
Galaxybase: A High Performance Native Distributed Graph
Database for HTAP

Bing Tong
CreateLink & HKUST(GZ)
tongbing@createlink.com

btong799@connect.hkust-gz.edu.cn

Yan Zhou∗
CreateLink

zhouyan@createlink.com

Chen Zhang
CreateLink

zhangchen@createlink.com

Jianheng Tang
HKUST(GZ)

jtangbf@connect.ust.hk

Jing Tang
HKUST(GZ)

jingtang@ust.hk

Leihong Yang
CreateLink

yangleihong@createlink.com

Qiye Li
CreateLink

liqiye@createlink.com

Manwu Lin
CreateLink

linmanwu@createlink.com

Zhongxin Bao
CreateLink

baozhongxin@createlink.com

Jia Li∗
HKUST(GZ)
jialee@ust.hk

Lei Chen
HKUST(GZ)

leichen@ust.hk

ABSTRACT
We introduce Galaxybase, a native distributed graph database that
addresses the increasing demands for processing large volumes of
graph data in diverse industries like finance, manufacturing, and
government. Designed to handle the requirements of both trans-
actional and analytical workloads, Galaxybase stands out with its
novel data storage and transaction mechanisms. At its core, Galaxy-
base utilizes a Log-Structured Adjacency List coupled with an Edge
Page structure, optimizing read-write operations across a spectrum
of tasks such as graph traversals and single edge queries. A no-
table aspect of Galaxybase is its execution of custom distributed
transaction modes tailored for HTAP transactions, allowing for the
facilitation of bidirectional and interactive transactions. It ensures
data integrity and minimal latency while enabling simultaneous
processing of OLTP and OLAP workloads without blocking. Ex-
perimental results show that Galaxybase achieves high throughput
and low latency in both OLTP and OLAP workloads, across var-
ious graph query scenarios and resource conditions. Galaxybase
has been deployed in leading banks, education, telecommunica-
tion and energy sectors in China, consistently maintaining robust
performance for HTAP workloads over the years.

PVLDB Reference Format:
Bing Tong, Yan Zhou, Chen Zhang, Jianheng Tang, Jing Tang, Leihong
Yang, Qiye Li, Manwu Lin, Zhongxin Bao, Jia Li, and Lei Chen. Galaxybase:
A High Performance Native Distributed Graph Database for HTAP. PVLDB,
17(12): 3893 - 3905, 2024.
doi:10.14778/3685800.3685814

* Corresponding Authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685814

1 INTRODUCTION
A graph database [37] is a type of database management system
specifically designed to store, manage, and query complex rela-
tionships between data entities. Unlike conventional relational
databases, graph databases employ vertices, edges, and proper-
ties to model data entities and their relationships. It allows for
enhanced flexibility and performance in handling structured and
highly interconnected data, making them particularly well-suited
for applications in fields such as social networking [8, 10, 17, 32],
energy network optimization [24, 42], financial fraud detection
[23, 34, 40], and knowledge graphs [7, 41].

Many graph databases encounter performance challenges in
processing graph queries and transactions due to their design or
functional limitations. Non-native databases often use established
non-graph backends. For example, A1 [11] utilizes Key-Value stores.
Titan [1] and its successor, JanusGraph [3], are based on the wide-
column store, while ArangoDB [2] and OrientDB [36] employ doc-
ument stores for graph representation. Although non-native graph
storages rely on mature non-graph backends like HBase [19], which
are well-understood operationally, they typically struggle with han-
dling efficient graph-specific queries, particularly in graph traversal
scenarios. Conversely, native graph databases with their index-free
adjacency, such as Neo4j [5] and TigerGraph [16], significantly
enhance traversal performance. However, Neo4j exhibits poor scal-
ability and struggles to meet high throughput and low latency
requirements on trillion-scale graphs. TigerGraph, focusing on in-
memory architectures, encounters difficulties with large graphs in
low-memory environments. Additionally, native graph databases
also fall short of single edge queries, as they rely on traversal to
locate a specific edge.

Beyond handling graph-specific queries, another vital feature of
graph databases is their ability to preserve integrity and correctness
during concurrent operations in various scenarios. A key capability

3893

https://doi.org/10.14778/3685800.3685814
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685814

is the dual support for Online Transaction Processing (OLTP) and
Online Analytical Processing (OLAP). Our usage statistics show
that 70% of tasks involve Hybrid Transaction/Analytical Processing
(HTAP) [33], 20% are dedicated to OLTP, and the remaining 10%
to OLAP. Among existing systems, G-Tran [14] is notably adept at
OLTP tasks and prioritizes transactional integrity, while Grasper
[13] excels in managing OLAP transactions. However, using sepa-
rate systems for distinct OLTP and OLAP tasks can double costs in
terms of development, deployment, and maintenance.

Faced with the unique challenges of processing graph queries
and transactions, we developed Galaxybase1, a new native dis-
tributed graph database. Galaxybase features two distinct storage
structures, optimized for read and write performance. The first is a
Log-Structured Adjacency List, which employs adjacency lists for
sequential data scanning and batch writing to reduce read/write
amplifications. The second structure, Edge Page, co-locates edges
for the same vertex and maintains local order within each page
by type and direction while ensuring global order across all edges.
This design supports efficient graph traversal in various directions
and types, as well as quick and accurate single edge queries.

As a distributed graph database deployed in production-grade
environments, Galaxybase is designed to handle a variety of sce-
narios and data scales effectively. It supports transactions using
Two-Phase Commit (2PC) [26, 38] and Raft [30] protocols to en-
sure atomicity and durability. The system maintains isolation levels
from read-committed to serializable for OLTP workloads using
Two-Phase Locking (2PL) [22]. Galaxybase integrates bidirectional
and interactive transactions, aligning with the unique storage struc-
tures and user demands of graph databases. For OLAP workloads, it
employs Multi-Version Concurrency Control (MVCC) [35] visibility
checks with lock-free mechanisms to maintain serializable snapshot
isolation.

Our experiments with OLTP and OLAP workloads demonstrate
that Galaxybase delivers strong performance in both single-machine
and distributed setups. It achieves throughput of up to 50,000
queries per second (q/s) in single-machine mode and 85,000 q/s in
distributed mode, significantly surpassing baseline graph databases.
In terms of scalability, Galaxybase achieves throughput that is
up to an order of magnitude higher than that of baseline graph
databases. It also shows efficiency in edge queries, operating three
times faster than its closest competitor. Furthermore, Galaxybase
handles queries effectively in low-memory environments, enabling
large graph loading and complex query execution without out-of-
memory issues. Additionally, we processed a trillion-scale dataset
that includes 5 billion account vertices and 5 trillion transaction
edges using only 50 machines, each equipped with 12 CPUs and
128GB of memory, achieving multi-hop query results in seconds.

In tracing these endeavors, our paper consolidates the following
contributions:

• We introduce Galaxybase, a high-performance, native distributed
graph database designed specifically for HTAP scenarios. It pro-
vides an efficient, robust, and scalable solution for managing
complex graph data.

1https://www.createlink.com

locatedIn follows locatedIn
TIME: 20200315

NAME: UK

NAME: Cindy
AGE: 7

NAME: Alice
AGE: 18

NAME: Bob
AGE: 25

NAME: David
AGE: 20

NAME: China

follows follows

follows

follows

TIME: 20160820

locatedIn
TIME: 20190728

locatedIn
TIME: 20201102

person_1 person_2

person_3 person_4

country_1

country_2

Figure 1: An example of property graph

• On the storage front, we propose the Log-Structured Adjacency
List, an approach for sequential disk reads and writes that dra-
matically reduces read/write amplifications. Complementing this,
our Edge Page design enhances graph traversal efficiency, allow-
ing for the effective handling of edges in various directions and
types, while also enabling quick and accurate single edge queries.

• On the transaction front, we implement distributed transactions
for OLTP workloads using bidirectional and interactive methods.
Additionally, we manage OLAP workloads with lock-free meth-
ods, allowing OLTP and OLAP workloads to run concurrently
without causing blocks.

• In the distributed mode, Galaxybase achieves a throughput of
up to 85,000 queries per second in OLTP workloads, and its
performance in OLAP workloads exceeds competitors by an
order of magnitude. This high efficiency is sustained even under
restricted memory resources, enabling the execution of complex
queries in environments with limited capacity.

