Graph analysis systems, such as GeaFlow, support cus-
tom data structures for Vertex/Edge/Property and provide set/get
interfaces, facilitating the implementation of this solution.

7 EVALUATION
The performance of KGFabric is evaluated by comparing it with
popular relational DBMS ODPS [45] (which outperforms the open-
sourceHive [35]), graph databaseNeo4j [48], and KV Store RocksDB [19]
in terms of graph storage, fabric, and analysis. RocksDB is used as
a state backend in parallel computing engines like Flink [22] and
GeaFlow, as well as a standalone storage engine in graph databases
like Nebula [69]. KGFabric is mainly developed using Java, offering
localized and distributed deployment. Distributed deployment re-
lies on K8s and Hadoop components. BenchCases[12] shows the
experimental cases.

7.1 Datasets

Table 2: Details about the used datasets.

Datasets Type #Entities #Relations #Concepts

LDBC-FinBench(SF1) LPG 643K 6.09M 0
LDBC-FinBench(SF10) LPG 6.06M 48.02M 0
LDBC-FinBench-X(SF1) SPG 643K 8.09M 5433
LDBC-FinBench-X(SF10) SPG 6.06M 65.52M 5433
AKG-A SPG 0.8G 2.8G 5081
AKG-M SPG 3.4G 26.1G -
AKG-F SPG 22G 110G -

We select one public dataset, one custom dataset and three real-
life datasets in Ant Group for the experiments, as shown in Table 2.

• LDBC-FinBench [58]: This dataset represents a financial
scenario and consists of a heterogeneous temporal graph
structure based on LPG schema. It includes 5 types of enti-
ties, 13 types of relations, and 64 types of properties. The
dataset can be scaled by setting a scale factor, and for this
experiment, two larger-scale datasets, SF1 and SF10, were
generated. SF1 has approximately 600K entities and 6M
relations, while SF10 has 6M entities and 48M relations.

• LDBC-FinBench-X : This dataset is a custom extension of
the LDBC-FinBench dataset, which adds semantic relations
between Company, Person, and Account to Concepts, in-
creasing the number of relations by about 30%. We release
the data generator and schema of LDBC-FinBench-X on
GitHub3. The schema extension is based on SPG’s business
practices, encompassing 7 concept types (Concept.Country,
Concept.City, Concept.BusinessType, Concept.AccountType,
Concept.AccountLevel, Concept.MediumType, Concept.RiskLevel)
and 3 standard types (STD.PhoneNumber,STD.Email,STD.Url).
These semantic types are the object types of 13 properties,
such as the transformation of the city property type of
Person from string to Concept.City.

3http://github.com/jo3yzhu/ldbc_finbench_datagen_spg_extension

Figure 12: Storage space on various graphmodels and datasets

• AKG-*:We used 3 datasets to evaluate real-worldworkloads.
(1)AKG-A, the Alipay User KG, contains 2.8 billion semantic
relations, such as User-[p:occupation]->Concept.Occupation.
(2) AKG-M, the Merchant Risk KG, contains 3.4 billion en-
tities and 26.1 billion relations, such as risk labels of mer-
chants, goods ownership and trade relations. (3) AKG-F, a
dataset fused by BlackMarket KG and Funds KG, with 22
billion entities and 110 billion relations, such as transaction
and medium access relations within 60 days.

7.2 Storage Space
We utilize an NVMe SSD machine and conduct two storage experi-
ments of synthetic datasets. In the experiments, both KGFabric and
RocksDB are configured with a block size of 512KB.

LPG dataset. The storage space of LDBC-FinBench(SF1) utilized
by KGFabric is 43.7%(533MB/1218MB) of that used by Neo4j and
91.7%(533MB/581MB) of that used by RocksDB, as shown in Fig-
ure 12a. This result clearly illustrates the benefits of KGFabric in its
efficient storage of temporal graph structure and properties data. A
CSR graph format enables more compact storage for graph struc-
ture. KGFabric achieves this by reducing the storage requirements
for doubly linked list pointers in Neo4j. KGFabric employs com-
pression for the VertexTable and EdgeTable. This experiment uses
Deflate. Additionally, KGFabric follows a strict schema. In contrast,
Neo4j is schema-free. KGFabric employs hybrid compression for
storing various types of properties. For example, properties like
createTime, are stored using column storage within each block.
Properties of string and other types are stored using row storage.

