TDSQL: Tencent Distributed Database System

Yuxing Chen Anda Ye
Anqun Pan” Shuo Han
Hailin Lei Yan Tang
Tencent Inc. Tencent Inc.
{axingguchen,aaronpan, {andaye,shuohan,

harlylei}@tencent.com

ABSTRACT

Distributed databases have become indispensable in contemporary
computing and data processing, owing to their pivotal role in en-
suring high availability and scalability. They effectively cater to the
requirements of data management and high-concurrency access.
However, developing a distributed database system that is well-
suited for diverse application scenarios, particularly for large-scale
applications, presents several challenges. These challenges include
ensuring data consistency and achieving high levels of performance.

This paper presents TDSQL, a distributed database system that
prioritizes core design principles of distributed systems, including
high availability, strong consistency, and scalability. In particular,
TDSQL has achieved high performance through over a decade of
practical experience and optimization in various modules, such
as the kernel, synchronous replication, and transaction process-
ing, in large-scale application scenarios. By conducting the TPC-C
benchmark test, TDSQL demonstrated outstanding performance,
achieving a throughput of 814 million tpmC across 1650 database
nodes, with a jitter rate of less than 0.2%. This jitter rate is an order
of magnitude lower than the standard required, showcasing the
system’s stability and reliability. During the 8-hour TPC-C standard
stress test, TDSQL successfully completed over 860 billion trans-
actions and processed 40 trillion order details, with zero forced
rollbacks and zero data inconsistency.

allenytang}@tencent.com

PVLDB Reference Format:

Yuxing Chen, Anqun Pan, Hailin Lei, Anda Ye, Shuo Han, Yan Tang, Wei
Lu, Yunpeng Chai, Feng Zhang, and Xiaoyong Du. TDSQL: Tencent
Distributed Database System. PVLDB, 17(12): 3869 - 3882, 2024.
doi:10.14778/3685800.3685812

1 INTRODUCTION

In recent years, the exponential growth in data volume and com-
plexity has led to performance challenges for traditional centralized
databases. Distributed database systems have emerged as a promis-
ing solution, offering high scalability [12, 15, 26, 55], availability
[9, 60, 61], and performance [18, 32, 43, 50, 71, 80]. However, in
distributed scenarios, new challenges arise, such as the trade-off
between performance [46, 53] and consistency [8, 17, 54, 64, 70].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685812

*Anqun Pan is the corresponding author.

Wei Lu
Yunpeng Chai

Feng Zhang
Xiaoyong Du

Renmin University of China Renmin University of China

3869

lu-wei@ruc.edu.cn
ypchai@ruc.edu.cn

fengzhang@ruc.edu.cn
duyong@ruc.edu.cn

Tencent Distributed SQL (TDSQL), developed by Tencent Cloud
[13], is a database systa specifically designed to address the per-
formance requirements of large-scale applications, e.g., e-commerce
and banking scenarios, while also ensuring consistency, including
strong synchronization [22, 44, 53, 59].

TDSQL is specifically designed to deliver high-performance and
reliable databases for enterprises of all sizes. TDSQL has undergone
iterative developments and meticulous optimizations to enhance
its distributed functionalities, particularly focusing on improving
distributed transaction processing capabilities. A noteworthy char-
acteristic of TDSQL is its share-nothing architecture, which facil-
itates horizontal scaling across multiple nodes. This architecture
empowers TDSQL to effectively handle substantial data volumes
and manage high concurrency, with performance scaling that ap-
proaches linearity. Our TPC-C benchmark test has demonstrated
the capability of TDSQL in efficiently processing data exceeding
the 10 PB threshold while maintaining scalability on a single cluster
equipped with over 100,000 physical cores. As an increasing num-
ber of financial industry enterprises, such as banks and securities
firms, adopt TDSQL, it also offers a range of advanced features to
ensure high availability. These features encompass auto-failover,
data replication, primary-secondary switching, and recovery [79].

TDSQL was officially launched on Tencent Cloud [13] and has
gained widespread adoption across 30,000 enterprises in various in-
dustries, including e-commerce, finance, government, and telecom-
munications. As a result, it has emerged as the market leader in
China’s distributed relational database market [30]. Significantly,
TDSQL holds the distinction of being the first domestically de-
veloped database in China to be utilized in both internet-based
distributed banking core systems and traditional banking core sys-
tems. It has also played a pioneering role in assisting domestic
banks with migrating their core systems from centralized to dis-
tributed architectures. Currently, 7 out of the top 10 banks in China
have already adopted TDSQL for services such as deposits, loans,
payments, general ledger, and common operations.

This paper shares our experiences in designing, developing, and
optimizing the TDSQL, a large-scale distributed database system.
We conducted the official TPC-C benchmark test [58] on TDSQL.
The results were impressive compared to open reports [57], as TD-
SQL achieved a remarkable performance of 814 million tpmC across
1650 database nodes (surpassing the second place by 15% overall
and 8% per node) with a jitter rate less than 0.2%, which is an order
of magnitude lower than the standard required. Throughout the
8-hour stress test, TDSQL demonstrated exceptional performance
by handling a staggering volume of over 860 billion transactions
and processing an astonishing 40 trillion order details, all without

https://doi.org/10.14778/3685800.3685812
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685812

Services

Operations and
maintenance

Real-time Performance
monitoring analysis

‘ Cluster heath

! Audit services diagnosis

Compute layer

: Data migration
SQL rewrite ‘ | |

system

Fault migration :
3 Resource scheduling ‘
1 Capacity scheduling

| Data validation !

Data subscription Storage layer

' ' Noshard cluster
. Data governance |

Backup system
Physical backup
Logical backup
Data recovery

SQL firewall Resouce layer

Physical machine ‘ ‘ Virtual machine ‘

Figure 1: System design overview.

! Injection detection. !

a single transaction of forced rollback or inconsistency. In Tencent
Cloud deployments, TDSQL proved to be highly cost-effective dur-
ing the TPC-C test, with a remarkably low cost of 1.27 CNY/tpmC,
which is only one-third of what comparable vendors offer.
The main contributions of this paper are summarized as follows:
e We introduce the core design and architecture of the TDSQL
distributed database system. (Section 2)
o We detail implementations and optimizations of various
modules in TDSQL. We focus on practical experiences gained
from large-scale application scenarios. (Section 3)
e We conducted the official TPC-C benchmark test on TDSQL,
achieving remarkable performance in terms of throughput
(tmpC) and cost (price per tpmC). We also demonstrate our
advantages via the real workload of the banks. (Section 4)

2 DESIGN OVERVIEW

Our primary focus is on designing TDSQL to facilitate rapid scale-
out on commodity hardware, ensuring high performance for large-
scale concurrent transactions and complex queries. Also, we aim to
maintain data consistency and high availability even in the pres-
ence of hardware failures or other extreme scenarios. This section
introduces our system design, core architecture, and applications.

2.1 System Design

Figure 1 shows the design overview of TDSQL, as follows:
Resource Layer. Starting from the bottom, the resource layer is
the IaaS layer service, which can be physical machines or virtual
machines, enabling TDSQL to manage the database instances.
Storage Layer. The storage layer, on top of the resource layer,
emphasizes two storage forms in TDSQL: Noshard and distributed.
Noshard is a centralized database, which supports high availability,
data consistency, and 24/7 automatic failover. The distributed one
additionally provides horizontal scalability.

Compute Layer. The compute layer, on top of the storage layer,
serves as the computation engine. The compute layer primarily han-
dles SQL-related processing, such as lexical analysis, syntax parsing,
and SQL rewriting. This layer does not store data but focuses on
real-time SQL computation, making it more CPU-intensive.
Management Layer. With management layer, DBAs can operate
TDSQL via a web interface without the need to log in to the back-
end. The management platform allows for the management of the
distribution, scaling, and migration of compute and storage nodes.
Intelligent DBA. When faults occur, Intelligent DBA (e.g., [3])
nodes can try to analyze the causes of the faults, and identify reasons

3870

\L SQL Compute Engine

Txn Manager —> !

Connection Pool
Parser ——> Optimizer —>| !

Figure 2: System core architecture.

for slow SQL queries, sudden IO abnormalities, or machine failures.
For example, SSDs experience an aging process, resulting in slower
response times. It can also tune performance parameters [25, 40, 76].
Others. There are several other supporting and managing modules.
For example, the scheduling system is responsible for overall re-
source scheduling, including adding and deleting database instances
There is also a backup system, which serves as a cold backup center,
supporting distributed storage systems such as HDFS and mount-
able distributed storage like Ceph [68]. We also provide auxiliary
service modules, such as auditing, database migration services [19]
between TDSQL and other databases, data validation, SQL firewall,
injection detection, and other security-related modules.

2.2 System Core Architecture

TDSQL adopts a core architecture known as storage-compute sep-
aration [63]. As shown in Figure 2, the core architecture consists
of three key parts: storage, compute, and management. TDSQL is
built upon TXSQL [14], an open-source MySQL branch maintained
by Tencent, which is fully compatible with MySQL’s syntax and
APIs. Figure 2 shows the key functionalities related to our opti-
mizations in the SQL engine and data node. It includes numerous
optimizations and fixes (e.g., consistency issues in § 3.3.1), extensive
development (~3 million lines of code) of distributed features (e.g.,
physical replication in § 3.1 and lock optimizations in § 3.3.2), and
performance enhancements specific to distributed properties (e.g.,
memory model optimization in § 3.3.4). A description of the core
architecture is provided below.

Management Module includes the Scheduler cluster, which helps
users automatically schedule and run various types of jobs [81],
such as primary-secondary switches, managing resource additions
in replication instances, or collecting monitoring data. TDSQL com-
bines Scheduler and ZooKeeper [28] to activate specified resource
plans within a time window, fulfilling various complex resource
and job management requirements.