2 BACKGROUND AND DESIGN PRINCIPLE
Reflecting on the challenges and limitations of current graph databases
outlined in Section 1, this section delves into the motivation and
key factors in crafting Galaxybase. Our primary objective is to
build a unified system that demonstrates exceptional performance,
availability, scalability, and robust transaction capabilities.

Galaxybase utilizes the property graph model [6], where vertices
and edges can possess a variety of properties. Based on this model,
we develop a Ming Dynasty literature knowledge graph for univer-
sities to enhance literary research and teaching, build a power grid
knowledge graph for the State Grid to ensure accurate and stable
power dispatch strategies, and implement a financial fraud detection
graph for banks to enhance security and more effectively identify
fraudulent activities. As illustrated in Figure 1, in a social network
using the property graph model, each vertex/edge is assigned a
type (e.g., person, country, follows, locatedIn), alongside a set
of properties (e.g., NAME:Alice and TIME:20201102).

Graph databases organize data through edges, offering the signif-
icant advantage of native and efficient support for graph traversal
queries. These queries navigate the graph from a specified vertex
to a predetermined depth or target vertex. For example, as depicted
in Figure 1, a graph traversal query starting from vertex person_1
with a depth of 1 and a relational constraint of follows would
identify all followers of person_1. Relational databases depend

3894

on index lookups and table scans to navigate through the neigh-
borhoods of a vertex. Graph databases typically adopt a feature
called index-free adjacency, which co-locates a vertex with its edges,
avoiding joins between a vertex table and an edge table. This allows
for constant-time traversal of edges [5, 37], providing a substantial
edge performance over relational databases.

To enhance the design of a graph database for Galaxybase cus-
tomers, we summarize the following design principles:

Improving Single Edge Query Efficiency.While the introduc-
tion of index-free adjacency can speed up graph traversal, it is not
a free lunch. This feature complicates the fundamental operations
of single edge queries, such as locating, reading, and updating spe-
cific edges. Early graph databases, like LiveGraph [43], do not have
a dedicated approach for efficiently handling single edge queries
and depend on traversal to locate a specific edge. This becomes
particularly inefficient when managing edges connected to a ‘super
vertex’ in a social network, which may have millions of followers.
Neo4j [5] employs index-free adjacency via a linked list method,
but this often requires random disk access to read subsequent edges,
thereby reducing read performance. Many recent non-native graph
databases, such as JanusGraph [3] and NebulaGraph [4], rely on
LSM-Tree [31] as their storage structure to support more efficient
single-edge queries through KV storage. Nonetheless, the hierar-
chical nature of LSM-Tree storage requires merging multiple layers
to reach the target data, which can result in read amplification. The
efficiency of single edge queries remains a significant consideration
in the design and optimization of graph database systems, driving
ongoing innovations and enhancements in this domain.

Optimizing Storage for Read-heavy Scenarios. OLTP work-
loads emphasize real-time data retrieval andmodification, including
graph neighbor traversal, edge queries, and data updates. Con-
versely, OLAP is centered around in-depth data analysis, focusing
on tasks such as k-hop neighbors and pathfinding. Our analysis
shows that OLAP operations are more prevalent among our busi-
ness customers, resulting in a higher frequency of read operations
compared to write operations. For example, a major Chinese bank
employing Galaxybase for credit card fraud prevention activities
illustrates this trend. When a new credit card is issued, dozens of
vertices and edges are inserted into the graph, followed by more
than 10 analysis tasks. In this case, write operations account for
approximately 5% of the workload, while reads constitute about
95%. Consequently, conventional storage solutions like LSM-Tree
are unsuitable for this read-heavy environments, motivating us to
develop a novel storage architecture tailored for scenarios with a
higher demand for read operations.

Balancing Computation and Communication in OLAP.
OLAP tasks, particularly k-hop and path-finding queries, often
encounter significant network communication overhead due to the
distributed storage of neighboring vertices. This challenge high-
lights the need for innovative data partitioning strategies that effec-
tively balance computational load and communication demands in
distributed graph database. Figure 2 illustrates the computation and
communication times of k-hop queries in a graph, distributed with
varying graph partition sizes across a three-server cluster. With a
graph partition size of 1 (i.e., random storage of the neighbors), each
server incurs equivalent computation and communication times.
However, larger graph partition sizes lead to data ‘hot-spotting’,

1e0 1e2 1e3 1e4 1e7
The size of graph partition

0.6

0.8

1.0

1.2

R
el

at
iv

e
La

te
nc

y

Computation Latency
server 0 server 1 server 2

1e0 1e2 1e3 1e4 1e7
The size of graph partition

0.5

1.0

R
el

at
iv

e
La

te
nc

y

Communication Latency
server 0 server 1 server 2

Figure 2: The computation and communication latency for k-
hop queries on the Twitter social network, distributed across
three servers.

as neighborhoods are more likely concentrated on the same com-
puting server as the queried vertex. This results in imbalanced
computational loads across servers, where the execution time of
the slowest server becomes the bottleneck in parallel computations.
To alleviate this, the development of effective graph partitioning
strategies is crucial, tailored to suit specific use cases for more
balanced communication and computation.

EnhancingHTAPPerformance.While most distributed graph
databases have adeptly implemented transaction support for OLTP
workloads, support for OLAP workloads is frequently under-served.
Using OLTP transaction protocols for OLAP workloads can result
in increased latency. Conversely, if OLAPworkloads bypass transac-
tions, transaction consistency can be disrupted during data updates,
thereby affecting the reliability of analytical outcomes. Given that
OLAP workloads are predominantly read-only, it is crucial to imple-
ment non-blocking read-only transactions similar to those utilized
in TAO [10, 15]. To effectively support HTAP in distributed graph
databases, we also need to offer specialized support for both OLTP
and OLAP workloads, ensure suitable isolation levels for real en-
vironments, and handle various transaction types based on the
specific nature of each workload.

3 ARCHITECTURE OVERVIEW
The architecture of Galaxybase, as depicted in Figure 3, is designed
as a distributed graph database cluster that leverages a native ap-
proach. It features a three-level storage model for data management,
and two distinct transactionmodules optimized for OLTP andOLAP
workloads, respectively. Galaxybase adopts load balancing mecha-
nisms to evenly distribute client requests across multiple servers.
Each server comprises of an HTAP compute layer and a storage
layer. The compute layer is divided into two primarymodules: OLTP
for transactional queries and OLAP for analytical computations.
The storage layer consists of a cache module for rapid data retrieval
and a disk storage module for long-term persistence. Within the
disk storage module, data shard and Write-Ahead Logging (WAL)
are utilized to ensure data durability.

The storage model of Galaxybase is organized into three levels:
shard, partition, and page. Each shard resides within one server
of the cluster. Within each shard, the system segments data into
smaller, manageable units called partitions. For each partition,
Galaxybase employs the Log-Structured Adjacency List for storing
vertex and edge data, realizing index-free adjacency for graph tra-
versal and facilitating sequential read and write operations from

3895

Storage

Storage

OLTP

Storage Cache

Disk WAL

Storage

OLTP
Client

Client
Client Load Balancer OLAP

OLAP

OLTP OLAP

OLTP OLAP

Bidirectional & Interactive Txn Txn Lock-free Mechanism
Begin 2PC-Commit

W W R

Storage Shard

Partition
Page

Cluster

Begin Commit

R R R

Figure 3: The architecture of Galaxybase

the disk. These partitions can be distributed and replicated across
various servers, improving data availability and fault tolerance. To
further optimize edge query performance, there is a paging pro-
cess in each partition to create an Edge Page for each vertex. This
process divides the neighboring edges of each vertex into multiple
pages to address different queries and reduce conflicts for edges.
The details of this storage mechanism are discussed in Section 4.
Additionally, we outline two distributed storage strategies based
on partitions to reduce communication in Section 5.

In the HTAP design of Galaxybase, different transaction process-
ing modules feature different workloads: read-write transactions
support OLTP, while read-only transactions are used for OLAP. We
employ bidirectional and interactive transactions to accommodate
graph-specific scenarios and use lock-free mechanisms to ensure
OLTP and OLAP workloads do not interfere with each other. We in-
troduce the design details of HTAP transactions for graph-specific
scenarios in Section 6.