SPG dataset. In the case of LDBC-FinBench-X(SF1), which in-
cludes the addition of concepts and semantic relations, the number
of relations increases from 6.09M to 8.09M (+32.8%). When im-
porting this dataset into Neo4j, the concept graph is converted
into vertices and edges. As shown in Figure 12b, the storage over-
head of KGFabric is only 1.9% (2.8MB/146MB) of that of Neo4j
and 7% (2.8MB/40MB) of that of RocksDB. This storage efficiency
is achieved through several techniques described in Section 4.2.
Firstly, KGFabric employs encoding for concepts, using conceptID
instead of storing strings. Secondly, KGFabric supports graph tra-
versal from concepts to entities by generating a triple index based
on bitmap compression. It is worth noting that the storage overhead
growth rate is relatively small for this dataset because the semantic
relations in the experimental do not have properties. In industrial
scenarios, semantic relations may have additional properties, such
as confidence score.

3849

Figure 13: The graph density of various datasets, where se-
mantic relation(indirect) refers to the relationship between
entities connected to the same concept.

Figure 14: The performance of detecting cycle pattern on
various datasets. (N.A. means runtime exceeds 1.5 hours)

real-life dataset of SPG. We collected the storage space perfor-
mance of AKG-A from the DFS cluster in Ant Group. The 2.8 bil-
lion semantic relations occupy 2.73GB, i.e., ∼1 B/semantic rela-
tion, compared to LDBC-FinBench-X(SF1) which is 1.4 B/semantic
relation (2.8MB/2M). The compression ratio of bitmap triple in-
dexes is influenced by the data sparsity, for example, the rela-
tion STD.Email-[p:email]->Account of LDBC-FinBench-X(SF1) is
sparser than Concept.Occupation-[p:occupation]->User of AKG-A.

7.3 Graph Analysis Performance
The graph analysis experiments consist of two synthetic workloads
(i.e., Exp 1 and Exp 2) and two real-world cases. Their applications
are described in Section 6.1. In the experiments, we compare KGFab-
ric backend on Geaflow (i.e., KGFabric-Traversal) with ODPS-Join,
Neo4j-Cypher and RocksDB backend on Geaflow. ODPS-Join is
implemented by SQL, while KGFabric-Traversal uses GeaFlow VC
(vertex-centric) [43, 57] interface and KGDSL. A step-by-step bi-
nary join algorithm is used to ensure fairness. The experiments
of synthetic workloads are conducted in a cluster with 8 workers,
each having 8 vCPUs, 16GB memory and 128GB NVMe SSD. Due
to Neo4j’s lack of support for graph partitioning, we conduct the
Neo4j experiments in a single worker.

Exp 1: pairwise paths analysis on LDBC-FinBench-X. The syn-
thetic workload is used to evaluate the performance of multi-hop
KG OLAP on semantic graphs. Randomly selecting about 1,000 ver-
tices from the "Accounts" entity and mining pairwise paths within
this vertex set (∼1M pairs).

KGFabric vs ODPS. Table 3 presents the results for two scales
of semantic graphs. It can be observed that ODPS-Join’s runtime
for 6-hops exceeds 100× that of KGFabric-Traversal. On the larger

dataset, ODPS-Join takes more than 24 hours to complete and gener-
ates output of over 400GB records. The performance of ODPS-Join
drops significantly due to the presence of more intensive semantic
relations. Figure 13a compares and analyzes the graph density of ba-
sic relations and semantic relations(indirect). The degree of entities
based on semantic relations(indirect) ranges from 105 to 107, indi-
cating a higher graph density. We optimize the multi-hop semantic
graph query by implementing a multi-threaded parallel query on
single worker. In extreme cases, each worker may access all triple
indexes and ghost vertices. By triple indexes of high compression,
we can improve the cache hit rate and reduce IO operations.

KGFabric vs Neo4j. In the SF1 dataset experiment, for 2-hops,
Neo4j-Cypher takes 59 seconds, while KGFabric takes 5 seconds.
For 4-hops, the latency of Neo4j-Cypher increases to over 1 hour
due to reaching the physical memory limit and triggering pagecache
swapping, caused by message generation of Expand Operator. In
contrast, KGFabric takes only 11 seconds by utilizing combining-
concepts joiner.

Exp 2: detecting cycle patterns on LDBC-FinBench. The synthetic
workload is used to evaluate the performance of 3 to 5 hops GPM.
Cycle pattern is also representative in LDBC-FinBench’s Complex-
read workloads [58].

