
Complex-Path: Effective and Efficient Node Ranking with Paths
in Billion-Scale Heterogeneous Graphs

Jinquan Hang

JD Logistics

Rutgers University

jinquan.hang@rutgers.edu

Zhiqing Hong

Rutgers University

zhiqing.hong@rutgers.edu

Xinyue Feng

Rutgers University

xinyue.feng@rutgers.edu

Guang Wang
∗

Florida State University

guang@cs.fsu.edu

Dongjiang Cao

JD Logistics

caodongjiang1@jd.com

Jiayang Qiao

JD Logistics

qiaojiayang1@jd.com

Haotian Wang

JD Logistics

wanghaotian18@jd.com

Desheng Zhang

Rutgers University

desheng@cs.rutgers.edu

ABSTRACT
Node ranking in heterogeneous graphs, which quantifies the rela-

tive importance of nodes, can often be improved by incorporating

information from relevant paths. Graph database and heteroge-

neous graph neural network (HGNN) are two main approaches to

better solve this problem. Graph databases support efficient path

queries for flexible path types but require manual design to combine

results for node ranking. Conversely, current HGNNs can automati-

cally integrate semantic information frommultiple linear path types

for accurate node ranking. However, our experiments show that

they fail to outperform a multi-layer perceptron model that utilizes

features extracted frommultiple nonlinear conditional paths, which

can be handled by graph databases. Therefore, we aim to enable

HGNN to take advantage of these path types for better performance.

However, HGNNs require a generalized path schema to define the

structure of input paths, and incorporating each additional path

type will significantly increase the required system memory and

sampling time for HGNNs. To address these limitations, we intro-

duce CompNode, a novel framework based on a new unified path

schema definition called Complex-path, which is used to describe

all the required path types, including nonlinear conditional path

types. Then, we design a pre-aggregation method to reduce the

required system memory and sampling time by pre-aggregating the

same type of complex-path. Furthermore, we develop a model that

combines semantic information from all aggregated complex-paths

for accurate node ranking. Real-world experiments on identifying

top potential high-value customers show CompNode outperforms

state-of-the-art HGNNs by 20% in average precision and the previ-

ously deployed graph database method by 252% in success rate.

PVLDB Reference Format:
Jinquan Hang, Zhiqing Hong, Xinyue Feng, Guang Wang, Dongjiang Cao,

Jiayang Qiao, Haotian Wang, and Desheng Zhang. Complex-Path: Effective

and Efficient Node Ranking with Paths in Billion-Scale Heterogeneous

Graphs. PVLDB, 17(12): 3973 - 3986, 2024.

doi:10.14778/3685800.3685820

∗
Guang Wang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.

doi:10.14778/3685800.3685820

Company Account Node

Paths provide context on customers'

potential to be high-value.
Customers

Parent Company Node

Neighbor Company Node

How to better rank customers based on their potential

to be high-value, as reflected by these paths?

Figure 1: Identifying top potential high-value customers in a
billion-scale heterogeneous graph.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/JQHang/Complex-path.

1 INTRODUCTION
Recently, node ranking in heterogeneous graphs [56, 64, 67] has

become increasingly important. Node ranking [10, 53, 57] is the

process of assigning scores to nodes based on their relevance or

significance within the graph. Heterogeneous graphs [7, 54, 74]

contain multiple types of nodes (entities) and edges (relations),

which pose unique challenges for node ranking. In such graphs, a

node’s importance is often influenced by its relevance to different

types of paths connecting it with other nodes, which capture the

semantic relations and structural properties of the graph. Numerous

research efforts have focused on effectively leveraging information

from diverse paths in heterogeneous graphs. They have achieved

notable success in fields such as recommendation systems [9, 80],

fraud detection [20, 48, 61], and social network [32, 72, 79]. In this

paper, we aim to address an industrial node ranking problem: rank-
ing customers based on the potential of being high-value, as
shown in Figure 1. Our goal is to leverage information from various

useful paths in the graph to help sales accurately find top poten-

tial high-value customers. This node ranking problem is critical

because finding the appropriate customer [37, 44, 45] to contact is

the initial step for service providers to promote their products.

3973

https://doi.org/10.14778/3685800.3685820
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685820
https://github.com/JQHang/Complex-path
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Customer Company

Region

Industry

Nonlinear

Structure

Conditional

Constraints

Co-Industry

& Co-Region

Company

Existing

High-Value

Customer

Linear

Structure

Figure 2: An example of nonlinear conditional path type.
(Link each customer to existing high-value customers via

co-industry and co-region relations.)