Storage Module consists of Set units, including Data nodes and
Agents. Data nodes store replicas, and in high availability scenarios,
a Set often contains one primary replica and two secondary replicas,
across three physical nodes. Agents are auxiliary modules that

primarily monitor the health of Data nodes, report heartbeats to
ZooKeeper, report resource usage, table size, access frequency, etc.,
monitor primary-secondary replication and data synchronization,
and perform tasks such as migration, table consistency checks, and
mirror backups. Data node refers to an InnoDB-like storage engine,
which primarily includes a buffer pool for caching data and indexes,
a redo log for primary-secondary synchronization and recovery.
Compute Module includes account authentication, connection
management, SQL parsing, and route allocation. It is designed with
a distributed architecture and parallel computation ability. It en-
capsulates functionalities such as permission verification, lexical
analysis, syntax parsing, and distributed transaction control. In dis-
tributed scenarios, the TDSQL’s SQL engine is also responsible for
handling distributed transactions and maintaining globally unique
auto-increment fields.

2.3 Application Scenarios

This paper primarily focuses on OLTP scenarios, including:

1) E-commerce: A significant application is in e-commerce transac-
tions, akin to billing services, such as serving Tencent’s “Honor of
Kings” [56], a game with daily active users exceeding 100 million
and daily transactions surpassing 10 million. These operations, in-
cluding in-game item purchases, require real-time processing to
ensure smooth gameplay and optimal user experience.

2) Finance: One of the key external financial clients is the bank. Ac-
cording to public data from the China Banking Association in 2019,
Chinese banks process approximately 6.9 billion transactions daily,
including deposits, withdrawals, transfers, and payments. These
transactions require real-time processing and recording in the data-
base. Banks also manage a vast amount of customer information,
including personal details, account information, and credit data.
3) Online payment: TDSQL facilitates internal WeChat red packet
payments within Tencent. Users can send red packets (monetary
blessings) to others via WeChat Pay [65]. During the traditional
Chinese New Year’s Eve, we successfully handled a peak TPS of
14 million for red packets, with a total number of red packet ex-
changes reaching billions on that particular day. Moreover, with a
monthly active user base exceeding 1.3 billion, WeChat Pay’s daily
transaction volume has already surpassed one billion.

TDSQL has been designed to meet the demands of these critical
applications, featuring over 99.999% availability, strong data consis-
tency [8, 22], high scalability through a share-nothing architecture,
and high performance at a low cost.

3 IMPLEMENTATION AND OPTIMIZATION

In this section, we will provide a detailed explanation of the imple-
mentation and optimization of our key features. An overview of
these implementations and optimizations is depicted in Figure 3.

3.1 High Availability

3.1.1 Physical Replication. Traditional logical replication, such
as the key feature found in MySQL [46], offers a comprehensive
ecosystem and supports various storage engines. However, its de-
sign, which relies on independent server-level logs, necessitates
XA transaction coordination with the engine layer. In this design, a
transaction requires two fsync function calls for persistence, and the

3871

,,,,,,,,, DBrnode#d .
SO00000 DB node #2
stxsni D;;tirzll;:i:d > Distributed transactions er"zigtgff:; d :
HEE DB node #1 ‘
. 3.3.1 Kernel Optimizer

. optimization
3.3.2 Lock
optmization

! 3.3.3Batch

: 4 Parser
. execution

Txn manager <———————————

! 3.1.1 Physical

[5! Log manager 3.3.4 Memory |
I plication . . optmization
B 3.2 High Node management system) P

scalability Database log synchronization system 82 St.ron.g
---------------- - : synchronization |

Figure 3: Overview of system optimizations.

sequential writing of binlog files can easily become a bottleneck,
limiting system throughput. Despite attempts to reduce latency
through methods like parallel replication [34, 79], MySQL and sim-
ilar solutions still struggle to effectively reduce latency for large
transactions or DDL operations. This limitation arises from the
fact that binlog is written to the file only upon transaction com-
mit. Moreover, despite ongoing efforts by the MySQL community
to enhance logical replication, numerous bugs [42, 78] (including
those introduced by new features) often result in data inconsisten-
cies between primary and secondary replicas. Binlog replication
fails to detect data inconsistencies caused by unexpected events
like primary-secondary switches. When replication is interrupted,
the general approach is to skip the problematic part or redo the
secondary replica, both of which incur significant costs.
Solution. To address this, TDSQL has developed a solution for
physical replication, which utilizes redo logs for synchronization
among multiple nodes, offering three key benefits: (i) Transaction
commits now require only one commit log persistence (one fsync).
Without the binlog bottleneck, we can significantly enhance the
DML throughput of both individual nodes and entire clusters. (ii)
Data updates can be synchronized while execution is in progress.
Typically, when a statement is executed on the primary database, the
corresponding log is simultaneously transmitted to the secondary
replica and begins execution [7, 10]. (iii) The solution ensures the
correctness of each applied log on the physical storage and guaran-
tees consistency between the primary and secondary replicas via
strong synchronization (will be discussed later). Figure 4 shows the
architecture of physical replication with a three-replica setup:

1) Primary Replica: It contains the newest data and handles all read
and write requests. During the execution of a specific transaction,
the User session generates transaction logs, which are then copied
to the global Log buffer. A dedicated Log writer thread writes these
logs to the Log file and copies them to a Copy buffer circular queue.
Additionally, a background Log flusher thread fsyncs the logs to
the disk for durability. When a User session commits a transaction,
it does not immediately return an OK response. Instead, it releases
its user thread and joins a pending Commit queue. It waits for the
logs to be sent to the secondary replica or log replica and receives
an ACK response before actually committing the transaction and
sending an OK response. To facilitate this process, a Listener thread
continuously monitors the UDP package from the secondary replica.
Upon receiving the corresponding ACK response, it parses the

| User session
; 1 Log buffer
ter

Primary replica

Log dump

waiting for

Log dump
Send log
—> Log store

Send ACK

Secondary replica

Distribute logs

1 worker worker worker | | worker !

commit

Send log

Apply logs

Buffer pool

""i'é[iléa&i’”‘

Log replica

Write
Log store ‘ ’

Figure 4: Architecture of physical replication.

ACK Log Sequence Number (LSN) and checks the Commit queue.
If the ACK LSN is greater than or equal to the commit LSN, it
retrieves the corresponding session and sends an OK response to
the corresponding socket, indicating that the transaction has been
successfully synchronized.

2) Secondary Replica: It contains the complete dataset. Upon estab-
lishing a connection with the primary replica, the secondary replica
initiates a Log dump thread on the primary replica. This thread
is responsible for sending logs to the secondary replica. The Log
dump thread reads logs from the Copy buffer based on the last read
LSN. If the Copy Buffer is overwritten, the logs are read from the
Log file instead. The secondary replica stores these logs in its local
disk and returns an ACK response to the primary replica. Upon
receiving the logs from the primary replica, the Log store thread
performs checksum verification and stores the logs in the local
Log file. It then uses the UDP protocol to send the currently stored
log LSN back to the primary replica. Additionally, it wakes up the
Log apply thread, which consists of a Log coordinator thread and
multiple worker threads [51]. The Log coordinator thread reads a
batch of logs (default size is 32MB), parses them, and distributes
them to different worker threads based on the hash of space_id
(tablespace identifier) and page_no (page number). This ensures
that logs belonging to the same data page are executed by the same
worker thread. The Log coordinator thread wakes up the worker
threads and asynchronously reads the next batch of logs for parsing,
storing them in a backup worker hash. Ideally, this setup forms a
pipeline for reading, parsing, and applying logs, thereby improving
overall synchronization efficiency.

3) Log Replica: Similar to the secondary replica in log processing, the
log replica serves primarily for high availability purposes and does
not need to apply the logs. Its main function is to store the latest
logs for backup and recovery. As the log replica only focuses on
log synchronization, it consumes minimal CPU resources, utilizing
around 80% of a single core. Also, it often requires less than 8GB
of memory (e.g., in our TPC-C test), making it highly efficient in
terms of resource consumption.

Optimization & Novelty. To address the issue during planned
switches, we implement a buffer pool warm-up strategy in ad-
vance [36]. Specifically, the primary replica asynchronously dumps

3872

snapshot information of the buffer pool, identifies the hot range
of B+Tree data, and shares this snapshot information with the
secondary replica. The secondary replica then loads the snapshot
information and performs the warm-up process asynchronously by
directly scanning the B+Tree, without executing SQL statements.
By adopting this approach, the impact on QPS is almost negligible,
with less than a 5% decrease within the first minute. This proactive
warm-up strategy significantly mitigates the performance impact
during primary-secondary switching.

When comparing physical replication to binlog-based logical
replication, it is generally observed that adopting physical replica-
tion results in enhanced performance, especially in terms of write
performance and scenarios involving small transaction updates. For
example, through testing under the SysBench [33] update scenario
and TPC-C [58] benchmark, we observed significant performance
improvements of at least 200% and 100%, respectively.

3.1.2 Strong Synchronization. Requesting stronger consistency in
databases can potentially impact performance, and many databases
prioritize performance over strict correctness [22]. For instance,
MySQL supports asynchronous replication, which can introduce
data consistency issues. This lack of consistency is unacceptable in
scenarios that demand zero inconsistency [5], such as the financial
industry. Semi-synchronous replication [15] offers a better solu-
tion, as it ensures data replication through strong synchronization.
However, if the replica fails to respond within a specified time, it
degrades to an asynchronous mode, which still presents consis-
tency concerns. Moreover, semi-synchronous replication has its
own correctness issues and performance deficiencies. For exam-
ple, in scenarios involving inter-data center communication delays
and high network jitter, there can be significant spikes in request
processing. Consequently, these native solutions fail to meet the
requirements of financial scenarios.

Solution. TDSQL introduces a robust synchronous replication
mechanism based on the Raft protocol [48]. In this approach, when
the primary replica receives a query request, it waits for successful
responses from a majority of the replicas before acknowledging
success to the client. For instance, in a configuration with one
primary and two secondary replicas, once a commit request reaches
the primary replica, it must await a successful response from at

Dump
thread

SQL

User ACK
thread

query(T1) read |send log & AQK request | write read
i (il b I) Iy NS
ok(T) m ack(rn
< L}
redolog
relaylog
query(T2) write read |[send log & AQK request [group read
— | XU T wite” | [N
Keep session
ok(T2) redolog ACK(T2)
D Il (o eisishiaisiiietsl o relaylog

Primary replica Secondary replica

Figure 5: Synchronous vs. asynchronous user threads.

least one of the secondary replicas before confirming success to the
client. This strong synchronization is a fundamental feature and
plays a critical role in ensuring data consistency.