KGFabric vs ODPS. Figure 14 illustrates the performance of KG-
Fabric in cycle pattern matching compared to ODPS-Join on the
datasets of LDBC-FinBench(SF1) and LDBC-FinBench(SF10). At 3
to 5 hops, KGFabric outperforms ODPS-Join by 2.06× to 5.77× on
the dataset of 1 million relations. Furthermore, when the number of
relations increases to 10 million and traverses 5 hops, KGFabric com-
pletes the task in 231s, whereas ODPS-Join’s runtime exceeding 1.5
hours. The multi-join stages in ODPS-Join encounter difficulties in
processing 6.3 billion records (57.16GB IO size) of intermediate data,
which lead to timeouts. In contrast, KGFabric-Traversal partitions
the graph data without requiring shuffling and sorting. Addition-
ally, native graph format facilitates querying neighbors in both
directions, reducing intermediate data and cross-worker messages.
For instance, only one query is necessary to calculate all 2-hops
cycles of a vertex. Moreover, KGFabric-Traversal offers backend
cache and sequential IO, which replace random IO of queries.

We conduct the experiment of detecting 5-hops cycle pattern on
1 million relations in a Hive cluster with the same resources. Hive-
Join takes 261s, while ODPS-Join takes 150s, indicating that ODPS-
Join performs better. This shows the significance of comparing
KGFabric-Traversal and ODPS-join.

KGFabric vs RocksDB. Graph analysis tasks often involve storing
the vertex set and edge set in various backends, such as memory or
RocksDB. In industrial scenarios, disk-based solutions like RocksDB
are typically more suitable. For instance, in anti-fraud tasks, large
amounts of graph data (10 billion to 100 billion) need to be loaded.
Table 4 presents a performance comparison of each stage using
three types of backends on GeaFlow. With KGFabric backend, the
graph partition stage eliminates the overhead of data shuffle and
format transformation. Conversely, ODPS-RocksDB requires 31.6s
and 31.2s to convert relational data into vertex sets and edge sets,
and then write them to RocksDB. During the iteration stages, the
performance of KGFabric backend increases by 1×. In RocksDB, a
one-hop query involves a range scan, and the presence of level-0 ssts

3850

Table 3: The performance of pairwise paths analysis on se-
mantic graph of LDBC-FinBench-X(SF1 and SF10).

2-hops 4-hops 6-hops

#results(number of paths) 2.3K 1.9M 8.2G
ODPS-Join 7s 11s 13423s
KGFabric-Traversal 0.48s 0.94s 21.2s

#results(number of paths) 2.2K 14M 448.1G
ODPS-Join 10s 37s >24h
KGFabric-Traversal 3.5s 9.1s 1317s

Table 4: The each stage performance of various backends on
3-hops cycle pattern.

backend type stage1#graph partition stage2#graph traversal total
shuffle transform iter-1 iter-2 iter-3

ODPS-RocksDB 31.6s 31.2s 60s 9.7s 0.2s 132.7s
DFS-RocksDB 0 37.1s 53.1s 7.9s 0.2s 98.3s
KGFabric backend 0 0 35.8s 6.8s 0.1s 42.7s

Table 5: The graph analysis performance of various backends
on real-world workloads.

ODPS-RocksDB KGFabric backend

detecting anomaly patterns 63.4+17.7 minutes 10 minutes
semantic crowd analysis >24h 8.5 minutes

(3 ssts in the experiments) leads to read amplification. DFS-RocksDB
is a solution that eliminates the data shuffle stage. Additionally,
writing ordered data of KGFiles is more compatible with RocksDB.

Exp 3: two real-world workloads. In industrial scenarios, saving
overhead of the stage1#graph partition is often more important,
as the stage1 loads the entire graph, while stage2#graph iteration
traverses subgraph through constraining starting vertices and prop-
erties filter. As shown in Table 5, in a cluster with 100 workers,
each having 8 vCPUs, 16GB memory and 128GB NVMe SSD, de-
tecting 3-hops anomaly patterns on AKG-M, ODPS-RocksDB takes
63.4 minutes and 17.7 minutes in the partition and iteration stages.
Switching to KGFabric backend can reduce the task’s runtime to 10
minutes. The semantic crowd analysis on AKG-A involves a 3-hops
query. The runtime of ODPS-RocksDB exceeds 24 hours, while KG-
Fabric backend only takes 8.5 minutes in a cluster with 16 workers.
As shown in Figure 13b, Many concepts in AKG-A have a degree
of 108 with User entities. The edge-cut partitioning approach of
ODPS-RocksDB can only compute high-degree concept on a single
worker. Consistent with Exp 1, KGFabric’s bitmap triple index and
combining concept computation present significant advantages in
the performance of large-scale semantic graph analysis.