4 DATA STORAGE
4.1 Overview
Galaxybase is designed as a versatile storage structure to accom-
modate the diverse hardware preferences of our customers. In pro-
duction environments, about 70% use SSDs, while 30% use HDDs,
and data volumes can sometimes exceed 100 TB. For efficient disk
operations, the data structure in Galaxybase is organized into three
distinct levels: shard, partition, and page. In the partition level,
Galaxybase proposes the Log-Structured Adjacency List (Section
4.2), realized through three key strategies: (1) organizing vertices
and edges as adjacency lists for reading efficiency, (2) storing ver-
tices and edges as multi-version data for consistency and system
availability, and (3) writing data to disk in batches for writing per-
formance. In the page level, Galaxybase employs the Edge Page
structure (Section 4.3) to achieve high performance in fundamental
operations such as graph traversal and single edge query.

As shown in Figure 4, Galaxybase employs two storage mod-
ules within each server of the cluster: a cache module in memory,
designed to reduce disk I/O for read and write operations, and a
durable storage module persisting on disk. The latter includes data

sharding and WAL. The process for write and read operations is as
follows:

Write operations. The green arrows illustrate the write process.
During a write operation, data is first synchronously written to the
cache (steps 1○) and to the WAL (steps 2○). The cache facilitates
the efficiency of read-write operations, while the WAL ensures data
persistence to disk, thereby preventing data loss. A write request is
considered complete once the data is successfully written to both
the cache and the WAL. When the written data in the cache meets
the criteria for eviction, it is then batch-written in an asynchronous
and sequential manner into new data partitions within the shard,
effectively replacing the older partitions (step 3○). In the event of a
system failure or similar incidents, the data stored in the WAL is
utilized for recovery purposes.

Read operations. The orange arrows represent the read process.
To retrieve data efficiently, the system initially searches for it in the
cache (step 1○). If the data is complete in the cache, it is returned
directly; if not, the system retrieves it from shard on disk (step 3○),
merging and returning the data from both the cache and shard.
Data in the WAL is set to be synchronized to the cache by default
(step 2○).

To achieve a balance between performance and stability, we
selectively evict vertex or edge data from the cache under three
conditions: (1) the memory usage of the cache affects the system’s
stability, (2) the least read data is selected for eviction utilizing
the Least Recently Used (LRU) strategy, or (3) the updated data
in the cache reaches a threshold. The cache is designed to adjust
intelligently based on the current resource situation. Condition (1)
ensures system stability is maintained even under limited memory.
Condition (2) employs hot data management to retain frequently
queried data longer, thereby enhancing read efficiency. Condition
(3) ensures that new data can be written in batches to promote
efficient write operations.

To implement transactions, data in each partition is stored in
multiple versions, each identified by a timestamp and ordered ac-
cordingly. When reading, a binary search locates the most suitable
version with a timestamp less than or equal to the specified one, or
the latest version if no timestamp is specified. Every update to a
vertex or edge creates a new version. New data operations at the
vertex or edge level are temporarily stored in the cache and WAL.

3896

Part Part Part Part

Part Part Part Part

Read Write

Mem

Disk Part

Part

Shard

Operator
①

②

③

①

②
③

Cache

WAL

Figure 4: The storage and R/W operators in a single machine

When the update data cache reaches its threshold, the system cre-
ates a new disk copy of the entire partition, sequentially integrating
both old and new data versions. A garbage collection thread re-
moves data versions older than the timestamp of the earliest active
transaction.

4.2 Log-Structured Adjacency List
Within each shard of Galaxybase, there are smaller storage units
known as partitions. Each partition utilizes the Log-Structured
Adjacency List to enable efficient reading and writing from the disk.
The adjacency list allows efficient sequential reading, while the log
structure reduces random writes. This integration addresses both
read and write amplification. As shown in Figure 5, a partition is
illustrated, which is dedicated to storing a single type of vertex
and its edges. Within these partitions, vertices and their properties
are stored together, while the neighboring edges of each vertex
are grouped in an Edge Page. Every vertex is assigned a unique ID,
enabling efficient retrieval of a vertex’s properties or all its edges
through the stored offset. For example, consider the vertex with
ID 2 of type person in Figure 1. This partition stores the vertex
with ID 2, along with its properties – Bob and 25. Neighboring
edges related to the vertex with ID 2, such as Alice follows
Bob, Bob follows David, and Bob locatedIn UK, are stored in
Bob’s Edge Page within this partition. The data of vertex with ID
2, encompassing both properties and its edges, can be accessed by
querying the vertex or edge offset using ID 2.

Read optimization. To optimize data reading, we organize
vertices and edges within partitions using adjacency lists, a method
that greatly minimizes the need for random disk access and reduces
storage space. This approach enhances the efficiency of batch data
reads, such as performing graph traversal queries in Edge Pages or
accessing all vertices of a specific type. However, finding a specific
vertex within the VertexData or identifying its neighboring edges
(contained in one Edge Page) within the EdgeData, when using
adjacency lists, can present a challenge.

To address the retrieval of specific vertex properties or neighbor-
ing edges, many databases, such as JanusGraph, adopt LSM-Tree
that uses ordered storage for disk data lookup. Within the LSM-
Tree, data is stored in Sorted String Tables (SSTables) on the disk.
This data is organized in a sorted order, so that whenever the data
is read its time complexity will be O(Log(n)) in the worst case,
where n is the number of records on the disk.

VertexData

Alice | 18 Bob | 25 Cindy | 7 David | 20

Alice follows Bob

Bob’s Edge Page

Bob follows David
Bob locatedIn UK

David follows Alice

Alice’s Edge Page

Alice follows Bob
Alice follows Cindy

Alice locatedIn China

Alice follows Cindy

Cindy’s Edge Page

Cindy follows David
Cindy locatedIn China

Bob follows David
Cindy follows David

David’s Edge Page

David follows Alice
David locatedIn UK

Vertex ID 1 2 3 4

VertexOffset

EdgeOffset

EdgeData

Retrieval Process of Bob's Properties
Seek 1 to VertexOffset:
StartPosition = VertexOffset[1]
EndPosition = VertexOffset[2]

Seek 2 to VertexData:
VertexProperties =
VertexData[StartPosition, EndPosition]

VertexType

person

Figure 5: The storage structure and retrieval process in a
single partition by Log-Structured Adjacency List

To overcome these limitations, we assign each vertex within a
partition a unique ID, incrementing sequentially and incrementally.
Given the variable lengths of properties in real-world data, vertex
data is non-fixed-length, making computation-based direct data
location by ID impractical. We instead use an offset storage mech-
anism based on these unique IDs - VertexOffset for vertices and
EdgeOffset for Edge Page. This system enables efficient retrieval
of the starting and ending positions of vertex properties or their
neighboring edges from VertexOffset/EdgeOffset using the ID. This
process requires only two data seeks, as shown in Figure 5, and is
achieved with an O(1) time complexity. To reduce the storage space
for offset, our approach involves storing only the relative position
offsets for VertexData and EdgeData from the start of the parti-
tion, instead of their absolute positions. This method cuts storage
requirements from 8 bytes Integer to 4 bytes Integer.

Write optimization. To optimize data writing, we implement
a batch writer mechanism using a log-structured approach within
new partitions. These partitions are activated only after the writing
process is fully complete, at which point the old partitions are
removed. Data is partitioned based on vertex type, with an initial
allocation of 32 partitions for each type. Each partition functions
independently for batch writing to prevent overload and maintain
performance. The number of partitions is dynamically adjusted
based on the cluster’s read/write workloads.

When the cache eviction mechanism is triggered, data fromwrite
operations in the cache is transferred to partitions. Each partition
evaluates its disk I/O for read and write operations since the last
rewrite whenever a new write operation occurs. If the ratio of read
I/O to write I/O falls below a specified, configurable threshold, the
existing partition is split into two. In write-heavy workloads, the
total number of partitions is increased to reduce the data volume
involved in batch writing. Conversely, if this ratio between adjacent
partitions exceeds the threshold, the data from these partitions is
merged and written into a single new partition. In read-heavy
workloads, the total number of partitions is decreased to reduce the
need for accessing multiple partitions in a non-sequential manner
when reading a specific type of vertex, thereby optimizing the
reading process.

The partition storage units bring greater flexibility to the system,
enabling it to handle large-scale graph data and high parallelism

3897

queries. These partitions, utilized in the adjacency list and offset
storage structure, are instrumental in efficiently organizing and
managing data while reducing storage space. We employ a log-
structured approach for sequentially writing partition batches to
disk. And the number of partitions is dynamically adjusted based
on the current read/write workloads. This adaptability is key to
achieving optimal performance in various data processing scenarios.
Therefore, we utilize the Log-Structured Adjacency List, which en-
ables us to balance read and write performance effectively, catering
to the specific demands of our users.