Optimization & Novelty. However, the adoption of the waiting
mechanism for strong synchronization leads to a notable decrease in
performance compared to the asynchronous mode, often resulting
in only half of the original throughput. To mitigate this impact, we
have implemented a thread pool that enables the transition from
the previous serial execution of waiting for replica responses to a
dedicated thread called the User ACK thread. This approach allows
the user threads to be freed up to handle other user connections,
thereby improving overall system efficiency and performance.

In Figure 5, we can observe the previous behavior of T1, where it
had to wait for multiple serial synchronous interactions to complete
before releasing the User thread. However, with the introduction
of the User thread asynchronous method, the write operation in T2
only requires the User ACK thread to hold the session. This allows
the User thread to be released, thereby increasing concurrency, i.e.,
the user thread no longer needs to wait for the dashed-line inter-
actions. To further reduce latency, we have implemented group
writing to replay logs in secondary replicas. This optimization con-
tributes to improved performance and reduced latency. Compared
to semi-synchronous replication, which is significantly affected by
network jitter in inter-data center communication, the optimized
strong synchronous replication in TDSQL demonstrates compara-
ble performance and latency to the asynchronous mode.
Failover. After the primary replica fails, the secondary replica and
log replica are checked. If the secondary replica has fewer logs
than the log replica, it connects to the log replica and reads the
missing logs. After applying the logs [45], the secondary replica
forcefully promotes itself to become the new primary using an SQL
statement. Any unfinished transactions are rolled back, and various
background threads are started to initialize the transaction system.
After the secondary replica is promoted to the new primary replica,
the log replica connects to the new primary.

3.2 High Scalability in TDSQL

In situations where the performance or capacity of an instance is
inadequate to meet workload requirements, vertical scaling can be
employed to expand the configuration of the instance. Conversely, if
the instance’s capacity significantly exceeds the workload demands,
scaling down can be implemented to reduce the configuration of
the instance. In the case of a distributed instance, when the com-
puting power or capacity falls short of the workload requirements,

3873

scaling out can be achieved by adding nodes to increase storage or
computing capacity. Both vertical and horizontal scaling operations
can be performed without interrupting services.

Both time-based and range-based sharding approaches may re-
sult in data skew, leading to imbalanced load and data capacity
among shards. This imbalance occurs because data often exhibits
distinct hot and cold characteristics, where the likelihood of ac-
cessing recent orders is much higher than older ones, for instance.
TDSQL typically adopts a hash-based sharding scheme. In this ap-
proach, a specific field is selected for modulo calculation, ensuring
that data is evenly distributed across different physical devices. By
evenly distributing the data, load balancing is achieved, enhancing
system availability and performance.

In practical deployments, the initial setup may involve deploying
a single Manager node as a cost-effective solution due to factors
such as a small cluster size, limited number of instances, or low
workload requirements. However, as the need for system availabil-
ity increases, it may become necessary to scale the management
components. It is worth noting that even if all Manager nodes
go offline, the Data nodes are not heavily reliant on them. This
means that read and write requests to the Data nodes remain un-
affected when the Manager nodes are not functioning, except for
operations related to primary-secondary switching, scaling, and
scheduling. Scaling can be performed manually or automatically.
Manual scaling involves pre-scaling based on periodic workload
scenarios, where adjustments are made in anticipation of expected
changes in workload. On the other hand, automatic scaling relies on
predefined rules, such as high CPU and disk utilization, to trigger
scaling operations automatically.

The scaling process does not interrupt service continuity. Specif-
ically, the scaling process involves several essential steps akin to
those involved in the addition of replication [1, 20], including data
synchronization, data verification, route updating, and deletion of
redundant data. (1) Data synchronization synchronizes data to the
new Set. If the user does not specify which shards to migrate from
which source set to the new set, the system uses an average splitting
method, such as consistent hash to achieve load balancing. (2) Data
verification continuously catches up with data while continuously
verifying data. This process may last for a while. When the delay
difference between two synchronizations is very close, for example,
we set a 5-second threshold. When we find that it has caught up
within 5 seconds, we will enter the route update stage. (3) For route
updating, it is necessary to freeze write requests. At this time, if
there are writes from the workload, the system freezes this request
and retries automatically after the route switch is successful. But
this period will be very short. (4) The redundant data can be deleted
after the route has been updated. Throughout these processes, it is
crucial to consider factors such as load balancing and maintaining
data consistency during updates and deletions.

Optimization & Novelty. To address these considerations, we
have implemented storage layer partition blocking at the storage
layer. This ensures that data will not be written from the compute
layer during route updates, preventing any potential inconsisten-
cies. During the deletion of redundant data, we perform SQL rewrit-
ing at the compute layer. SQL at the computing layer will access data
according to the routing table. SQL rewriting refers to accessing
data according to the new routing table when finding the partition

of the data. For data that is blocked and migrated to other nodes,
the access plan will be rewritten according to the new routing table,
so the blocked data will not be accessed. This ensures that even if
redundant data exists, queries will not return unexpected or incor-
rect results. To manage the deletion effectively, we employ delayed
deletion, which allows for a gradual deletion process, minimizing
any significant IO jitters that could impact live workloads. Also,
with issues during data synchronization, debugging and repairing
can be performed using the redundant data.

3.3 Optimizaiton towards High Performance

In addition to the previously discussed aspects of high availabil-
ity, strong consistency, and scalability, we have made significant
efforts to enhance stability and performance through various fixes,
implementations, and optimizations. In the following parts, we will
provide a comprehensive description of these improvements.

3.3.1 Kernel Optimizations for Consistency. TDSQL has undergone
a series of bug fixes to ensure its consistency and stability, as the
performance becomes meaningless without the assurance of consis-
tency. To verify the correctness of TDSQL, we have implemented
a widely used standard banking transfer function test, similar to
the durability test in the TPC-C ACID test [58] or the Jepsen test
[6, 27, 31]. The test program begins by loading a substantial amount
of fictitious account information into the system. It then initiates
numerous connections and concurrently executes a multitude of
money transfer transactions between users. The objective of this
test is to ensure that the total balance of all accounts remains con-
sistent and that each row on both the primary and secondary repli-
cas is identical. To comprehensively assess the system’s resilience,
the test program intermittently and randomly terminates various
components during the test runtime, including database processes,
gateway processes, agents, and even itself on the primary replica.
This testing has enabled us to identify multiple bugs in TDSQL.
A number of these bugs were likewise detected in MySQL and
reported to the official team, subsequently confirmed, and fixed
[42, 78], including bugs found in the combination of distributed
transaction processing (e.g., #109831, #87130, #84499), replication
(e.g., #87560, #87389), and thread safety (e.g., #99643).

3.3.2 Lock Optimization. To effectively manage the parallel execu-
tion of a large number of transactions on each node, it is essential
to address the bottlenecks caused by locking [24]. To achieve maxi-
mum concurrency, TDSQL has implemented extensive optimiza-
tions. These optimizations target various levels of locks, including
table, row, transaction ID, and Purge. The following will delve into
each optimization in detail, aiming to simplify the locking mecha-
nism, reduce conflicts, and improve overall system efficiency.

Removal of Table-level Locks. InnoDB’s table-level locks can
cause unnecessary conflicts and complexity due to the existing
Metadata Locks (MDL) at the server level. These locks, except for
AUTO_INC, have corresponding MDL locks, allowing for their safe
removal. However, in the case of unfinished transactions recovered
from crashes, MDL locks are necessary for transaction rollback.
During crash recovery, a Thread Handler (THD) object is generated
for each recovered transaction, and an MDL lock is added. This
process is delayed until the MDL lock system is fully established,

3874

and the MDL lock must be released once the transaction rollback is
completed to ensure ongoing transactions.

Partitioning of Row-level Locks. InnoDB uses locking mech-
anisms during update operations, storing lock objects in a hash
table and requiring a global lock for integrity. These lock objects
are stored in a hash table, where the key value is derived from
the space_id and page_no of the updated record. This causes con-
tention on the associated mutex. A solution is to divide the global
lock into multiple mutexes, each protecting a specific hash cell
segment, reducing contention. This division is based on the natural
distribution of lock objects across different hash cells, determined
by the space_id and page_no. Deadlock detection uses a separate
thread, acquiring mutexes involved in the deadlock cycle and per-
forming duplicate verification due to the absence of a global lock.
This optimization improves the performance and scalability of the
locking mechanism, especially in DML operations.

Lock-free Transaction ID Management. InnoDB uses a global
transaction ID array for the MVCC mechanism [69], tracking trans-
action IDs throughout their lifecycle. However, adding and remov-
ing IDs from the array requires a global lock, introducing perfor-
mance overhead, especially in short transactions where conflicts
are more likely. To address this, we have implemented a lock-free
hash table [52], focusing on three fundamental operations: insertion,
deletion, and traversal of the hash table. Instead of relying on linked
list operations, we have replaced not only the global array but also
the read-write transaction list and transaction object trx_t:no list
with hash table operations. When a transaction is initiated and
assigned a transaction ID, it is inserted into the lock-free hash ta-
ble. The transaction ID serves as the key value in the hash table,
while the stored object includes the transaction number (distinct
from the transaction ID allocated during the prepare phase), the
transaction object itself, and the mutex responsible for protecting
the object. During the transaction prepare phase, the transaction
object trx_t::no is directly updated. Upon transaction commit, the
corresponding object is removed from the lock-free hash table. To
determine the global minimum transaction ID, traversal of the lock-
free hash table becomes necessary. However, when the hash table is
considerably large, the traversal process can consume a significant
amount of CPU resources. To address this, the hash structure has
been optimized for CPU performance, such as aligning cache lines
and relaxing unnecessary memory barriers.