7.4 Graph Fabric Scalability
We use synthetic datasets to evaluate the scalability and memory us-
age of the multi-graph fabric. We test the one-hop query FusedType
on two types of LinkOP: IDE and UDL. The experimental environ-
ment is identical to that used in the graph analysis experiments
of synthetic workloads. ODPS-MR (MapReduce) implements the
vertex and edge multi-table fabric solution, which involves union,
partition by, and group by startID/endID to aggregate relations
between source entities.

Figure 15: The scalability of fabric solutions, where linkpairs
refer to the similar entity pairs generated by LinkOP#UDL.

Exp 1: LinkOP#IDE. It selects 2 million entities and 10 million
relations from the LDBC-FinBench(SF10) dataset, evenly divided
into 8 subgraphs. Each subgraph contains 1.3 million relations. As
shown in Figure 15a, when the number of sources ranges from 2 to
8, the latency of ODPS-MR is 3.7× to 5.7× than that of KGFabric-
GMT. Furthermore, as the number of sources increases, the latency
of ODPS-MR grows more significantly. For instance, when the
number of sources increases from 4 to 8, the latency of ODPS-MR
increases by 116% (from 37s to 80s), whereas KGFabric-GMT only
increases by 41% (from 9.9s to 14s). The main performance overhead
of ODPS-MR is observed in the reduce stage. In contrast, KGFabric-
GMT utilizes a Map-only approach, leveraging asynchronous IO
and parallel multi-way join to improve local GMT performance, as
shown in Figure 16.

Exp 2: LinkOP#UDL, including FOR and FOR-rindex. The experi-
ment utilizes two datasets from the IDE experiment and randomly
generates 2,000 to 400,000 linkpairs within 2 million entities. As
shown in Figure 15b, the performance advantage of KGFabric-FOR
becomes more evident as the number of linkpairs decreases. When
the linkpairs are only 2,000, the FOR latency is 14% that of ODPS-
MR and 133% that of FOR-rindex. Under fixed concurrency, the
FOR latency approximately linearly increases with the number of
linkpairs. For instance, when there are 100,000 linkpairs (cover-
ing 5% of the entities), the FOR latency exceeds that of ODPS-MR
(34s > 23s). As the number of FOR remote-join random reads in-
creases, the performance decline becomes more significant than
batch processing. Conversely, FOR-rindex converts random IO into
sequential IO. When the number of linkpairs increases to 400,000,
the FOR latency is 27× that of FOR-rindex. The performance ad-
vantage of FOR-rindex becomes more pronounced as the number
of linkpairs increases. The rindex mechanism is similar to ZOrder
index [8, 18] utilized in OLAP systems such as ClickHouse. How-
ever, FOR-rindex has the disadvantage of storage redundancy and
potential data delay issues caused by linkpairs updates.

Figure 15c illustrates the memory overhead of KGFabric solu-
tions. FOR-rindex exhibits a more stable memory overhead based

3851

Figure 16: Asynchronous IO and multi-threaded computing
of local GMT

on scanning. The relative memory overhead of FOR increases by
400MB to 600MB because random queries lead to block cache
growth. Once the upper limit of the cache size is reached (set to
1GB in the experiment), the memory overhead tends to stabilize.

Exp 3: real-world workloads onAKG-F. AKG-F utilizes LinkOP#IDE.
We conduct tests on the scan FusedType entities and their one-hop
graph performance in a cluster with 800 vCPUs and 1600 GB mem-
ory. The results include 7.9 billion entities and 71.3 billion relations.
ODPS-MR takes 27.58 hours, whereas KGFabric-GMT only takes
1.28 hours (i.e., 21× improvement), as explained in Exp 1.

In multi-hop analysis, FusedType entities may participate in each
superstep, and the fabric process of FOR may be executed multiple
times. The drawback of FOW is the issue of space redundancy
and data latency (27.58 hours of ODPS-MR). KGFabric-GMT, even
with FOR solution, can ensure OLAP latency and data timeliness.
GMT first accurately locates blocks of multi-namespace, reducing
IO operations. Secondly, it improves performance by utilizing a
sort-merge to reduce data shuffling and a multi-threading model as
shown in Figure 16. We evaluate transaction tracing for anti-fraud
cases on AKG-F in a cluster with 75 workers, each having 8 vCPUs,
16GB memory and 128 GB NVMe SSD. The range of traversal is 2
to 10 hops. The P50 and P99 query latency are 4.45s and 33.41s.