Two methods, graph database [3, 4] and heterogeneous graph

neural network (HGNN) [13, 80], can potentially address our prob-

lem and identify top potential high-value customers. Graph databases

can efficiently query paths [1, 40] matching flexible path types and

use manually designed algorithms to calculate each node’s final

importance value based on the matching results through graph

query languages (GQL). However, accurately estimating customers’

potential value through a manually designed algorithm is chal-

lenging, as it is influenced by numerous conditions. In contrast,

HGNNs [15, 19] can automatically learn to integrate the semantic

information from multiple paths based on labeled nodes, often out-

performing manually designed algorithms in complex tasks like

product recommendations [9]. However, HGNNs can only learn

from paths that conform to a generalized path schema [35]. The

currently mainly used generalized path schema, Meta-path [55], can

only represent linear path types composed of a sequence of nodes

and edges, which overlooks some nonlinear conditional path types
used by graph databases, such as path types involving fork-join or

conditions in the path structure, as shown in Figure 2.

To verify the importance of these nonlinear conditional path

types, we first transform some selected nonlinear conditional paths

into corresponding features for each customer. For example, the

path type in Figure 2 can be transferred into several features for

each customer, including the number of existing high-value cus-

tomers that can be connected through this path type and their

average order count. We then concatenated these features with

each customer’s original features to train a multi-layer perceptron

(MLP) [50] model based on labeled customers and compared it with

several current state-of-the-art HGNNs. The results show that the

MLP model outperformed all current HGNNs, demonstrating the

value of information from these nonlinear conditional path types

and the inability of current HGNNs to automatically utilize them.

Moreover, an MLP model using only features transformed from

meta-paths performed worse than most HGNNs, indicating that

HGNNs can better utilize path structure information.

Therefore, introducing nonlinear conditional path types into

HGNN can more effectively utilize information in heterogeneous

graphs. This is, however, not trivial due to two major challenges.

• (i) Generalized Path Schema. To leverage HGNNs for learning

semantic information from different path types, all paths must

follow a generalized path schema based on the heterogeneous

graph definition. However, path types expressed by GQL are

based on the operators provided by graph databases and don’t

have a generalized path schema.

• (ii) Scalability and Computational Efficiency. For most existing

HGNNs [19, 32, 65], incorporating each additional path type in-

curs a considerable increase in sampling time and system mem-

ory due to the rapid growth of the number of neighbors [18, 46,

70]. Consequently, it is challenging to simultaneously utilize a

large number of path types on large-scale data.

To tackle these challenges, we developed a framework called

CompNode. First, to address the lack of a generalized path schema,

we introduced a new definition named Complex-path, which op-

timizes the existing Meta-path schema to represent all types of

nonlinear conditional paths that we require. Second, to improve

scalability and computational efficiency, we first developed a pre-

aggregation method that can integrate with distributed systems

to utilize more machines to complete the process of aggregating

the same type of complex-path in advance, and designed a model

based on the aggregated paths that can simultaneously consider

intra-path and inter-path information for accurate node ranking.

Consequently, CompNode can effectively and efficiently leverage a

large number of selected complex-paths to rank customers based

on their potential to become high-value.

In summary, this paper makes the following contributions.

• To the best of our knowledge, we are the first to study the problem

of ranking nationwide customers based on their potential value

using a billion-scale heterogeneous graph.

• We introduce a new framework, CompNode, which can leverage

nonlinear conditional paths represented by Complex-path for

efficient and effective node ranking in heterogeneous graphs.

• We performed comprehensive experiments using real-world

datasets against several baselines. Our analysis, both theoret-

ical and empirical, indicates that our framework outperforms

baseline models by over 20% in average precision, maintaining

its efficiency even with the increase of complex-paths.

• Our framework has been deployed at a major logistics company.

In real-world A/B testing, it achieved a 252% increase compared to

the previous deployed graph database strategy. After the testing,

our framework has continued to run smoothly and has identified

over 200,000 top potential high-value customers.

2 PRELIMINARY
2.1 Graph Databases
In graph databases, data is often structured in Labeled Property

Graphs (LPGs) [2, 8]. LPGs enable nodes and edges to carry multiple

labels and properties, with labels categorizing them into broad types

and properties providing detailed information.

Definition 2.1. Labeled Property Graph (LPG). An LPG is a

graph composed of nodes (entities) and edges (relations), defined

as 𝐿𝑃𝐺 = (𝑉 , 𝐸,Λ, 𝑃). In an LPG:

• Each node 𝑣𝑖 ∈ 𝑉 and edge 𝑒𝑖 𝑗 ∈ 𝐸 is tagged with one or more

labels via Λ, where Λ : 𝑉 ∪ 𝐸 → 𝐿 and 𝐿 is the set of labels.