Lock-free Scheduling of Parallel Purge Threads. InnoDB em-
ploys a single Purge thread to handle the cleanup of undo logs and
discarded index records. However, this approach often proves inef-
ficient under high-load conditions, during the Purge, two specific
areas become hotspots for lock contention: (i) acquiring a global
lock when waking up worker threads and (ii) acquiring a global
lock when worker threads retrieve tasks from the task queue.

The contention for these locks introduces additional CPU over-
head, which hampers the overall efficiency of the Purge thread.
To address this, we replace the large lock with smaller locks and
transform the lock queue into a lock-free queue, enabling multiple
Purge threads. Specifically, during Purge execution, the main thread
first parses the undo logs and generates a collection of tasks. Then,
the worker threads are awakened. Since the number of worker
threads remains constant throughout the runtime of the instance, it
becomes feasible to convert the global lock into smaller locks held

by the worker threads for the wake-up operation. Regarding the
tasks in the task queue, their number does not exceed the number
of worker threads. Therefore, it becomes possible to assign specific
partitions in the task queue to each worker thread, thereby avoiding
conflicts with other worker threads.

3.3.3 Batch Execution with tdsql_returning Syntax. Through anal-
ysis of workload scenarios (e.g., TPC-C), we have observed that
certain transactions frequently involve a sequence of operations
that combine update+ or delete+ with select on the same data item.
This execution often necessitates two separate SQL statements. To
optimize this, we have introduced an approach known as the td-
sql_returning syntax. This method allows us to directly return the
results of updates and deletions, thereby reducing the overhead of
an additional select statement.

The optimization has been implemented by: (i) Support for the
tdsql_returning syntax is extended in update and delete statements.
This syntax is then followed by the select query field syntax, which
is semantically equivalent to concatenating the select fields of the
update or delete table after tdsql_returning. (ii) During the syntax
analysis phase, preprocessing is performed on the newly added
syntax nodes. Before execution, the query fields in the syntax tree
are checked for the presence of a tdsql_returning node. If such a
node exists, preprocessing is conducted on the query fields, which
may involve replacing asterisks with the appropriate fields. (iii)
During the execution phase, the decision to send the result set to
the client is determined based on the syntax tree. If necessary, the
metadata of the result set fields is sent first, followed by transmitting
the processed data to the client.

3.3.4 Memory Optimization. In our upcoming TPC-C benchmark
tests, we have a demanding requirement for the database to support
concurrent access from 640 million clients. To achieve this, each
database node must be capable of efficiently handling hundreds of
thousands of database connections simultaneously.

Optimizing Network Model for User Connections. Traditional
methods like one thread per connection or using a thread pool
present challenges: (i) Limited machine ports due to each connec-
tion needing access to all Data nodes. (ii) High network latency and
CPU strain due to numerous small network packets. (iii) Perfor-
mance decline after 20,000 concurrent connections due to thread-
switching overhead. (iv) Significant memory overhead, with each
user connection in the TDSQL kernel consuming about 3MB of
memory, leading to low cache hit rates and poor performance. (v)
Limited horizontal scalability as network and thread resource over-
head grows exponentially with more nodes.

To address this, optimization of the network model is proposed
as follows: (i) Transformation of the database transmission protocol:
We introduce an asynchronous multiplexing approach by adding a
connid field in the protocol header. This enables the maintenance of
multiple client transaction sessions within a single TCP connection.
Consequently, connection reuse at the session layer is achieved,
reducing the required TCP connections per primary Data node
from 1,200 to 24. As a result in our TPC-C test, the number of con-
nections per Data node is significantly reduced to only 11,880. (ii)
Refactoring of the network module: We refactor the network mod-
ule of the database from blocking I/O to non-blocking I/O based
on the epoll mechanism. This involves implementing dedicated

3875

read and write threads to handle data packet read, aggregation,
unpacking, and other operations. By decoupling network I/O from
workload SQL operations and utilizing lock-free memory queues
for efficient data communication, we significantly improve packet
aggregation capabilities. This ensures that the overhead of network
I/O remains within 5% of the total CPU overhead. As the testing
cluster scales, the number of connections grows linearly without
exponential growth, providing a solid foundation for horizontal scal-
ability. (iii) Additional optimizations for connection reuse: We have
implemented various optimizations related to connection reuse,
such as determining the maximum number of clients that can reuse
a single connection, defining mechanisms for terminating specific
sessions, and addressing packet interleaving issues.

Optimizing Memory Utilization and Stability. Memory-related
challenges arise in two main areas within the large-scale system: (i)
Each THD independently caches resources like stored procedures,
leading to substantial memory overhead under high concurrency
scenarios. (ii) Dynamic memory allocation during SQL execution
can occasionally cause spikes in memory usage, particularly when
resources are limited. To tackle these challenges, TDSQL imple-
ments the following optimizations.

Resource sharing has been transitioned from the session level
to a global level. Previously, if parsing a stored procedure required
500K of memory and there were 50,000 connections, it would con-
sume a staggering 23 GB of memory. However, by implementing
global sharing and limiting the actual concurrency to 256, the re-
quired cache amount is reduced to within 1 GB, resulting in approx-
imately 0.5 GB of actual memory consumption. To resolve resource
conflicts in a multi-threaded environment after achieving global op-
timization, lock-free hash mechanisms are employed, as discussed
previously. These mechanisms ensure performance comparable to
that of a local cache while effectively managing resource conflicts.
In our TPC-C test, the overhead of shared resources, which initially
approached 300GB, has been successfully reduced to approximately
30 GB. This substantial reduction greatly enhances memory utiliza-
tion within the system.

Another noteworthy aspect is the periodic fluctuation in mem-
ory usage observed during the stress tests, occasionally resulting in
spikes. This phenomenon also affects the jitter rate requirements of
the TPC-C test. To address this, we employ the use of ebpf to capture
the stack traces of all memory allocation points throughout these
stress tests. Then, we implement memory pooling techniques to con-
solidate all dynamic allocations, effectively eliminating the spikes
caused by memory management issues. Different from MySQL’s
memory pooling, we, based on latency profiling, found parts that
impact performance during memory allocation. Then, allocating
these more impactful modules through the memory pool can effec-
tively prevent memory stalls. This approach reduces transaction
latency (by 5% by TPC-C test) as well as is successful in resolving
occasional stalls that occur during the memory allocation phase,
which effectively reduces throughput jitter.

3.3.5 Distributed Transaction Optimization. Addressing distributed
transactions introduces a set of challenges that are not encountered
in a single-node environment. It necessitates careful consideration
of various complex scenarios and the ability to effectively han-
dle them. For instance, it requires managing unreliable networks

across multiple nodes, handling primary-secondary switching, and
addressing node failures while ensuring data consistency even in
diverse fault recovery environments.

TDSQL incorporates a widely adopted two-phase commit (2PC)
protocol [4] for distributed transactions. The native XA solution,
while widely used, can result in data inconsistency and loss during
primary-secondary failover [78]. To improve, we leverage the 2PC
protocol for cross-node transactions and optimize the commit pro-
cess using group commit techniques. For transactions that do not
span multiple nodes, we can utilize the one-phase commit proto-
col, eliminating the need for prepare and coordination steps. This
further streamlines the transaction process. In comparison to the
native XA solution, which achieves only about half the per-node
tpmC, TDSQL has undergone a series of optimizations and bug
fixes. In a 1650-node TPC-C test, TDSQL maintains over 75% of the
per-node tpmC observed in a single-node test and maintains over
93% of the per-node tpmC observed in a three-node test.

3.3.6 Global Consistent Read. In a single-node environment, estab-
lished solutions exist for attaining read consistency. For instance,
InnoDB employs the MVCC mechanism, which relies on the visi-
bility view (Read view) of the active transaction chain [46]. Simi-
larly, RocksDB determines visibility based on LSN (Log Sequence
Number) [18]. However, in a distributed setting, addressing the
global consistent read becomes more intricate due to factors such
as partition locations and network conditions. Achieving global
consistent read in such scenarios necessitates the consideration of
multiple complex factors. Failure to achieve global consistent read
is often regarded as a critical concern, particularly in the financial
domain where accurate accounting is paramount. TDSQL specifi-
cally addresses the challenges of partition locations and network
conditions in ensuring globally consistent reads by incorporating a
high-performance global transaction component within its kernel.
This component is responsible for node management and Global
Transaction Sequence (GTS). In this system, each transaction is
assigned a GTS by a centralized manager node during both the
initiation and commit stages. When a query request scans rows
in the prepare phase, it waits for the corresponding GTS to com-
mit before conducting visibility checks. During these checks, the
system ensures that the GTS of the current row is either equal to
or less than the GTS of the query, thereby guaranteeing visibility.
If the GTS of the row is greater than the GTS of the query, the
row is considered invisible. However, it’s important to note that a
transaction can read its own write, regardless of the GTS.

The frequency of visibility checks is notably high, and it involves
obtaining transaction status based on transaction IDs. And, this
approach can potentially result in CPU resource wastage due to
uncertain states. Therefore, optimizations are crucial for efficient
implementation. One optimization involves utilizing the GTS of the
prepare state instead of the commit state to enable early visibility
judgments and reduce waiting time [21]. Additionally, an efficient
mapping mechanism is implemented to unify transaction IDs and
global unique timestamps, minimizing interference with TDSQL’s
log and file system while ensuring high performance. Similar to
MySQL’s MVCC, periodic cleanup of logs and data is performed
based on the oldest active transaction [35]. This optimization en-
hances query efficiency and conciseness. Furthermore, we have

3876

Table 1: Machine/instance types.