8 RELATEDWORK
Relational warehouses like Hive [35] and ODPS [45] offer low-cost
and scalability advantages. However, They have limited support
for multi-scenario data reuse and complex graph analysis. Data-
Lake [8, 47] addresses slow updates and flexibility, but does not
solve the challenges of complex connections. KG combines graph
structure and semantics to model real-world entities, facts, and
their relationships, enabling enterprises to organize and manage
data more effectively. Cambridge Semantic [44] has introduced
a new data management paradigm based on knowledge graphs.
Gartner predicts that Data Fabric [24] based on knowledge graph
technology will be the next-generation data architecture in 2021.

LPG and RDF are the popular knowledge graph data manage-
ment solutions. RDF has strong semantic characteristics, utilizing
RDFS/OWL [13, 33] as the schema language and SPARQL [33] as the
query language. However, RDF is complex and expensive in terms
of business understanding and modeling. Various RDF stores [3,
10, 20, 51, 55, 68, 70] are available. RDF-3X [51], Jena-TDB [55],
and Trident [68] use the triple index, that is a six-permutation

index to process <s,p,o> in any query conditions. However, six-
permutation index suffers from storage redundancy and index up-
date consistency issues. KGFabric optimizes the triple index costs
and updates efficiency. It also incorporates bitwise-based solutions
like TripleBit [70], BitMat [10], and Columnar [31] for triple in-
dex and parallel computing. We use RBM [15] for index compres-
sion in sparse scenarios. Jena [55] and Gradoop [37] rely on hbase,
while Trident [68] stores data in DFS to support distributed appli-
cations. LPG [4, 5], characterized by a strong structure, has widely
used Graph DBMSs [6, 60] like Neo4j [48], Tugraph-db [66], Nep-
tune [50], Nebula [69], and ByteGraph [39], providing online graph
query and write. Our SPG model extends concepts and events on
LPG model, and provides nearline large-scale read and write. Its
storage layer is a native graph-based distributed engine on DFS.
Neptune [11, 50] and Trinity/Trinity.RDF [62] support RDF and
LPG models, but they do not support model transformation on a
copy of stored data. Some research [7, 34] has explored the conver-
sion of LPG and RDF at only the model layer. KGFabric provides
a hybrid format for SPG model, and offers version manager for
semantic transformation.

GraphX [26] and GeaFlow [57] are LPG-based and parallel com-
puting systems for graph analysis that are dependencies of KGFab-
ric. Unlike solutions based on RocksDB, memory, ODPS or Hive,
KGFabric provides a shared backend to optimize semantic graph
partitions and reduce the overhead of cross-platform data shuffling
and transformation.

Data islands and interconnections are crucial and challenging
aspects of enterprise data management. Neo4j [49] and Apollo [65]
propose graph federation, which only provides simple federated
services, and cannot ensure data security. Federated graph learn-
ing [23] is a machine learning application solution that does not
address data management problems. Our graph fabric framework
supports cross-namespace encryption and user programmability.
Stardog [64] and Ontotext [53] have introduced the Enterprise
Knowledge Graph platform, aiming to address data interconnection
challenges through knowledge graph, similar to KGFabric. How-
ever, their utilization of RDF/OWL and RocksDB, differs from our
SPG model and native graph-based storage.

9 CONCLUSION
KGFabric is an enterprise knowledge graph management system
developed by Ant Group specifically for multi-domain scenarios.
It focuses on integrating large-scale data into standardized and
semantic knowledge by employing an SPG model and a DFS-based
storage engine. The system provides a programmable distributed
framework that enables graph fabric across different domains of
KGs, and offers practical solutions to reduce data duplication and
ensure data security. Experimental results indicate that KGFabric
outperforms Neo4j and ODPS in graph storage, analysis, and fabric
in various scenarios such as property graphs and semantic graphs.

Our important plans include vector storage and universal storage
format compatibility. Data vectorization can enhance the locality
of graph storage and optimize the performance of cross-domain
graph fabric and reasoning. It also can support KG+LLM [56]. To
minimize cross-platform data migration, we will be compatible with
open formats like Parquet and ORC.

3852

REFERENCES
[1] Bilal Abu-Salih. 2021. Domain-specific knowledge graphs: A survey. Journal of

Network and Computer Applications 185 (2021), 103076.
[2] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction management

in distributed key-value datastores. Proceedings of the VLDB Endowment 8, 8
(2015), 850–861.