4.3 Edge Page
The majority of queries in a graph database involve retrieving
neighboring edges, making the performance of neighbor retrieval
a crucial factor. To enhance performance, edge storage strategies
should have two key features: (1) reducing the number of disk seeks
during queries, and (2) avoiding redundant data reads when filtering
based on different query conditions. To achieve these objectives,
as shown in Figure 6, we introduce a fine-grained paging strategy
known as Edge Page, designed to store all neighboring edges for
each vertex. We also propose various query strategies for different
neighbor query scenarios.

Similar to vertex storage, within each partition, the unique ID
of every vertex utilizes an Edge Offset to accurately locate the cor-
responding Edge Page. Within this Edge Page, adjacency list is
employed to store all neighboring edges of the vertex. This means
that to traverse over all the neighbors of a vertex, one simply tra-
verses through the edge collection within the Edge Page without
frequent disk seeks.

Traversing a vertex’s neighbors without filtering. This in-
volves directly traversing the edge data within the entire Edge Page
for the given Vertex ID.

To mitigate the generation of numerous intermediate results
across various edge types and directions, each Edge Page organizes
edges based on type, direction, and size. As shown in Figure 6, the
first page stores edges of the type follows with an In direction. To
facilitate locating these edges, we introduce an Offset within the
Edge Page and design a unique ID structure, the Edge ID, to locate
specific edges by direction, type, and other parameters. This Edge
ID comprises the starting Vertex ID, direction, type index, ending
Vertex ID, and edge index. The parameters utilize in constructing
the Edge ID are defined as follows:

• fromId: The unique ID of the starting vertex.
• direction: The direction of the edge, represented as a binary

integer (e.g., 0 for In, 1 for Out).
• typeIndex: The index representing the type of the edge, corre-

sponding to different edge types like follows, locatedIn, etc.
• toId: The unique ID of the ending vertex.
• edgeIndex: The sequence index of the edge, a unique number

within the set of all edges with the same fromId and toId.

Within each Edge Page, we propose a Multi-Dimensional Sorted
method based on this Edge ID, ensuring that edges are arranged in
a specific priority order of fromId, direction, typeIndex, toId,
and edgeIndex. Our edge storage strategy directly applies this
structure, naturally grouping edges that share the same type and

Alice’s Edge Page

fromId direction typeIndex toId edgeIndex

Edge ID

Edge ID - Binary (Decimal)
David follows Alice:
001 0 0 100 0 (72)
Alice follows Bob:
001 1 0 010 0 (100)
Alice follows Cindy:
001 1 0 011 0 (102)
Alice locatedIn China:
001 1 1 001 0 (114)

1(China) | 20160820

Direction: Out
Type: locatedIn

Direction: Out
Type: follows

2(Bob) 3(Cindy)

Direction: In
Type: follows

Data 4(David)

Offset

Id:
001(Alice) 010(Bob)
011(Cindy) 100(David)
direction:
0(In) 1(Out)
typeIndex:
0(follows) 1(locatedIn)

001 0 0 100 0

Edge ID 72 100 102 114

Figure 6: The storage structure within a single Edge Page and
the composition of Edge ID

direction. This ensures they are ordered both locally within each
type and direction and globally across the entire Edge Page.

Traversing a vertex’s neighbors in a specified direction. To
find neighbors in the In direction for Alice, first locate the vertex’s
Edge Page and compute the boundaries for In and Out. Edges with
the same direction are stored consecutively. Given fromId as 001,
direction as 1, typeIndex, toId, and edgeIndex as 0, we obtain
001100000, which converts to 96 in decimal. Perform a binary
search in the Offset to get the located position. Then, traverse the
edge data from the starting position to the located position for this
vertex. The same applies to traversing Out direction neighbors.

Traversing a vertex’s neighbors in a specified direction and
type. To retrieve neighbors of the type follows in the Out direction
for Alice, first locate this vertex’s Edge Page. Then compute the
start and end in the Offset for follows with Out. Edges with the
same direction and type are stored consecutively. Given fromId
as 001, the direction as 1, and typeIndex as 0 for start and 1 for
end, and other values as 0, we get 001100000 for the start, which is
96 in decimal, and 001110000 for the end, which is 112 in decimal.
Perform a binary search in the Offset to get the located positions.
Then, traverse the edge data between the two located positions
for this vertex. The same applies to other directions and types of
neighbor traversals.

Locating a specific edge. To locate a specific edge by its Edge
ID, first find the vertex’s Edge Page. Then, perform a binary search
using the Offset within this Edge Page to locate the edge precisely.

Our Edge Page storage strategy offersmultiple advantages. Firstly,
it consolidates all neighboring edges of a vertex within a single
Edge Page, thereby avoiding frequent disk seeks and enhancing
performance. Secondly, each Edge Page ensures that edges of the
same type and direction are stored consecutively, facilitating effi-
cient handling of various queries. Thirdly, the composition of Edge
ID for orderly storage enables the quick and accurate location of
specific edges.

5 DISTRIBUTED STORAGE STRATEGIES
In distributed systems, excessive inter-server communication not
only diminishes network efficiency but also undermines runtime

3898

Storage

Storage

Storage

Storage

Storage

Storage

Storage

Storage

Storage

Figure 7: 1, 2, or 3 replicas in different clusters with 3 servers

performance. Effective graph data partitioning is pivotal in mitigat-
ing communication overhead. Hence, an optimal data partitioning
strategy must address both communication and data hot-spotting
concerns, recognizing that the ideal partitioning approach may
vary across datasets and query scenarios. To address this, we in-
troduce two strategies in this section: Data Partitioning and Data
Replication.

5.1 Data Partitioning Strategies
In the realm of distributed systems within graph databases, the data
partitioning strategy is crucial for system performance. Given the
frequent need for multi-hop queries in graph databases, this often
involves round-trip communication between different servers to
retrieve data for the next hop. By effectively aggregating relevant
vertices into the same partitions, a significant reduction in com-
munication overhead in distributed systems is achieved [9, 39]. In
this context, Galaxybase introduces two partitioning strategies to
further improve system performance.

Built-in Graph Partitioning Strategy. Our graph database
supports a variety of built-in partitioning algorithms. Users may
select from: (1) hashing, which is used by default to ensure effective
load balancing in data processing, (2) METIS [25], which partitions
based on graph structure, and (3) METIS with property, which
partitions based on graph structure and vertex/edge properties.
Users can choose the most suitable partitioning algorithm based
on their data and query scenarios before importing the dataset into
the graph database.

CustomizedGraphPartitioning Strategy. If the built-in graph
partitioning strategies do not meet users’ requirements, they can
customize their own. We offer two customization options: (1) users
can specify a property as the partition identifier during data import
if they wish to assign the same partition to data with the same
property, and (2) even without prior knowledge of the original data,
users can analyze the data within the graph database using default
or custom algorithms to insert property identifiers for each vertex.
Subsequently, new graphs can be generated based on these assigned
property identifiers.

5.2 Data Replication Strategies
Each partition within Galaxybase supports replication across other
shards, meaning that each partition can have multiple replicas
stored on different servers. This enhances the system’s availabil-
ity and data redundancy. The partition replication strategy allows
setting the number of replicas in the cluster. The relationship be-
tween the number of replicas (𝑅), the number of cluster servers
(𝑁), and the number of allowable server failures (𝐶) is expressed as
𝐶 < 𝑅 ≤ 𝑁 . This implies that the number of replicas must be not
greater than the number of cluster servers, and in the worst-case

scenario of maximum server failures, the number of replicas must
exceed this limit to ensure data availability. As shown in Figure
7, in a cluster with three servers, we can configure various num-
bers of replicas depending on fault tolerance requirements and
performance optimization.

It should be noted that as the number of partition replicas per
shard increases, fault tolerance improves. However, this also adds
complexity to write operations, as updating data requires updating
all replicas in the cluster. For most of our customers, fault tolerance
is a critical factor. Higher replication is particularly beneficial in
scenarios with small data volumes, as the storage costs remain
acceptable. Conversely, for applications with large-scale data and
high parallelism requirements, it is necessary to balance the number
of replicas with performance to support data growth. Therefore,
Galaxybase provides users with the flexibility to choose the number
of replicas based on their specific needs.