Type I Type II

Intel(R) Xeon(R) Intel(R) Xeon(R)
CPU model Platinum 8631HC Platinum 8255C
Processor/core/thread 2/48/96 2/48/96
Memory 288 GB 768 GB
OS data disk (HDD) 100 GB 447 GB
Data storage (SSD) 500 GB 12 x 3.5 TB NVMe

1653 machines
HYI12A

990 instances
S5.24XLARGE288

Node number
Tencent Cloud

495 x RTE nodes
96 vCPU
288 GB memory
500 GB disk

495 x Client nodes
96 vCPU
288 GB memory
500 GB disk

100 Gbos

3 x Manager nodes

1650 x Data nodes

96 vCPU 96 vCPU
768 GB memory 768 GB memory
12 x 3.5TB disk 12 x 3.5TB disk

Figure 6: System configuration.

optimized the communication frequency in the two-phase commit
and global transaction processes, aiming to minimize the overhead
associated with introducing global timestamps. The performance
impact of enabling global consistent read is less than 5%.

4 EVALUATION

4.1 Experimental setup

Methodology. In our TPC-C experiment, the testing cluster con-
sists of four roles: (i) Remote Terminal Emulator (RTE) nodes, which
simulate the clients, (ii) Client nodes, responsible for receiving client
requests and communicating with the database, (iif) Manager nodes,
which handle metadata such as routing tables, and (iv) Data nodes,
deployed for storing and computing data. The Client node receives
all requests from RTE and distributes them to the Data node based
on the shard key. Upon receiving a request, the corresponding Data
node executes the SQL statements and sends the results back to the
Client node. The Client node then aggregates all the results and
returns them to the RTE through the Web Server.

Configuration. Two types of machines/instances are selected and
their hardware parameters are listed in Table 1. An overview of the
system architecture is provided in Figure 6. In our deployment, we
utilized a specific configuration consisting of 495 Type I instances
for RTE, 495 Type I instances for Client nodes, 3 Type II machines
for Manager nodes, and 1650 Type II machines for Data nodes. The
Client, Manager, and Data nodes are integral components of the
system under test (SUT), and their costs were calculated for the
benchmark evaluation [57]. Each Data node is equipped with an In-
tel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz x 2 (96 vCPU), 768

Table 2: Initial statistic and 8-hour consumption (Size in GB).

Table Rows Data Index 8H Space
Warehouse 64,003,500 15.00

District 640,035,000 138.82

Customer 1,920,105M 2,378,710 255,114

Item 100,000 30.74

Stock 6,400,350M 4,159,728

New-orders 576,031.5M 35,739

Orders 1,920,105M 172,919 115,766 35,224
Order-line ~19,201,054M 2,646,499 539,098
History 1,920,105M 273,400 55,692

Table 3: Prediction of 60-day disk consumption (Size in GB).

Free space 9,875 Storage per node 42,000
Dynamic space 3,092,819 Total storage 69,300,000
Static space 6,945,244 60-Day space 44,746,160
Daily growth 630,015 Remaining space 24,553,839
Q o : . o 1 €
500 M 4 3 i <---- Measurement intervals 480 minutes ----> g
3t 3
L 600M1 EN =
£ ! | o
ga00mq ! !
1 I
200 M A H !
1 1
0 | 1
0

3600 7200 10800 14400 18000 21600 25200 28800
Time in seconds

Figure 7: 8-hour run new-order throughput versus elapsed
time with 814,854,791 tpmC and less than 0.2% jitter rate.

GB Memory, and 12 SSD disks (3.5 TB NVMe each, RAID0). These
disks are formatted and managed by Tencent tlinux 2.2. The data-
base used is TDSQL v10.3 Enterprise Pro Edition with Partitioning
and Physical Replication. All nodes are deployed on Tencent Cloud.
Overall, the entire SUT comprises more than 100,000 physical cores
(200,000 threads), 1.4 PB memory, and 70 PB disk storage.
Benchmark. To ensure the accuracy and reliability of our eval-
uation, we have followed the standard TPC-C specifications [58].
These specifications provide a comprehensive guideline for imple-
menting the TPC-C benchmark, which allows for fair and repro-
ducible performance evaluations.

4.2 Initial Data and Disk Usage Analysis

The initial database is composed of 64,003,500 Warehouses, and the
scaling of other tables follows a specific proportion as outlined in
the TPC-C specification [58]. Table 2 presents the statistics of the
tables, including cardinalities, data size, and index size.

Upon importing the data, we also assessed the disk usage over-
head. The Orders, Order-line, and History tables are dynamic tables,
meaning that their number of rows and disk usage will increase as
the test progresses. Following the guidelines outlined in the TPC-C
standard [58], we estimated the disk usage for an 8-hour duration
based on the tpmC (transactions per minute) we obtained. The disk

3877

Table 4: Key optimization breakdown by TPC-C.

OPT1: §3.1.1 OPT2: § 3.3.2 OPT3: §3.3.4
Physical replication Lock optimization ~Memory Optimization
100% tpmC T 15% tpmC T 90% memory |

capacity is designed to accommodate data growth for runs lasting
over 60 days, as indicated in Table 3. Specifically, our system has
a disk capacity of nearly 70 PB, with an initial data size of 10 PB.
Based on our estimations, we anticipate that the disk usage will
reach approximately 45 PB within the 60-day timeframe.

4.3 8-Hour Stability Test

Figure 7 depicts the relationship between the tpmC of New-order
transactions and the elapsed time. The benchmark test initiates with
a ramp-up period, during which the system gradually increases
its throughput. After approximately 20 minutes of ramp-up, the
throughput reaches a stable state and remains consistent. The stable
run is measured effectively over a duration of 8 hours (480 minutes),
starting from 20 minutes after the benchmark test’s initiation and
continuing until the 500th minute. Following a ramp-down period
of approximately 20 minutes, the throughput begins to decline until
it eventually reaches 0 tpmC. This pattern illustrates the complete
cycle of the benchmark test, encompassing the ramp-up, stable run,
and ramp-down phases

Comparison with other TPC-C report results. During the
8-hour stability period, the system demonstrated an impressive
throughput of 814,854,791 tpmC for New-order transactions across
1650 Data nodes. This remarkable achievement currently holds the
first place in publicly reported TPC-C benchmarks [57], surpassing
the second-best related work by over 15% in overall performance
and 8% per node. In addition to the 0.1-second delay added to each
transaction as required by the TPC-C, the average latency and 90th
percentile latency for each transaction are both below 0.01 seconds
and 0.02 seconds, respectively, demonstrating the system’s excep-
tional responsiveness. When compared to public reports [57], our
average and 90th percentile latency outperforms related works. To
provide a visual representation of the response time distribution
for New-order transactions, Figure 9a illustrates the New-order
frequency distribution of response times.

TDSQL exhibited remarkable consistency and stability in this
large-scale cluster, with a jitter rate of less than 0.2%, which is an
order of magnitude lower than the standard required. This indicates
the system’s ability to maintain a steady performance over the en-
tire 8-hour duration. Additionally, the test run ensured zero data
inconsistency across more than 860 billion transactions and nearly
40 trillion shopping orders. Remarkably, there were no unexpected
rollbacks observed for any transactions within the 8-hour period.
Furthermore, we observed that each node in the system could han-
dle up to 1.8 million queries per second (QPS), highlighting the
impressive processing capabilities of the individual nodes.
Performance Optimization Breakdown. The worth-mentioning
optimizations are (1) OPT1: Implementation and optimization of
physical replication, (2) OPT2: Performance savings brought by
various lock optimizations, and (3) OPT3: Significant high scala-
bility performance guarantee brought by memory optimization.

Capture
node's
health

Capture
node's
failure

Capture
node's
health

Failure of a
Primary
Manager Node

Consistency check+
SUM(D_NEXT_O_ID)

Ramp-up Full tpmC Recover

-)

20 mins l

tpmC no effect

Failure of a
Primary
Data Node

Full tpmC

(N——

5 mins \L

tpmC no effect

Capture Capture Capture .

node's node's Failure of node's SCUoMnsg t(le\‘nEc)y(_I?hgcl;S

failure health | aClientNode | failure (D_| _0_ID)
Recover Full tpmC Ramp-down

5 mins l

tpmC slightly drops and no rebounce

Figure 8: The procedures of durability test.

lell
0.116
" —— 90% New-order RT
c 1.0 Avg. RT = 0.107 sec 3 4
o] o !
i % 0.112 H
5057 £ i
S = 1
by 0.1101 !
1
0.01; = : 0.108 - !
0.0 0.2 0.4 60 80 100
Time in second % of MQTh

(a) New-order (b) New-order vs. RT

Figure 9: Frequency distribution of response times (RT).

Table 4 summarizes the key optimization breakdown for perfor-
mance improvement by TPC-C. Compared to the original physical
replication, our implementation of OPT1 significantly improves per-
formance, by over 100%, and even more than 2 times in SysBench
write-intensive scenarios. Various lock optimizations contribute to
an approximately 15% improvement (30% in high-contented scenar-
ios). The memory savings of OPT3 are significant under the InnoDB
B+tree. The larger the buffer pool reserved for InnoDB, the better
the performance. We optimize the network model to save more
than 90% of memory usage for connections, and as the number of
nodes increases, memory usage only increases linearly.

4.4 ACID Test

TDSQL has passed the Atomicity, Consistency, and Isolation tests as
mandated by TPC-C. These tests serve to validate the fundamental
capabilities of the database. Furthermore, the Consistency test is not
only conducted independently but also integrated into other tests,
including the 8-hour stability test and durability test. By verifying
that the total number of orders in the database aligns with the
number of orders recorded by the RTE, the Consistency test ensures
data consistency. The Durability test focuses on the system’s ability
to prevent data inconsistency in the event of machine failures. This
test entails simulating the instantaneous loss of power to one node
in the Client, Manager, and Data nodes.

As shown in Figure 8, the Durability test initiates with a consis-
tency check, where the total number of orders (N1) is recorded by
examining the next order ID from the District table (D_Next_O_ID).
Once the RTE is launched, the test enters the ramp-up phase, and
within 2-3 minutes, an observable increase in tpmC can be observed.
After 10 minutes, the performance stabilizes and remains consis-
tent for the subsequent 20 minutes. Then, the power to the primary

3878

le8
84 X
6 -
(¢]
24 .
X
01x*
0 500 1000 1500 3 60 200 1650
#Node #Node

(a) New-order tpmC (b) tpmC Per node

Figure 10: Scalability.