[3] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga
Ngomo. 2022. A survey of RDF stores & SPARQL engines for querying knowledge
graphs. The VLDB Journal (2022), 1–26.

[4] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair
Green, Jan Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, et al.
2023. PG-Schema: Schemas for property graphs. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–25.

[5] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W
Hare, Jan Hidders, Victor E Lee, Bei Li, Leonid Libkin, Wim Martens, et al.
2021. Pg-keys: Keys for property graphs. In Proceedings of the 2021 International
Conference on Management of Data. 2423–2436.

[6] Renzo Angles and Claudio Gutierrez. 2018. An introduction to graph data man-
agement. Graph Data Management: Fundamental Issues and Recent Developments
(2018), 1–32.

[7] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. 2020. Mapping RDF
databases to property graph databases. IEEE Access 8 (2020), 86091–86110.

[8] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. 2020. Delta lake: high-performance ACID table storage over cloud object
stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–3424.

[9] Joy Arulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proceedings of
the 2016 International Conference on Management of Data. 583–598.

[10] Medha Atre, Jagannathan Srinivasan, and James A Hendler. 2009. BitMat: A main
memory RDF triple store. Tetherless World Constellation, Rensselar Plytehcnic
Institute, Troy NY (2009).

[11] Bradley R Bebee, Daniel Choi, Ankit Gupta, Andi Gutmans, Ankesh Khandelwal,
Yigit Kiran, Sainath Mallidi, Bruce McGaughy, Mike Personick, Karthik Rajan,
et al. 2018. Amazon Neptune: Graph Data Management in the Cloud.. In ISWC
(P&D/Industry/BlueSky).

[12] BenchCases 2023. BenchCases. Retrieved November 24, 2023 from http://github.
com/FessGo/knowledge-graph-warehouse-bench

[13] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Ta-
shev, and Ruslan Velkov. 2011. OWLIM: A family of scalable semantic repositories.
Semantic Web 2, 1 (2011), 33–42.

[14] Sarra Bouhenni, Said Yahiaoui, Nadia Nouali-Taboudjemat, and Hamamache
Kheddouci. 2021. A survey on distributed graph pattern matching in massive
graphs. ACM Computing Surveys (CSUR) 54, 2 (2021), 1–35.

[15] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better
bitmap performance with roaring bitmaps. Software: practice and experience 46,
5 (2016), 709–719.

[16] Concept 2023. Concept. Retrieved November 11, 2023 from http://en.wikipedia.
org/wiki/Concept

[17] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. 2022. Graph
pattern matching in GQL and SQL/PGQ. In Proceedings of the 2022 International
Conference on Management of Data. 2246–2258.

[18] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A learned multi-dimensional index for correlated data and skewed
workloads. arXiv preprint arXiv:2006.13282 (2020).

[19] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[20] Orri Erling. 2012. Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data
Eng. Bull. 35, 1 (2012), 3–8.

[21] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3558–3565.

[22] Flink 2023. Apache Flink — Stateful Computations over Data Streams ... Retrieved
October 10, 2023 from http://flink.apache.org/

[23] Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, and Jundong Li. 2022. Feder-
ated graph machine learning: A survey of concepts, techniques, and applications.
ACM SIGKDD Explorations Newsletter 24, 2 (2022), 32–47.

[24] Gartner: Data Fabric 2023. Using Data Fabric Architecture to Mod-
ernize Data Integration. Retrieved October 25, 2023 from https:
//www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-
to-modernizing-data-management-and-integration

[25] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. {PowerGraph}: Distributed {Graph-Parallel} computation on natural
graphs. In 10th USENIX symposium on operating systems design and implementa-
tion (OSDI 12). 17–30.

[26] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. {GraphX}: Graph processing in a distributed
dataflow framework. In 11th USENIX symposium on operating systems design and
implementation (OSDI 14). 599–613.

[27] Google Knowledge Graph 2024. Google Knowledge Graph. Retrieved February
20, 2024 from http://en.wikipedia.org/wiki/Google_Knowledge_Graph

[28] Google S2 2023. S2 Geometry | S2Geometry. Retrieved November 7, 2023 from
http://s2geometry.io/

[29] GQL 2023. Graph Query Language GQL. Retrieved October 30, 2023 from
http://www.gqlstandards.org

[30] Honghao Gui, Lin Yuan, Hongbin Ye, Ningyu Zhang,Mengshu Sun, Lei Liang, and
Huajun Chen. 2024. IEPile: Unearthing Large-Scale Schema-Based Information
Extraction Corpus. CoRR abs/2402.14710 (2024). https://doi.org/10.48550/ARXIV.
2402.14710 arXiv:2402.14710

[31] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar storage
and list-based processing for graph database management systems. arXiv preprint
arXiv:2103.02284 (2021).