6 DISTRIBUTED TRANSACTION PROCESSING
In distributed systems, managing transactions effectively is vital
for maintaining data consistency, particularly in the context of
parallel operation processing. Galaxybase introduces transaction
support specifically designed for graph databases, recognizing their
distinct characteristics. It offers: (1) up to serializable isolation levels
for HTAP workloads; (2) bidirectional transactions to maintain
consistency across edge data stored on different servers within a
cluster for OLTP workloads; (3) support for interactive transactions
for OLTP workloads; and (4) implementation of transaction lock-
free methods combined with multi-version for OLAP workloads,
effectively enabling snapshot analysis.

6.1 OLTP Transaction
OLTP workloads are characterized by their ability to manage high
concurrency in read and write operations, while maintaining data
consistency to successfully complete transactions. These workloads,
particularly in scenarios like financial transactions, exhibit a high
demand for efficient transaction processing.

As an edge often spans two partitions in our graph database,
creating, updating, or deleting an edge requires modifying both
partitions. For instance, consider a credit card application scenario
where person VertexA in PartitionA applies for a credit card rep-
resented by VertexB in PartitionB. This process would involve the
insertion of new edges between VertexA and VertexB in both Parti-
tionA and PartitionB. To optimize latency in such cross-partition
edge operations during OLTP processes, we implement a bidirec-
tional transaction method that supports parallel processing of data
across both partitions.

In graph database applications, a series of operations often need
to be performed within a single transaction. For example, in a
credit card application, this involves creating a new credit card
VertexA and linking it to existing vertices like persons, phones, or
companies. Subsequently, a risk assessment is performed on the
new credit card application to determine its validity, which involves
reading VertexA and its k-hop neighbors. Therefore, we implement
interactive transactions to ensure this.

In distributed systems, replicas play a vital role in enhancing
fault tolerance capability. To ensure consistency across the system,

3899

Tx Begin &
Insert an Edge

Primary Secondary

Add an Edge Success

Read the Edge

Read the Edge Success

Tx Commit

Tx Commit Success

Prepare Phase

Commit Phase

①

TxCoordinator Out Part In Part
Primary Secondary

① Access TxTopology ② Write Data to WAL & Cache
③ Record Replica Status ④ Read Data
⑤ Verify Replica Status ⑥ Add Commit Time to Data

①

①

② ②
② ②

③
③

④

⑤ ⑤

⑥ ⑥
⑥ ⑥

①

Figure 8: The OLTP transaction of Galaxybase

modifications must be replicated to both the primary replica and
its secondary replicas, which can increase the latency of write op-
erations. To deal with this, in one interactive transaction, a user
can execute a sequence of operations, with immediate synchro-
nization of write operations to the primary replica for consistency
and instant visibility to the user. Replication to other replicas is
managed asynchronously and finishes most of the replication when
the transaction is committed. This approach guarantees eventual
consistency across both primary and secondary replicas.

Galaxybase supports OLTP workloads with transaction isolation
levels ranging from read committed to serializable. It utilizes Two-
Phase Locking (2PL) [22] and Multi-Version Concurrency Control
(MVCC) [35], along with bidirectional and interactive transactions.
Figure 8 illustrates the process of a read-write transaction in an
OLTP workload within Galaxybase. It involves an interactive trans-
action that includes edge insertion and subsequent data retrieval.
The roles of various components in transaction processing are out-
lined below:

TxCoordinator is the transaction coordinator component avail-
able on each distributed server. Within a transaction, a set of op-
erations is sequentially handled by the TxCoordinator. For each
transaction, the TxCoordinator generates a unique transaction ID
(TxId) and manages client CRUD requests, directing the relevant
operations to the appropriate partitions. Every TxCoordinator main-
tains a list called TxTopology to track the partitions involved in

these operations, facilitating the validation of changes during the
commit phase. The TxCoordinator manages partitions in different
directions to support the implementation of bidirectional transac-
tions.

Part (Partition) forms the fundamental unit in transactional
processing. Each edge is associated with Parts in both Out and
In directions, encompassing PrimaryPart and SecondaryPart that
share the identical data. A notable challenge arises from the fact
that these partitions might be distributed across different servers,
presenting difficulties in maintaining consistency across them.

In Galaxybase, an example of an interactive transaction process
for OLTP is illustrated in Figure 8 as follows:

Firstly, when a user requests to insert an edge, TxCoordinator
initiates a transaction and records the data modification partitions
in the TxTopology. It then processes the request by sending it to the
relevant PrimaryParts in both the Out and In directions, updating
theWAL and cache. However, the data uses the TxId as a provisional
version number and remains invisible to other transactions until
the transaction commit is successful. Once the PrimaryPart com-
pletes the write operation on the WAL, it asynchronously replicates
the WAL to its SecondaryPart. After the SecondaryPart finishes
replicating the WAL and updating the cache, it asynchronously
notifies the PrimaryPart.

Secondly, after the edge insertion, the user may request to access
an edge in the Out direction. TxCoordinator checks TxTopology to
ensure the involved partition is active, then forwards the query to
the relevant PrimaryPart in the Out direction. The operation reads
the version number for the data to determine its readability. It can
read the version number equal to the TxId, ensuring "read your
writes."

Thirdly, in the final phase of the transaction, the user triggers
the commitment process managed by TxCoordinator using the 2PC
protocol. In the prepare phase, TxCoordinator checks the states
of the partitions based on the transaction’s partition topology in
TxTopology to evaluate the partitions involved in the operations. It
establishes a minimum threshold to ensure that a majority of the
SecondaryParts have completed their asynchronous WAL replica-
tion and cache updates. Once confirmation is received that most
SecondaryParts have finished their tasks, TxCoordinator moves
to the commit phase and marks the current time as the commit
timestamp. For each affected partition, the data version is updated
from the TxId to the commit timestamp, making the data visible.
Finally, TxCoordinator confirms the successful completion of the
transaction.

Our design introduces several features to enhance the transaction
process, improving both efficiency and reliability. (1) It processes
Out and In edges simultaneously, ensuring data consistency in both
directions and reducing the latency typically associated with up-
date operations. (2) The system employs asynchronous replication
for SecondaryParts, which does not block the subsequent tasks
in this transaction, finalizing most of these writes in the prepare
phase. This approach helps achieve low latency while maintain-
ing data consistency. (3) The use of interactive transactions allows
subsequent steps of a transaction to be determined based on the
outcomes of preceding read or write operations.

3900

6.2 OLAP Transaction
The lengthy nature of OLAP workloads introduces the risk of con-
current OLTP operations during analysis. For example, in areas
such as anti-money laundering, these workloads frequently involve
analyzing extensive subgraphs or pathways, sometimes spanning
over 10 hops to evaluate risks accurately. OLAP workloads also
involve algorithms like PageRank for identifying key vertices, and
Louvain for community detection, both requiring full subgraph
access. To preserve the accuracy and reliability of the analysis, it
is essential for OLAP workloads to rely on a data snapshot taken
at the start of the workload, ensuring data consistency throughout
the analysis.

OLAPworkloads predominantly focus on graph analysis through
read-only operations. Given this characteristic, Galaxybase handles
OLAP read-only transactions using MVCC visibility checks without
relying on any locks. MVCC provides a consistent view, ensuring
that OLAP transactions read data with timestamps less than or
equal to the transaction start time. This approach prevents interfer-
ence between OLTP and OLAP workloads, maintaining serializable
snapshot isolation levels for OLAP transactions.

7 EXPERIMENTAL EVALUATION
In this section, we conduct an in-depth assessment of Galaxybase,
focusing on addressing the following questions: Q1: What is the
performance level of Galaxybase compared with existing graph
databases, especially in a distributed environment with multiple
machines? Q2: How efficiently does Galaxybase handle various
HTAP workloads? Q3: How well does Galaxybase handle a variety
of graph queries, from graph traversals to single edge queries? Q4:
What is the capability of Galaxybase in extreme scenarios, such as
operating under severely limited memory?

7.1 Experiments Setup
In this subsection, we conduct comparative analyses of Galaxybase
(version 3.5.0) against three well-known graph databases: Neo4j
(version 4.4.27), TigerGraph (version 3.9.2), and JanusGraph (ver-
sion 0.6.0). The experimental setup involves a cluster configured
with 1 to 10 machines. Each machine is equipped with 20 virtual
cores powered by an Intel Xeon Gold 5218R CPU and 128GB of
DDR4 memory. For data transfer between servers, each machine is
equipped with a 1 Gigabit pass-through network card. The entire
configuration operates on the Ubuntu 18.04.6 LTS operating system.