Manager node is intentionally disconnected to simulate a failure.
Remarkably, this failure does not impact performance, as another
Secondary Manager seamlessly assumes the role of the new pri-
mary Manager. Following a smooth operation for five minutes, the
power to a randomly selected primary Data node is disconnected
to simulate its failure. Although performance experiences a slight
decline, the primary-secondary switch is completed within a mere
18 seconds. Note that the recovery in the Recover phase is com-
pleted in seconds, but we will wait a longer period for the Full tmpC
observation as required by TPC-C audit. After another five minutes
of stable run, the power to a random Client node is disconnected to
simulate its failure. This leads to a slight decrease in performance
without any subsequent rebound. Continuing with a smooth run
for an additional five minutes, the test then enters the ramp-down
phase until tpmC reaches 0. Upon completion, another consistency
check is conducted, and the current total number of orders (N2) is
recorded. The difference between N2 and N1 is compared to the
total number of successful orders recorded by the RTE, ensuring
consistency and confirming the absence of any errors.

4.5 Other (50%, 80%) Stress Tests and Scalability

In addition, we conducted tests to assess the system’s performance
under various stresses imposed by the RTE (Real-Time Environ-
ment). This was accomplished by manipulating the number of query
requests, such as reducing the number of warehouses or decreasing
the count of RTEs. Figure 9b illustrates the 90th percentile latency
of the New-order transaction under different stress levels by con-
trolling the percent of Maximum Qualified Throughput (MQTh).
As the stress intensifies, the 90th percentile latency also exhibits an

Table 5: Comparison of TDSQL to a centralized database (OP3).

Database System TPS Server W1 w2 W3 W4 W5 Cost
TDSQL 6200 16"x86 machine 300ms 100ms 20s 14min 16min $
OoP3 8000 1*Mainframe 70ms 30ms 60s 60min 180 min $$$%

Table 6: Comparison of POC against two opponents (OP1 and
OP2) by TPS (txn/S). The statistics (response time (RT) (S),
and CPU and memory utilization) are collected.

Parameter TPS comparison TDSQL-statistics
No. | THD | TDSQL OP1 OP2 | RT CPU Memory
50 31.2 199 142 |16 96% 213%
W1 | 100 50.6 34.1 23.9 20 13.0% 21.9%
200 71.0 52.6 327 | 28 17.0% 23.1%
50 65.8 454 287 | 08 132% 81.7%
W2 | 100 105.0 73.1 46.8 09 21.5% 82.0%
200 152.3 1023 654 | 1.3 33.2% 82.6%
50 281.5 81.5 186.4 | 0.2 15.7% 82.0%
W3 | 100 471.1 156.9 2998 | 0.2 26.8% 82.3%
200 691.4 2653 4378 | 0.3 41.6% 82.9%
50 292.6 220.1 1059 | 0.2 7.0% 82.1%
W4 | 100 475.7 369.9 181.2 | 0.2 10.9% 82.2%
200 665.1 468.3 2764 | 0.3 155% 82.5%
50 82.6 64.4 42.4 0.6 144% 82.1%
W5 | 100 133.6 108.0 746 | 0.7 23.9% 82.4%
200 201.8 149.7 1139 | 1.0 385% 83.0%

upward trend, indicating that the system’s performance remains
stable and aligns with our anticipated expectations.

We conducted tests using different node configurations, specifi-
cally with 3, 60, 200, and 1650 nodes, as illustrated in Figure 10a. The
results indicate that the system exhibits nearly linear scalability,
with its performance showing no signs of reaching a bottleneck.
Furthermore, Figure 10b demonstrates that as the number of nodes
increases, there is a slight decrease in tpmC per node. For instance,
with 3 nodes, the tpmC per node is 0.53 million, while with 1650
nodes, it remains at a level of 0.49 million. This result surpasses
other comparable publicly reported TPC-C results [57] by more
than 8%. Even with 1650 nodes, the single-node QPS (Queries Per
Second) level remains remarkably high, reaching 1.8 million.

4.6 Case Study of Bank Workloads

Performance Advantage — POC of Bank Workloads. To win
the bid in banks, database vendors are required to conduct Proof of
Concept (POC) tests using real workloads to evaluate the function-
ality and performance of their databases. TDSQL often competes
with at least two other vendors, and generally, to secure the order
needs to demonstrate superiority in the majority of workload sce-
narios. Below is a successful case from our POC tests in a bank using
real workloads. The testing environment consisted of 8 x86 servers,
each with 2*48 CPUs, 2*32 GB memory, and 3*2TB SSDs. Tested
workloads are (W1) Loan Disbursement (write-intensive workload),
(W2) Current Account Transfer (a mix of read and write operations),
(W3) Transaction History Inquiry (read-intensive), (W4) Account
Information Inquiry (read-intensive), and (W5) Second-Generation

3879

Payment Single Entry Accounting (write-intensive). W1 and W2
belong to the intensive write workload (e.g., on payday, when most
companies pay employee salaries on a certain day at the beginning
of the month), W3 and W4 belong to the read consistency workload
(banks typically need to verify daily income and expenditure bal-
ances and reconciliation data to ensure consistency). W5 belongs
to the highest throughput without abort workload (the maximum
performance without abort, which is different from the regular
pursuit of maximum performance).

In this POC, we conducted tests under various thread counts
(THD=50,100,200) as per the bank’s requirements. As illustrated in
Table 6, TDSQL outperformed the anonymous competitors OP1 and
OP2 by demonstrating a higher TPS under transactional (W2, W5),
write-intensive (W1), and read-intensive (W3, W4) workloads. As
the number of concurrent threads increased, the performance pro-
gressively improved. The CPU utilization rate suggests that there
is potential for further performance enhancement by increasing
the thread count under this configuration. Interestingly, one of the
bank’s requirements was to avoid transaction timeout rollbacks,
hence the user count was not maximized during testing. For in-
stance, we tested the maximum number of concurrent users without
timeout rollbacks using W5. Under a single thread, TDSQL could
support up to 6 concurrent users without any timeout rollbacks.
However, a few timeout rollbacks began to occur when the user
count increased to 7. In contrast, OP1 and OP2 could only support
a maximum of 2 concurrent users under single-threaded operation.
Cost Advantage — Upgrading Centralized Database in a Bank.
Traditional banks often deploy databases on mainframes or mini-
computers, which incur high hardware costs. Some transactional
and analytics workloads are slow and difficult to scale. The follow-
ing introduces a comparison of the advantages of TDSQL upgrading
a centralized database (OP3). The test environment for TDSQL uses
traditional x86 servers of 16 DB nodes (each with 96 CPU, 265 GB,
2T SSD). Tested workloads are (W1) Core High-Frequency Transac-
tions (a mix of read and write operations), (W2) Core Transaction
Inquiry (read-intensive), (W3) Batch Disbursement and Deduction
of 10,000 Transactions (write-intensive), (W4) End-of-Day Batch
Analysis (read-intensive), and (W5) Interest Settlement for Deposits
and Loans (a mix of read and write operations).

As shown in Table 5, when compared to OP3, TDSQL’s aver-
age TPS is slightly lower, but the overall cost is only a quarter
of OP3’s. Although latency increases under core transactions and
queries (W1 and W2) due to network latency, the significantly
higher concurrency of the distributed database cluster compared to
the mainframe results in a TPS that is not far off. The latency for W1
and W2 is within the acceptable range for banking transactions. In
non-core transaction and analysis scenarios (W3, W4, W5), TDSQL,
compared to OP3, overcomes certain disk usage bottlenecks thanks
to distributed computing and effective disk expansion utilization,
demonstrating a clear advantage in parallel querying and analysis.

After the upgrade to TDSQL, the bank’s real peak daily throughput
during online periods is 1.2 million transactions. The system re-
source usage rate is less than 5% during online periods and remains
less than 10% even during peak periods of batch processing. Despite
significantly reducing costs, the cluster still clearly possesses the
capacity for future business expansion.

4.7 Insight and Discussion

1) Potential for Performance Improvement. During the test, we found
that memory usage remains a significant bottleneck (with a usage
rate exceeding 95%), while our vCPU usage is only around 60%,
and IO write utilization is about 75%. If memory capacity increases,
there is room for performance improvement. This issue is similar
to cloud vendors’ challenges when selling cloud services in reality.
In some cases, even if the CPU resources are oversold, the overall
CPU utilization rate is still not high. This is because we often need
to physically partition memory capacity, which limits the number
of instances we can sell on a machine due to memory capacity
constraints. We envision enhancing TDSQL by incorporating larger
memory machines, such as those utilizing CXL technology [2], or
adopting a flexible architecture, such as shared storage [82], to
facilitate more efficient resource allocation and utilization.

2) Trade-off Between Throughput and Variation. Various modules of
server hardware have certain failure rates (0.2% from our TPC-C test
experience), especially storage devices such as disks and memory.
In our TPC-C test, we observed that higher stress levels tend to
induce more failures. In our initial tests of the 8-hour stability test,
we aimed for optimal tpmC. However, we consistently encountered
disk or memory failures during the test, resulting in many forced
rollback transactions. As a result, we were sometimes unable to
meet the TPC-C auditing requirements of maintaining a consistent
jitter rate below 2%. This is similar to the requirement of no timeout
rollback transactions in our banking POC testing. To address this
issue, we have intentionally reduced the stress level slightly (e.g., by
5%) to ensure a lower jitter rate (0.2%) during long-duration high-
stress testing. We have also applied similar strategies in real-world
scenarios, where we scale up our resources when the utilization of
certain resources reaches 90% or even 80%. This approach minimizes
the impact on hardware and business workloads.

5 RELATED WORK

Centralized Databases. A centralized database is a database sys-
tem that stores data at a central node. Classic solutions come from
Oracle [49], DB2 [29], and MySQL [46], where data consistency
and integrity are relatively easy to ensure, and the management
and maintenance of a centralized database are relatively simple.
However, there are problems with poor fault tolerance, as there
is no redundant data scattered in different places. There is also a
problem with poor scalability, as the amount of data grows, the
performance of the centralized database may not keep up as the
physical configuration and capacity of a single machine are limited.
Data backup and recovery may be difficult and time-consuming.
TDSQL can be deployed in both centralized and distributed modes,
supporting high availability, scalability, and automatic failover.