[32] Hadoop 2023. Apache Hadoop. Retrieved October 25, 2023 from http://hadoop.
apache.org

[33] Olaf Hartig. 2017. RDF* and SPARQL*: An Alternative Approach to Annotate
Statements in RDF.. In ISWC (Posters, Demos & Industry Tracks).

[34] Olaf Hartig and Bryan Thompson. 2014. Foundations of an alternative approach
to reification in RDF. arXiv preprint arXiv:1406.3399 (2014).

[35] Hive 2023. Apache Hive. Retrieved October 11, 2023 from http://hive.apache.org
[36] JanusGraph Index 2023. Indexing for Better Performance. Retrieved Octo-

ber 11, 2023 from http://docs.janusgraph.org/schema/index-management/index-
performance

[37] Martin Junghanns, André Petermann, Kevin Gómez, and Erhard Rahm. 2015.
Gradoop: Scalable graph data management and analytics with hadoop. arXiv
preprint arXiv:1506.00548 (2015).

[38] Geon Lee, Minyoung Choe, and Kijung Shin. 2021. How do hyperedges overlap
in real-world hypergraphs?-patterns, measures, and generators. In Proceedings
of the web conference 2021. 3396–3407.

[39] Changji Li, Hongzhi Chen, Shuai Zhang, YingqianHu, Chao Chen, Zhenjie Zhang,
Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, et al. 2022. ByteGraph: a
high-performance distributed graph database in ByteDance. Proceedings of the
VLDB Endowment 15, 12 (2022), 3306–3318.

[40] Chen Luo and Michael J Carey. 2020. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (2020), 393–418.

[41] Xin Lv, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018. Differentiating concepts
and instances for knowledge graph embedding. arXiv preprint arXiv:1811.04588
(2018).

[42] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. 2015.
Llama: Efficient graph analytics using large multiversioned arrays. In 2015 IEEE
31st International Conference on Data Engineering. IEEE, 363–374.

[43] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[44] Sean Martin, Ben Szekely, and Dean Allemang. 2021. The Rise of the Knowledge
Graph. O’Reilly Media, Incorporated.

[45] MaxCompute 2023. MaxCompute: Conduct Petabyte-Scale Data Warehous-
ing. Retrieved October 11, 2023 from https://www.alibabacloud.com/product/
maxcompute

[46] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing subgraph queries by
combining binary and worst-case optimal joins. arXiv preprint arXiv:1903.02076
(2019).

[47] FatemehNargesian, Erkang Zhu, Renée JMiller, KenQ Pu, and Patricia CArocena.
2019. Data lake management: challenges and opportunities. Proceedings of the
VLDB Endowment 12, 12 (2019), 1986–1989.

[48] Neo4j 2023. Neo4j Graph Database Analytics | Graph Database. Retrieved
October 20, 2023 from http://neo4j.com

[49] Neo4j Fabric 2023. Sharding Graph Data with Neo4j Fabric - Developer Guides. Re-
trieved October 25, 2023 from http://neo4j.com/developer/neo4j-fabric-sharding/

[50] Nepture 2023. Amazon Neptune - FullyManaged Graph Database - AWS. Retrieved
October 11, 2023 from http://aws.amazon.com/neptune

[51] Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable
management of RDF data. The VLDB Journal 19 (2010), 91–113.

[52] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and
Jamie Taylor. 2019. Industry-scale Knowledge Graphs: Lessons and Challenges:
Five diverse technology companies show how it’s done. Queue 17, 2 (2019),
48–75.

[53] Ontotext GraphDB 2023. Ontotext. Retrieved October 11, 2023 from http:
//www.ontotext.com/products/graphdb

[54] OpenSPG 2023. . Retrieved October 30, 2023 from http://github.com/OpenSPG/
openspg

[55] Alisdair Owens, Andy Seaborne, Nick Gibbins, et al. 2008. Clustered TDB: A
clustered triple store for Jena. (2008).