Workloads. The usage of Galaxybase mainly encompasses two
types: OLTP and OLAP. OLTP workloads in Galaxybase focus on
ensuring transactional integrity for basic operations such as creat-
ing, reading, updating, and deleting vertices, edges, and properties.
Conversely, OLAP workloads in graph databases are character-
ized by intricate k-hop graph traversal queries and analyses, such
as Weakly Connected Component for community detection and
PageRank for identifying key vertices. Such queries are known for
producing substantial intermediate results, particularly when they
come across super-vertices within the graph’s framework.

Datasets. Our evaluation utilizes three distinct datasets: two
synthetic property-rich graphs created by the LDBC-SNB 2 data

2https://ldbcouncil.org/benchmarks/snb/

generator and one real-world graph dataset from Twitter 3. Com-
prehensive statistics for each dataset are detailed in Table 1.

Table 1: Graph Datasets

Dataset Vertices (V) Edges (E)
LDBC-SNB-SF10 29,987,835 176,623,445
LDBC-SNB-SF100 282,637,871 1,775,513,811

Twitter-2010 41,652,230 1,468,365,182

7.2 Single-Machine/Distributed Performance
We begin by evaluating Galaxybase under both OLTP and OLAP
workloads, across single-machine and distributed configurations.
OLTP queries serve as a crucial metric for evaluating a graph
database’s fundamental read and write capability, whereas OLAP
queries access its analytical capability. Our tests are performed with
1 and 3 servers, where we execute concurrent OLTP operations on
vertices and edges using the LDBC-SNB-SF10 dataset. For OLAP
queries, we explore scenarios ranging from 1 to 6 hops and apply
algorithms such as the Weakly Connected Component (WCC) and
PageRank, utilizing the Twitter-2010 dataset for these analyses.

Figure 9 displays the OLTP performance of Galaxybase in com-
parison to TigerGraph, Neo4j, and JanusGraph across eight op-
erations, with throughput measured in thousands of queries per
second (Kq/s). Notably, for the vertex read operation, Galaxybase
reaches a throughput of up to 50 Kq/s in a single-machine envi-
ronment and 85 Kq/s when distributed, surpassing other graph
databases. The y-axis scale emphasizes the substantial range of
throughput, highlighting Galaxybase’s dominance, particularly in
distributed settings where its performance scales impressively with
the increased number of machines. This suggests that Galaxybase’s
architecture is highly effective in both individual and collective
server arrangements, ensuring rapid data handling and transaction
processing in high-demand scenarios.

The OLAP results, illustrated in Figure 10, showcase a compar-
ison of the latency for k-hop queries and graph algorithms on
four graph databases under both single-machine and distributed
configurations. In these tests, each database was restricted to a
maximum query execution time of one hour, with durations ex-
ceeding this limit labeled as “Timeout”. Notably, JanusGraph and
Neo4j frequently reached these time constraints, struggling to com-
plete deep hop queries within the timeframe. JanusGraph, in par-
ticular, lacked compatibility with the tested algorithms, indicated
as “Unsupported”. In contrast, Galaxybase consistently adhered
to the one-hour threshold for all hops and algorithm evaluations,
showcasing superior scalability and performance. Its latency was
impressively low in both single and distributed settings, with the
former demonstrating higher improvements.

In both OLTP and OLAP benchmarks, Galaxybase consistently
outperforms other graph databases in terms of throughput and
latency. This superiority can be attributed to the storage features of
Galaxybase. It employs a Log-Structured Adjacency List to improve
sequential data read/write operations and uses offset-based data
retrieval for fast data access. The performance gap is also widened
3https://snap.stanford.edu/data/twitter-2010.html

3901

V-Create V-Read V-Update V-Delete E-Create E-Read E-Update E-Delete
0

0.2
0.5

1

10

25

50

Th
ro

ug
hp

ut
 (K

q/
s)

Single-Machine
Galaxybase TigerGraph Neo4j JanusGraph

V-Create V-Read V-Update V-Delete E-Create E-Read E-Update E-Delete
00.2

0.5
1

10

25

50

85

Th
ro

ug
hp

ut
 (K

q/
s)

Distributed
Galaxybase TigerGraph Neo4j JanusGraph

Figure 9: Comparative analysis of throughput performance in graph database OLTP operations, categorized by vertex (V) and
edge (E) actions. The y-axis represents throughput, measured in thousands of operations per second (Kq/s).

1-hop 2-hop 3-hop 4-hop 5-hop 6-hop WCC PageRank10−1

100

101

102

103

R
el

at
iv

e
La

te
nc

y

Single-Machine
Galaxybase TigerGraph Neo4j JanusGraph Timeout Unsupported

1-hop 2-hop 3-hop 4-hop 5-hop 6-hop WCC PageRank10−1

100

101

102

103

R
el

at
iv

e
La

te
nc

y

Distributed
Galaxybase TigerGraph Neo4j JanusGraph Timeout Unsupported

Figure 10: Comparative analysis of relative latency for OLAP queries across different graph databases on a single-
machine/distributed setup. The y-axis represents logarithmic relative latency.

2 4 6 8 10
Number of Machines

104

105

Th
ro

ug
hp

ut
 (q

/s
)

38027

54330

70010

92810
112254

145589

4457
5112

6362
7471

8282
9227

Galaxybase
TigerGraph

Figure 11: Scalability throughput for 1 to 10 machines

by the fact that databases like Galaxybase use specialized graph
stores. In contrast, JanusGraph relies on a more generic NoSQL-
based storage solution, which is not as well-suited for the specific
demands of graph operations.

7.3 Scalability Analysis
We assess the scalability of Galaxybase by conducting a comparative
analysis with the widely recognized distributed graph database
TigerGraph. We perform 100 concurrent 1-hop neighbor queries on
1 to 10 servers using LDBC-SNB-SF100. Our objective is to measure
throughput and evaluate performance across different numbers of
servers.

Figure 11 shows the throughput for each system when running
tests across different numbers of servers. Both systems demon-
strate increased throughput with more servers. However, Galaxy-
base consistently outperforms TigerGraph, with at least 8.5 times
higher throughput. This performance is due to Galaxybase’s use
of partitions to handle high parallel workloads. Meanwhile, the
advantage of Galaxybase becomes increasingly evident as the num-
ber of servers grows. For instance, when comparing 10 servers to
1 server, Galaxybase achieves a 3.8 times increase in throughput,
while TigerGraph only sees a 2.1 times increase. Galaxybase’s load
balancing strategies enable higher parallelism to process each trans-
action when more resources are available. These results highlight
the scalability and efficiency of Galaxybase in deployments.

7.4 Edge Query Evaluation
This evaluation focuses on the impact of Edge Page technology,
as detailed in Section 4.3, using the LDBC-SNB-SF10 dataset with
a single server. We assess edge query performance from several
angles, including traversing edges without filters, by direction, and
by type, as well as locating individual edges via their Edge ID.

As shown in Table 2, Galaxybase demonstrates outstanding per-
formance across all edge query types, especially notable in Single
Edge Query, showcasing the effectiveness of its Edge Page design.
In contrast, TigerGraph faces limitations due to its REST API’s
restriction to Out direction traversal and lack of support for diverse
traversal directions (In, Both), impacting its overall edge query per-
formance. Neo4j shows comparable performance to Galaxybase in
the Graph Traversal Without Filtering and Graph Traversal With
Directed Filtering queries but lags in Graph Traversal With Type
Filtering and Single Edge Query. Neo4j’s approach of storing edges

3902

at a fixed size and multiplying ID by record size offers quick re-
trieval for Single Edge Query that do not require edge properties,
but this method is less effective for more complex queries seeking
detailed edge information. JanusGraph, on the other hand, exhibits
weaker performance in all categories, primarily due to its non-
native graph structure, a common challenge shared among the
evaluated databases.

Table 2: Edge query throughput

Type Galaxybase TigerGraph Neo4j JanusGraph

Graph Traversal Without Filtering 1185 54 1155 0.67
Graph Traversal With Directed Filtering 2877 1177 2344 11
Graph Traversal With Type Filtering 10270 63 3183 121
Single Edge Query 49017 8185 19592 207

7.5 Memory Constraint Analysis
In this experiment, we aim at understanding how well a graph
database can operate under memory limitations, a crucial aspect
for users with constrained hardware resources. For this purpose,
we conduct tests with memory caps at 16GB, 32GB, and 64GB. The
Twitter dataset used in this experiment typically demands around
25GB of memory to be fully loaded, making this a challenging test
of memory management capabilities in graph databases.