Distributed Databases. A distributed database is a database sys-
tem that stores data across multiple physical locations. Data can be

3880

distributed across different nodes on the same network or across
different networks. Distributed databases have high availability
and fault tolerance, and can effectively adjust data distribution, use
parallelism to improve query speed and load balancing. Classic so-
lutions are Google Spanner [15], Oceanbase [71]. Unlike the B-tree
used in TDSQL, Spanner and Oceanbase employ LSM-tree [47],
which offers some space-saving advantages. However, they expe-
rience significant performance jitters due to the LSM compaction.
CockroachDB [55] and YugabyteDB [72] are excellent distributed
databases inspired by Google Spanner, and they use HLC (hybrid
logical clock) instead of the TrueTime API to replace real-time
timestamps. Therefore, their commit wait time must consider the
logical time difference. TDSQL, however, uses the TrueTime API
for timestamp allocation.

Large-scale Application Databases. Large-scale applications can
process and analyze massive amounts of data to extract valuable
insights and information. Snowflake [16, 62] is a widely used dis-
tributed OLAP database system that is based on a shared-storage
architecture, separating storage from computation to achieve inde-
pendent scalability and elasticity. Similar to Snowflake’s architec-
ture, AnalyticDB [66, 73] uses a hybrid storage format [37, 74, 75]
(rather than pure columnar storage) to efficiently support OLAP and
point query queries. These are scenarios that mostly lean toward
OLAP applications [23]. Aurora [60, 61] is a popular OLTP database
that leverages decentralized storage. It separates the storage engine
from the compute engine. To reduce expensive network I/O costs,
Aurora only sends logs instead of actual data pages to the storage
engine. To improve performance, PolarDB[11] utilizes emerging
hardware such as RDMA and 3D Xpoint SSD to reduce network
overhead and transaction commit time, but using new hardware
may result in higher costs [38, 39, 41, 53, 67, 77]. TDSQL deployed a
share-nothing storage-compute separation architecture. This paper
mainly focuses on TDSQL optimizing OLTP applications.

6 CONCLUSION

This paper shares over a decade of experience in the design, de-
velopment, and optimization of TDSQL in large-scale testing and
application scenarios. It covers various aspects such as kernel, syn-
chronization, transaction, query, and memory allocation, detailing
their implementation and optimization. Through the TPC-C bench-
mark test, TDSQL achieved a performance of 814 million tpmC with
a jitter rate of less than 0.2%, an order of magnitude lower than the
standard requirement. During the 8-hour stress test, TDSQL com-
pleted over 860 billion transactions and processed 40 trillion order
details, with zero forced rollbacks and zero data inconsistency.

7 ACKNOWLEDGMENT

We would like to express our sincere gratitude to the anonymous
reviewers for their invaluable comments and insightful sugges-
tions. We also thank Wen Zhang and Weixiang Zhai for generously
providing essential materials. Furthermore, we acknowledge the
dedicated efforts of the TDSQL team, whose development work has
been instrumental in the realization of this project.

REFERENCES

(1]

[2

[

(3]

[4

=

[10]

[11]

[12]

(13
[14]
[15]

[16

(17

[18]

[19

[20]

[21

Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. MorphoSys:
automatic physical design metamorphosis for distributed database systems. Pro-
ceedings of the VLDB Endowment 13, 13 (2020), 3573-3587.

Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin
Jung, Oliver Rebholz, Vincent Pham, Krishna Malladi, and Yang Seok Ki. 2022.
Enabling CXL memory expansion for in-memory database management systems.
In Proceedings of the 18th International Workshop on Data Management on New
Hardware. 1-5.

Amirhossein Aleyasen, Mark Morcos, Lyublena Antova, Marc Sugiyama, Dmitri
Korablev, Jozsef Patvarczki, Rima Mutreja, Michael Duller, Florian M. Waas, and
Marianne Winslett. 2022. Intelligent Automated Workload Analysis for Database
Replatforming. In SIGMOD Conference. ACM, 2273-2285.

Ghazi I. Alkhatib and Ronny S. Labban. 2002. Transaction Management in
Distributed Database Systems: The Case of Oracle’s Two-Phase Commit. J. Inf.
Syst. Educ. 13, 2 (2002), 95-104.

Ahmed Alquraan, Alex Kogan, Virendra J. Marathe, and Samer Al-Kiswany. 2020.
Scalable, NearZero Loss Disaster Recovery for Distributed Data Stores. Proc.
VLDB Endow. 13, 9 (2020), 14291442,

Peter Alvaro and Kyle Kingsbury. 2020. Elle: Inferring Isolation Anomalies from
Experimental Observations. Proc. VLDB Endow. 14, 3 (2020), 268-280.
Panagiotis Antonopoulos, Peter Byrne, Wayne Chen, Cristian Diaconu,
Raghavendra Thallam Kodandaramaih, Hanuma Kodavalla, Prashanth Pur-
nananda, Adrian-Leonard Radu, Chaitanya Sreenivas Ravella, and Girish Mittur
Venkataramanappa. 2019. Constant Time Recovery in Azure SQL Database. Proc.
VLDB Endow. 12, 12 (2019), 2143-2154.

Claude Barthels, Ingo Miiller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong consistency is not hard to get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proc. VLDB Endow. 12, 13 (2019),
2325-2338.

Edward Bortnikov, Eshcar Hillel, Idit Keidar, Ivan Kelly, Matthieu Morel, Sameer
Paranjpye, Francisco Perez-Sorrosal, and Ohad Shacham. 2017. Omid, Reloaded:
Scalable and Highly-Available Transaction Processing. In FAST. USENIX Associ-
ation, 167-180.

Dennis Butterstein, Daniel Martin, Knut Stolze, Felix Beier, Jia Zhong, and
Lingyun Wang. 2020. Replication at the Speed of Change - a Fast, Scalable
Replication Solution for Near Real-Time HTAP Processing. Proc. VLDB Endow.
13, 12 (2020), 3245-3257.

Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: An Ultra-low Latency and Failure Resilient
Distributed File System for Shared Storage Cloud Database. Proc. VLDB Endow.
11, 12 (2018), 1849-1862.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data (Awarded Best Pa-
per!). In OSDI USENIX Association, 205-218.

Tencent Cloud. 2024. Tencent Cloud official site. https://www.tencentcloud.com/.
Tencent Cloud. 2024. TXSQL gitee repo. https://gitee.com/X-SQL/TXSQL.
James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-Distributed
Database. In OSDI. USENIX Association, 251-264.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD Conference. ACM, 215-226.
Miguel Diogo, Bruno Cabral, and Jorge Bernardino. 2019. Consistency Models
of NoSQL Databases. Future Internet 11, 2 (2019), 43.

Siying Dong, Shiva Shankar P., Satadru Pan, Anand Ananthabhotla, Dhanabal
Ekambaram, Abhinav Sharma, Shobhit Dayal, Nishant Vinaybhai Parikh, Yanqin
Jin, Albert Kim, Sushil Patil, Jay Zhuang, Sam Dunster, Akanksha Mahajan,
Anirudh Chelluri, Chaitanya Datye, Lucas Vasconcelos Santana, Nitin Garg, and
Omkar Gawde. 2023. Disaggregating RocksDB: A Production Experience. Proc.
ACM Manag. Data 1, 2 (2023), 192:1-192:24.

Martyn Ellison, Radu Calinescu, and Richard F Paige. 2018. Evaluating cloud
database migration options using workload models. Journal of Cloud Computing
7 (2018), 1-18.

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011.
Zephyr: live migration in shared nothing databases for elastic cloud platforms.
In SIGMOD Conference. ACM, 301-312.

Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. 2017. High Performance
Transactions via Early Write Visibility. Proc. VLDB Endow. 10, 5 (2017), 613-624.
https://doi.org/10.14778/3055540.3055553

3881

[22

[23]

[33

[34

@
i

[36

[37

(38]

[39

[40

[41

[42]

[43]

[46

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. 2016. ’Cause I'm strong enough: reasoning about consistency choices
in distributed systems. In POPL. ACM, 371-384.

Jiawei Guan, Feng Zhang, Siqi Ma, Kuangyu Chen, Yihua Hu, Yuxing Chen,
Anqun Pan, and Xiaoyong Du. 2023. Homomorphic Compression: Making Text
Processing on Compression Unlimited. Proc. ACM Manag. Data 1, 4 (2023),
271:1-271:28.

Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking. In SIGMOD Conference. ACM, 658-670.

Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. 2020. A Survey on Auto-
matic Parameter Tuning for Big Data Processing Systems. ACM Comput. Surv.
53, 2 (2020), 43:1-43:37.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based HTAP Database.
Proc. VLDB Endow. 13, 12 (2020), 3072-3084.

Kaile Huang, Si Liu, Zhenge Chen, Hengfeng Wei, David A. Basin, Haixiang Li,
and Anqun Pan. 2023. Efficient Black-box Checking of Snapshot Isolation in
Databases. Proc. VLDB Endow. 16, 6 (2023), 1264-1276.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin C. Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems. In USENIX
Annual Technical Conference. USENIX Association.

IBM. 2024. DB2. https://www.ibm.com/products/db2.

IDC. 2024. IDC MarketScape. https://www.idc.com/getdoc.jsp?containerld=
CHC50734323.

Jepsen. 2024. Jepsen test. https://jepsen.io/.

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,
Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow. 1, 2
(2008), 1496-1499.

Alexey Kopytov. 2004. Sysbench: a system performance benchmark.
http://sysbench. sourceforge. net/ (2004).

Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun
Cha, Wook-Shin Han, Chang Gyoo Park, Hyoung Jun Na, and Joo-Yeon Lee.
2017. Parallel Replication across Formats in SAP HANA for Scaling Out Mixed
OLTP/OLAP Workloads. Proc. VLDB Endow. 10, 12 (2017), 1598-1609.

Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh,
Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. 2016. Hybrid Garbage
Collection for Multi-Version Concurrency Control in SAP HANA. In SIGMOD
Conference. ACM, 1307-1318.

Leon Lee, Siphrey Xie, Yunus Ma, and Shimin Chen. 2022. Index Checkpoints
for Instant Recovery in In-Memory Database Systems. Proc. VLDB Endow. 15, 8
(2022), 1671-1683.

Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and What is
Next. In SIGMOD Conference. ACM, 2483-2488.

Gang Liu, Leying Chen, and Shimin Chen. 2023. Zen+: a robust NUMA-aware
OLTP engine optimized for non-volatile main memory. VLDB . 32, 1 (2023),
123-148.

Jiesong Liu, Feng Zhang, Lv Lu, Chang Qi, Xiaoguang Guo, Dong Deng, Guoliang
Li, Huanchen Zhang, Jidong Zhai, Hechen Zhang, Yuxing Chen, Anqun Pan, and
Xiaoyong Du. 2024. G-Learned Index: Enabling Efficient Learned Index on GPU.
IEEE Trans. Parallel Distributed Syst. 35, 6 (2024), 795-812.

Jiaheng Lu, Yuxing Chen, Herodotos Herodotou, and Shivnath Babu. 2019.
Speedup Your Analytics: Automatic Parameter Tuning for Databases and Big
Data Systems. Proc. VLDB Endow. 12, 12 (2019), 1970-1973.

Ziyi Lu, Qiang Cao, Hong Jiang, Yuxing Chen, Jie Yao, and Anqun Pan. 2024. Flu-
idKV: Seamlessly Bridging the Gap between Indexing Performance and Memory-
Footprint on Ultra-Fast Storage. Proc. VLDB Endow. 17, 6 (2024), 1377-1390.
lucaszhai. 2024. Bug lists. https://bugs.mysql.com/search.php?cmd=display&
status=All&severity=all&reporter=5698040.

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen
Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,
Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for
Transactional and Analytical Workloads. In SIGMOD Conference. ACM, 2530~
2542.

Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2018. Data Storage
Management in Cloud Environments: Taxonomy, Survey, and Future Directions.
ACM Comput. Surv. 50, 6 (2018), 91:1-91:51.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17,1 (1992), 94-162.

MySQL. 2024. MySQL. https://www.mysgl.com/.

https://www.tencentcloud.com/
https://gitee.com/X-SQL/TXSQL
https://doi.org/10.14778/3055540.3055553
https://www.ibm.com/products/db2
https://www.idc.com/getdoc.jsp?containerId=CHC50734323
https://www.idc.com/getdoc.jsp?containerId=CHC50734323
https://jepsen.io/
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=5698040
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=5698040
 https://www.mysql.com/

[47]

[48]

[49]
[50]

[54]

[55]

[60]

[62]

[63]

[64]

[65]

[66]

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351—
385.

Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In USENIX Annual Technical Conference. USENIX Association,
305-319.

Oracle 2024. Oracle. Oracle. https://www.oracle.com/.

Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using
Distributed Transactions and Notifications. In OSDIL USENIX Association, 251—
264.

Dai Qin, Ashvin Goel, and Angela Demke Brown. 2017. Scalable Replay-Based
Replication For Fast Databases. Proc. VLDB Endow. 10, 13 (2017), 2025-2036.
Ori Shalev and Nir Shavit. 2003. Split-ordered lists: lock-free extensible hash
tables. In PODC. ACM, 102-111.

Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos,
Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. 2019. Fast
General Distributed Transactions with Opacity. In SIGMOD Conference. ACM,
433-448.

Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric
Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, lan Rae, Traian Stancescu, and Himani Apte. 2013. F1: A Distributed
SQL Database That Scales. Proc. VLDB Endow. 6, 11 (2013), 1068-1079.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database.
In SIGMOD Conference. ACM, 1493-1509.

Tencent. 2024. King of Honor. https://www.honorofkings.com/.

TPC 2023. TPC-C All Results - Sorted by Performance. TPC. https://www.tpc.org/
tpec/results/tpee_results5.asp?print=false&orderby=tpm&sortby=desc.

TPC 2023. TPC-C: On-Line Transaction Processing Benchmark. TPC. https:
/[www.tpc.org/tpce/default5.asp.

Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush
Shah, Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan, Andy
Woods, and Peyton Walters. 2022. Enabling the Next Generation of Multi-Region
Applications with CockroachDB. In SIGMOD Conference. ACM, 2312-2325.
Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In SIGMOD Conference.
ACM, 1041-1052.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, James Corey, Kamal Gupta,
Murali Brahmadesam, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice,
Tengiz Kharatishvili, and Xiaofeng Bao. 2018. Amazon Aurora: On Avoiding
Distributed Consensus for I/Os, Commits, and Membership Changes. In SIGMOD
Conference. ACM, 789-796.

Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish Motivala,
and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated
Storage. In NSDI. USENIX Association, 449-462.

Jianguo Wang and Qizhen Zhang. 2023. Disaggregated Database Systems. In
SIGMOD Conference Companion. ACM, 37-44.

Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pandis. 2017.
Efficiently making (almost) any concurrency control mechanism serializable.
VLDB J. 26, 4 (2017), 537-562.
WeChat. 2024. WeChat Pay.
wechatpay_en.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine Towards
Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12
(2020), 3152-3165.

https://pay.weixin.qq.com/index.php/public/

3882

(67

[68]

[69

=
=

(78]

[79

[80

(81

(82

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In OSDI. USENIX
Association, 233-251.

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In
OSDI. USENIX Association, 307-320.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017), 781-792.

Zhichen Xu, Ying Gao, and Andrew Davidson. 2023. Keep Your Distributed Data
Warehouse Consistent at a Minimal Cost. Proc. ACM Manag. Data 1, 2 (2023),
190:1-190:25.

Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,
Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao, Wenhui Shi, Huafeng Xi, Huang Yu,
Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, and Quanging Xu. 2022. OceanBase:
A 707 Million tpmC Distributed Relational Database System. Proc. VLDB Endow.
15, 12 (2022), 3385-3397.

Yugabyte. 2024. YugabyteDB. https://www.yugabyte.com/.

Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaoqgiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai.
2019. AnalyticDB: Real-time OLAP Database System at Alibaba Cloud. Proc.
VLDB Endow. 12, 12 (2019), 2059-2070.

Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proc. VLDB Endow. 17, 5 (2024), 939-951.

Chao Zhang, Guoliang Li, Jintao Zhang, Xinning Zhang, and Jianhua Feng.
2024. HTAP Databases: A Survey. IEEE Transactions on Knowledge and Data
Engineering (2024), 939-951.

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-End Automatic Cloud Database Tuning System Using Deep Reinforce-
ment Learning. In SIGMOD Conference. ACM, 415-432.

Qian Zhang, Jingyao Li, Hongyao Zhao, Quanging Xu, Wei Lu, Jinliang Xiao,
Fusheng Han, Chuanhui Yang, and Xiaoyong Du. 2023. Efficient Distributed
Transaction Processing in Heterogeneous Networks. Proc. VLDB Endow. 16, 6
(2023), 1372-1385.

Wei Zhao. 2024. Bug lists. https://bugs.mysql.com/search.php?cmd=display&
status=All&severity=all&reporter=9354215.

Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast
Databases with Fast Durability and Recovery Through Multicore Parallelism. In
OSDI. USENIX Association, 465-477.

Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
In SIGMOD Conference. ACM, 2653-2666.

Yiwen Zhu, Yuanyuan Tian, Joyce Cahoon, Subru Krishnan, Ankita Agarwal,
Rana Alotaibi, Jestis Camacho-Rodriguez, Bibin Chundatt, Andrew Chung, Ni-
harika Dutta, Andrew Fogarty, Anja Gruenheid, Brandon Haynes, Matteo In-
terlandi, Minu Iyer, Nick Jurgens, Sumeet Khushalani, Brian Kroth, Manoj Ku-
mar, Jyoti Leeka, Sergiy Matusevych, Minni Mittal, Andreas Miiller, Kartheek
Muthyala, Harsha Nagulapalli, Yoonjae Park, Hiren Patel, Anna Pavlenko, Olga
Poppe, Santhosh Ravindran, Karla Saur, Rathijit Sen, Steve Suh, Arijit Tarafdar,
Kunal Waghray, Demin Wang, Carlo Curino, and Raghu Ramakrishnan. 2023.
Towards Building Autonomous Data Services on Azure. In SIGMOD Conference
Companion. ACM, 217-224.

Tobias Ziegler, Philip A Bernstein, Viktor Leis, and Carsten Binnig. 2023. Is
Scalable OLTP in the Cloud a Solved Problem. In 13th Annual Conference on Inno-
vative Data Systems Research, CIDR 2023, Amsterdam, The Netherlands, January
8-11, 2023, Online Proceedings.

https://www.oracle.com/
https://www.honorofkings.com/
https://www.tpc.org/tpcc/results/tpcc_results5.asp?print=false&orderby=tpm&sortby=desc
https://www.tpc.org/tpcc/results/tpcc_results5.asp?print=false&orderby=tpm&sortby=desc
https://www.tpc.org/tpcc/default5.asp
https://www.tpc.org/tpcc/default5.asp
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://www.yugabyte.com/
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=9354215
https://bugs.mysql.com/search.php?cmd=display&status=All&severity=all&reporter=9354215

	Abstract
	1 Introduction
	2 Design overview
	2.1 System Design
	2.2 System Core Architecture
	2.3 Application Scenarios

	3 Implementation and optimization
	3.1 High Availability
	3.2 High Scalability in TDSQL
	3.3 Optimizaiton towards High Performance

	4 Evaluation
	4.1 Experimental setup
	4.2 Initial Data and Disk Usage Analysis
	4.3 8-Hour Stability Test
	4.4 ACID Test
	4.5 Other (50%, 80%) Stress Tests and Scalability
	4.6 Case Study of Bank Workloads
	4.7 Insight and Discussion

	5 Related work
	6 Conclusion
	7 Acknowledgment
	References