3853

http://github.com/FessGo/knowledge-graph-warehouse-bench
http://github.com/FessGo/knowledge-graph-warehouse-bench
http://en.wikipedia.org/wiki/Concept
http://en.wikipedia.org/wiki/Concept
http://flink.apache.org/
https://www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-to-modernizing-data-management-and-integration
https://www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-to-modernizing-data-management-and-integration
https://www.gartner.com/smarterwithgartner/data-fabric-architecture-is-key-to-modernizing-data-management-and-integration
http://en.wikipedia.org/wiki/Google_Knowledge_Graph
http://s2geometry.io/
http://www.gqlstandards.org
https://doi.org/10.48550/ARXIV.2402.14710
https://doi.org/10.48550/ARXIV.2402.14710
http://hadoop.apache.org
http://hadoop.apache.org
http://hive.apache.org
http://docs.janusgraph.org/schema/index-management/index-performance
http://docs.janusgraph.org/schema/index-management/index-performance
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
http://neo4j.com
http://neo4j.com/developer/neo4j-fabric-sharding/
http://aws.amazon.com/neptune
http://www.ontotext.com/products/graphdb
http://www.ontotext.com/products/graphdb
http://github.com/OpenSPG/openspg
http://github.com/OpenSPG/openspg

[56] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.
2023. Unifying Large Language Models and Knowledge Graphs: A Roadmap.
arXiv preprint arXiv:2306.08302 (2023).

[57] Zhenxuan Pan, Tao Wu, Qingwen Zhao, Qiang Zhou, Zhiwei Peng, Jiefeng Li,
Qi Zhang, Guanyu Feng, and Xiaowei Zhu. 2023. GeaFlow: A Graph Extended
and Accelerated Dataflow System. Proceedings of the ACM on Management of
Data 1, 2 (2023), 1–27.

[58] Shipeng Qi, Heng Lin, Zhihui Guo, Gábor Szárnyas, Bing Tong, Yan Zhou, Bin
Yang, Jiansong Zhang, ZhengWang, Youren Shen, et al. 2023. The LDBC Financial
Benchmark. arXiv preprint arXiv:2306.15975 (2023).

[59] QLExpress 2023. alibaba/QLExpress. Retrieved October 11, 2023 from http:
//github.com/alibaba/QLExpress

[60] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[61] Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. 1–10.

[62] Bin Shao, HaixunWang, and Yatao Li. 2013. Trinity: A distributed graph engine on
amemory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 505–516.

[63] SOFAStack 2023. Scalable Open Financial Architecture Stack-Alibaba Cloud. Re-
trieved October 25, 2023 from http://www.alibabacloud.com/product/sofastack

[64] Stardog 2023. Stardog: The Enterprise Knowledge Graph Platform. Retrieved
October 11, 2023 from http://stardog.com

[65] Patrick Stünkel, Ole von Bargen, Adrian Rutle, and Yngve Lamo. 2020. GraphQL
federation: A model-based approach. (2020).

[66] Tugraph 2023. TuGraph the high-performance graph database. Retrieved October
11, 2023 from http://tugraph.antgroup.com

[67] TypeQL 2023. vaticle/typeql - the polymorphic query language of TypeDB. Re-
trieved October 20, 2023 from https://github.com/vaticle/typeql

[68] Jacopo Urbani and Ceriel Jacobs. 2020. Adaptive low-level storage of very large
knowledge graphs. In Proceedings of The Web Conference 2020. 1761–1772.

[69] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An
open source distributed graph database. arXiv preprint arXiv:2206.07278 (2022).

[70] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013.
TripleBit: a fast and compact system for large scale RDF data. Proceedings of the
VLDB Endowment 6, 7 (2013), 517–528.

[71] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2019. Livegraph: A transactional
graph storage system with purely sequential adjacency list scans. arXiv preprint
arXiv:1910.05773 (2019).

3854

http://github.com/alibaba/QLExpress
http://github.com/alibaba/QLExpress
http://www.alibabacloud.com/product/sofastack
http://stardog.com
http://tugraph.antgroup.com
https://github.com/vaticle/typeql

	Abstract
	1 Introduction
	2 Overview
	3 Data Model
	4 Storage Engine
	4.1 LSMTree-based Architecture
	4.2 Property Graph Storage
	4.3 Semantic Graph Storage
	4.4 Updates and Versions

	5 Graph Fabric
	5.1 Graph View
	5.2 Graph Merge Tree
	5.3 Data Security

	6 Graph Analysis
	6.1 The Workloads
	6.2 Query Optimization

	7 Evaluation
	7.1 Datasets
	7.2 Storage Space
	7.3 Graph Analysis Performance
	7.4 Graph Fabric Scalability

	8 Related Work
	9 Conclusion
	References