Our analysis includes performing k-hop queries with neighbor-
hoods of 1 and 2 degrees. The average neighborhood size is about
1,000 for 1-hop and roughly 2 million for 2-hop. As presented in
Table 3, we observe that existing graph databases struggle with
limited memory. For instance, TigerGraph has difficulty loading
data even with 32GB, suggesting an issue with data inflation during
TigerGraph’s data import process. Neo4j and JanusGraph manage
to load and process 1-hop queries with restricted memory. However,
they encounter out-of-memory errors during 2-hop queries, and
error rates are still high even with 64GB, indicating stability issues
under memory strain.

Galaxybase, on the other hand, stands out for its efficientmemory
usage and stability. It shows remarkable performance, effectively
handling queries even when the available memory is below the
dataset’s full requirement. This indicates Galaxybase’s superior ca-
pability to perform under memory constraints, an essential quality
for graph databases in resource-limited environments.

Table 3: Performance under low memory conditions

Memory k-hop Galaxybase TigerGraph Neo4j JanusGraph

16G 1-hop 23476 (0%) / 11784 (0%) 94 (0%)
2-hop 9.35 (0%) / OOM (100%) OOM (100%)

32G 1-hop 24262 (0%) / 11999 (0%) 92 (0%)
2-hop 9.57 (0%) / OOM (100%) OOM (100%)

64G 1-hop 24862 (0%) 4051 (0%) 12336 (0%) 95 (0%)
2-hop 9.89 (0%) 6.15 (0%) 0.32 (17%) 0.18 (29%)

* The result indicates throughput (error rate). “/” indicates the graph database is
unable to load the data within the specified resource constraints. “OOM” means the

graph database ran out of memory when running the k-hop query within the
specified resource constraints.

7.6 Evaluation on Extremely Large Graphs
In our previous evaluations, analysis is confined to smaller graphs
due to the limitations of competing systems in managing larger
graphs effectively. To demonstrate Galaxybase’s proficiency in pro-
cessing large-scale data, we present its performance on a simulated
trillion-scale dataset of real financial transactions, as detailed on our
official website4. This dataset comprises 5 billion account vertices
and 5 trillion transaction edges, complete with various properties
and super vertices, with degrees ranging from 10 to over 10 million.

On this dataset, Galaxybase successfully processes 6-hop queries
filtered by transaction time with an average execution time of
just 6.7 seconds. This level of efficiency is achieved using only 50
machines, each equipped with 12 CPUs and 128GB of memory,
showcasing Galaxybase’s exceptional capability to manage and
process data at a truly massive scale.

8 LESSONS LEARNED
This section outlines some key insights gained from nearly a decade
of developing Galaxybase.

8.1 Resource Isolation
Galaxybase’s extensive experience in production environments
highlights the importance of resource isolation. This is vital to
prevent high-load queries from one user causing out-of-memory
(OOM) errors for others. Given the unpredictable nature of graph
queries, encountering a ‘super vertex’ can involve expansive neigh-
bor exploration and lead to rapid data volume inflation, complicat-
ing resource management.

To address this, Galaxybase has implemented a sophisticated
memory management and thread scheduling system. This system
monitors the memory and thread resources usage of each query in
real-time, enabling the enforcement of specific resource limits per
user and query. Queries exceeding these limits are promptly termi-
nated, preventing excessive resource consumption. Although this
approach results in a performance overhead of 2-5%, it significantly
boosts system stability and availability, making Galaxybase more
robust in serious production environments.

8.2 Access Control
We recognize the significant differences in access control require-
ments across various scenarios. For instance, in banking systems,
some users may be authorized to modify graph data but not the
schema, while others can only view data from specific regions. In
more flexible environments, like small educational organizations,
users prioritize quickly sharing entire graphs or subgraphs from
specific queries. These diverse needs must be considered when
designing RBAC system for graph databases.

Additionally, access control in graph databases need to accom-
modate their unique structure, consisting of vertices and edges,
which necessitates granular permission settings. Unlike relational
databases, which may isolate data by region into separate tables or
databases, graph databases depend on interconnected data for their
functionality. This integration makes the access control needs of
graph databases inherently more complex than those in relational
4https://www.createlink.com/news/trillion-test

3903

systems. Such granularity and connectivity are critical considera-
tions in designing RBAC systems for graph databases. To address
this, we have implemented a customer-oriented RBAC layer that
balances the need for development flexibility with strict production
security requirements and graph-specific features.

8.3 Chaos Testing
Certain scenarios require exceptionally high levels of operational
stability, with 24/7 uptime being crucial. For example, in the fi-
nancial and energy sectors, any downtime can lead to significant
economic losses, disruptions in services, and operational paralysis.

Galaxybase undergoes rigorous chaos testing prior to deploy-
ment in such critical environments. We have developed a chaos
testing system tailored for graph databases that simulates poten-
tial production issues by injecting random faults into large-scale
clusters. Our testing framework encompasses over 200 user cases
and tens of thousands of test cases, addressing a broad spectrum of
potential failures and chaotic conditions under various workloads.
Using automated tools and scripts, we introduce chaos factors un-
der various types of workloads and monitor the system to verify
its operational robustness.

8.4 Query Language Choices
In the initial development phase of Galaxybase, we considered
the pros and cons of designing a specialized query language. Cus-
tomized languages can be optimized for specific system needs and
introduce unique features, but suffer from limited compatibility
with other systems and pose significant adoption barriers due to
their steep learning curves. Therefore, we opted for OpenCypher5
syntax, which closely resembles SQL and eases the learning process
for users familiar with relational databases. Moreover, the launch
of the GQL6 ISO standard on April 11, 2024, marked a significant
milestone. As the first standardized graph query language, GQL
fosters interoperability among different graph database systems
and encourages consistency in graph querying. Galaxybase is com-
mitted to supporting GQL, which incorporates most of syntactical
elements from OpenCypher.

9 RELATEDWORK
Graph databases are typically grouped into two main types: non-
native databases, and native databases.

Non-native graph databases often use established non-graph
backends such as Key-Value or Document stores. This category
includes systems like JanusGraph [3], ByteGraph [27], TAO [10],
A1 [11], NebulaGraph [4], RedisGraph [12], ArangoDB [2], and
OrientDB [36]. JanusGraph, building on Titan [1], employs a wide-
column store approach, organizing vertices and edges in a format
that combines properties with Key-Value pairs. ByteGraph also
adopts a Key-Value storage model, tailored to the demands of graph-
based querying.

5https://opencypher.org/
6https://www.gqlstandards.org/

In the category of native graph databases, solutions like Neo4j
[5] and LiveGraph [43] stand out for their implementation of index-
free adjacency. This approach greatly improves graph traversal effi-
ciency. However, we observe that traditional native graph databases,
encounter scalability limitations. For instance, Neo4j can operate in
a multi-server mode, but its setup doesn’t involve dataset sharding
capabilities, while LiveGraph is designed as a single-machine graph
database.

Distributed native graph databases mark a significant evolution
in the realm of graph database technology, advancing beyond the
capabilities of traditional native databases. Examples include Tiger-
Graph [16], Grasper [13], G-Tran [14], and our proposedGalaxybase.
Some systems are designed for high-performance operations. Tiger-
Graph, for example, tries to load the whole graph into memory,
which can achieve low latency and high memory utilization when
the server is created [27]. If the graph size exceeds the available
memory, the excess data is stored on disk. Some systems are adept
at handling OLTP or OLAP operations. For instance, G-Tran is tai-
lored for OLTP tasks, while Grasper is better suited for OLAP tasks.
Galaxybase, in contrast, offers optimized solutions for both OLTP
and OLAP operations separately, showcasing its versatility.

In addition to these categories, the graph processing frameworks
like Pregel [29], GraphLab [28], PowerGraph [20], GraphX [21], and
GraphScope [18], is renowned for its in-memory batch processing
and distributed parallel processing capabilities. Graph processing
systems focus on OLAP workloads like analytics and mining, while
graph databases for OLTP workloads concentrate on maintaining
data consistency through transactions.

10 CONCLUSIONS
In this paper, we introduce Galaxybase, a native distributed graph
database optimized for efficiently handling HTAP workloads. Our
empirical evaluation demonstrates that Galaxybase significantly
outperforms existing graph databases, including TigerGraph, Neo4j,
and JanusGraph. This superior performance is attributed to its
unique design, which includes the Log-Structured Adjacency List,
Edge Page, Distributed Storage Strategies, and HTAP Distributed
Transaction mechanisms. Galaxybase shows exceptional perfor-
mance in both OLTP and OLAP scenarios, achieving a throughput
of up to 85,000 queries per second in OLTP workloads and sur-
passing its competitors in OLAP workloads by a substantial mar-
gin. Galaxybase addresses the current limitations faced by existing
graph databases in handling large-scale, complex queries and sets
a new benchmark in processing efficiency.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. We
are also grateful to the entire team at CreateLink(Chuanglin) for
their dedication and support during the development of Galaxybase.
Additionally, we appreciate the professional guidance and insight-
ful feedback provided by the team at the HKUST(GZ)-Chuanglin
Graph Data Joint Lab. This paper was supported by NSFC Grant
No. 62206067 and HKUST(GZ)-Chuanglin Graph Data Joint Lab.

3904

REFERENCES
[1] 2015. Titan. https://titan.thinkaurelius.com/
[2] 2024. ArangoDB. https://www.arangodb.com/
[3] 2024. JanusGraph. http://janusgraph.org/
[4] 2024. NebulaGraph. https://www.nebula-graph.io/
[5] 2024. Neo4j. https://neo4j.com/
[6] Renzo Angles. 2018. The Property Graph Database Model.. In AMW.
[7] Marcelo Arenas, Claudio Gutiérrez, and Juan F Sequeda. 2021. Querying in

the age of graph databases and knowledge graphs. In Proceedings of the 2021
International Conference on Management of Data. 2821–2828.

[8] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. Linkbench: a database benchmark based on the facebook
social graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 1185–1196.

[9] Amel Awadelkarim and Johan Ugander. 2020. Prioritized restreaming algo-
rithms for balanced graph partitioning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1877–1887.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
{TAO}:{Facebook’s} distributed data store for the social graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13). 49–60.

[11] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. 2020. A1: A distributed in-memory graph database. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 329–
344.

[12] Pieter Cailliau, Tim Davis, Vijay Gadepally, Jeremy Kepner, Roi Lipman, Jeffrey
Lovitz, and Keren Ouaknine. 2019. Redisgraph graphblas enabled graph data-
base. In 2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 285–286.

[13] Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan Huang, James Cheng, Jian
Zhang, Yifan Hou, and Xiao Yan. 2019. Grasper: A high performance distributed
system for OLAP on property graphs. In Proceedings of the ACM Symposium on
Cloud Computing. 87–100.

[14] Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng
Fang, James Cheng, and Jian Zhang. 2022. G-tran: a high performance distributed
graph database with a decentralized architecture. Proceedings of the VLDB
Endowment 15, 11 (2022), 2545–2558.

[15] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: layering atomic transactions on Facebook’s online TAO data store.
Proceedings of the VLDB Endowment 14, 12 (2021), 3014–3027.

[16] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tigergraph: A native
MPP graph database. arXiv preprint arXiv:1901.08248 (2019).

[17] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social net-
work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 619–630.

[18] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a unified engine for big
graph processing. Proceedings of the VLDB Endowment 14, 12 (2021), 2879–2892.

[19] Lars George. 2011. HBase: the definitive guide: random access to your planet-size
data. " O’Reilly Media, Inc.".

[20] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. {PowerGraph}: Distributed {Graph-Parallel} computation on natural
graphs. In 10th USENIX symposium on operating systems design and implementa-
tion (OSDI 12). 17–30.

[21] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. 2014. {GraphX}: Graph processing in a distributed
dataflow framework. In 11th USENIX symposium on operating systems design and
implementation (OSDI 14). 599–613.

[22] James N Gray. 2005. Notes on data base operating systems. Operating systems:
An advanced course (2005), 393–481.

[23] Richard Henderson. 2020. Using graph databases to detect financial fraud. Com-
puter Fraud & Security 2020, 7 (2020), 6–10.

[24] Bowen Kan, Wendong Zhu, Guangyi Liu, Xi Chen, Di Shi, and Weiqing Yu.
2017. Topology modeling and analysis of a power grid network using a graph
database. International Journal of Computational Intelligence Systems 10, 1 (2017),
1355–1363.

[25] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[26] Butler W Lampson and Howard E Sturgis. 1979. Crash recovery in a distributed
data storage system. Xerox Palo Alto Research Center Palo Alto, California.

[27] Changji Li, Hongzhi Chen, Shuai Zhang, YingqianHu, Chao Chen, Zhenjie Zhang,
Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, et al. 2022. ByteGraph: a
high-performance distributed graph database in ByteDance. Proceedings of the
VLDB Endowment 15, 12 (2022), 3306–3318.

[28] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M Hellerstein. 2012. Distributed graphlab: A framework for machine
learning in the cloud. arXiv preprint arXiv:1204.6078 (2012).

[29] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[30] Diego Ongaro and John Ousterhout. 2014. In search of an understandable
consensus algorithm. In 2014 USENIX annual technical conference (USENIX ATC
14). 305–319.

[31] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[32] Anil Pacaci, Alice Zhou, Jimmy Lin, andM Tamer Özsu. 2017. Do we need special-
ized graph databases? Benchmarking real-time social networking applications.
In Proceedings of the Fifth International Workshop on Graph Data-management
Experiences & Systems. 1–7.

[33] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2014. Hy-
brid transaction/analytical processing will foster opportunities for dramatic
business innovation. Gartner (2014, January 28) Available at https://www. gart-
ner. com/doc/2657815/hybrid-transactionanalyticalprocessing-foster-opportunities
(2014), 4–20.

[34] Debachudamani Prusti, Daisy Das, and Santanu Kumar Rath. 2021. Credit card
fraud detection technique by applying graph database model. Arabian Journal
for Science and Engineering 46, 9 (2021), 1–20.

[35] David Patrick Reed. 1978. Naming and Synchornization in a Decentralized
Computer System. (1978).

[36] Daniel Ritter, Luigi Dell’Aquila, Andrii Lomakin, and Emanuele Tagliaferri. 2021.
OrientDB: A NoSQL, Open Source MMDMS.. In BICOD. 10–19.

[37] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[38] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis. 1978. System level
concurrency control for distributed database systems. ACM Transactions on
Database Systems (TODS) 3, 2 (1978), 178–198.

[39] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, Aaron
Adcock, Herald Kllapi, and Michael Stumm. 2016. Social hash: an assignment
framework for optimizing distributed systems operations on social networks.
In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16). 455–468.

[40] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. 2022. Rethinking graph neural
networks for anomaly detection. In International Conference on Machine Learning.
PMLR, 21076–21089.

[41] Jihong Yan, ChengyuWang, Wenliang Cheng, Ming Gao, and Aoying Zhou. 2018.
A retrospective of knowledge graphs. Frontiers of Computer Science 12 (2018),
55–74.

[42] TV Zhidchenko, MN Seredina, NM Udintsova, and NA Kopteva. 2021. Design of
energy-loaded systems using the Neo4j graph database. In IOP Conference Series:
Earth and Environmental Science, Vol. 659. IOP Publishing, 012108.

[43] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. [n.d.]. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. Proceedings
of the VLDB Endowment 13, 7 ([n. d.]).

3905

https://titan.thinkaurelius.com/
https://www.arangodb.com/
http://janusgraph.org/
https://www.nebula-graph.io/
https://neo4j.com/

	Abstract
	1 Introduction
	2 Background and Design Principle
	3 Architecture Overview
	4 Data Storage
	4.1 Overview
	4.2 Log-Structured Adjacency List
	4.3 Edge Page

	5 Distributed Storage Strategies
	5.1 Data Partitioning Strategies
	5.2 Data Replication Strategies

	6 Distributed Transaction Processing
	6.1 OLTP Transaction
	6.2 OLAP Transaction

	7 Experimental Evaluation
	7.1 Experiments Setup
	7.2 Single-Machine/Distributed Performance
	7.3 Scalability Analysis
	7.4 Edge Query Evaluation
	7.5 Memory Constraint Analysis
	7.6 Evaluation on Extremely Large Graphs

	8 Lessons Learned
	8.1 Resource Isolation
	8.2 Access Control
	8.3 Chaos Testing
	8.4 Query Language Choices

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