• Each node and edge is also associated with properties, expressed

as key-value pairs, through 𝑃 , where 𝑃 : (𝑉 ∪ 𝐸) × 𝐾 → 𝑉𝑎𝑙𝑢𝑒𝑠 ,

𝐾 represents the keys, and 𝑉𝑎𝑙𝑢𝑒𝑠 the associated values.

3974

1:MATCH (c1:Customer) -[: RELATED_TO]->(cc1:Company),
2: (c2:Customer) -[: RELATED_TO]->(cc2:Company),
3: (cc1) -[:BELONGS_TO]->(i:Industry),
4: (cc2) -[:BELONGS_TO]->(i),
5: (cc1) -[:LOCATED_IN]->(r:Region),
6: (cc2) -[:LOCATED_IN]->(r)
7:WHERE r IS NOT NULL AND i IS NOT NULL

AND c2.value = 'high'
8: RETURN c1, cc1 , r, i, cc2 , c2

Listing 1: The Cypher query corresponding to Figure 2.

To obtain the corresponding paths [5, 6, 14] from the graph

database based on path types, different graph databases have de-

veloped their unique graph query languages. For instance, Neo4j

uses Cypher [12], Oracle uses PGQL [47], and TigerGraph uses

GSQL [22]. These query languages offer a variety of operations,

allowing users to define diverse path patterns.

For example, the path shown in Figure 2 corresponds to the

Cypher query presented in Listing 1. Lines 1-2 represent the re-

lationships between customer nodes c1 and c2 and their respec-

tive corresponding company nodes cc1 and cc2 through the RE-

LATED_TO relationship. Lines 3-4 state that the company nodes

cc1 and cc2 must be connected to the same Industry node i through

the BELONGS_TO relationship. Lines 5-6 state that the company

nodes cc1 and cc2 must be connected to the same Region node

r through the LOCATED_IN relationship. Line 7 states that the

relationships of being in the same Industry and same Region must

be simultaneously satisfied and the value property of the customer

node c2 must be ’high’.

2.2 Heterogeneous Graph Neural Network
Although graph databases offer high flexibility in querying flexible

path types, achieving high accuracy can be challenging when the

calculation of nodes’ importance values cannot be precisely de-

scribed manually. In contrast, by using labeled nodes, HGNNs [32,

63] can automatically and effectively integrate information from

different types of subgraphs or paths. However, because HGNNs

need to use a unified neural network structure [64, 67] to synthesize

information, there are additional constraints on the construction

of the graph, and the sampled subgraphs or paths must follow a

generalized schema. In most cases, the heterogeneous graphs in

HGNNs follow the definition below.

Definition 2.2. Heterogeneous Graph (HG). A heterogeneous

graph is a graph consisting of different types of entities (i.e., nodes)

and/or different types of relations (i.e., edges), each type having a

fixed number of features (i.e., properties), which can be formally

defined as 𝐻𝐺 = (𝑉 , 𝐸). Specifically, within 𝐻𝐺 :
• Each node 𝑣𝑖 ∈ 𝑉 is associated with one node type 𝑜 = 𝜙 (𝑣𝑖),
𝑜 ∈ 𝑂 , and a feature vector f𝑣𝑖 ∈ R𝑑𝑜 .
• Each edge 𝑒𝑖 𝑗 ∈ 𝐸 is associated with one edge type 𝑙 = 𝜓 (𝑒𝑖 𝑗),
𝑙 ∈ 𝐿, and a feature vector f𝑒𝑖 𝑗 ∈ R𝑑𝑙 .
• There is a heterogeneity in the types of nodes or edges, repre-

sented as |𝑂 | + |𝐿 | > 2.

Compared to LPG, HG requires that each node and edge has

exactly one type, and nodes and edges of the same type must have

Heterogeneous Graph

Meta-Path Instances

K-Hop

Sampling for

Meta-Path

Sampling for

K-Hop Subgraph

E F

B

H

D

A C

G I

Node Type 1

Node Type 2

Node Type 3

E D A

E F C

E F H

E D H

Max Hop

Count (K): 2

Meta-Path Type:

E

B D F H

A C G I

E

E

1-hop

2-hop

Figure 3: Two sampling methods in heterogeneous graphs.

the same set of features. Based on this definition, there are mainly

two sampling methods for HGNNs: k-hop sampling and meta-path
sampling. Figure 3 shows an example of these two methods.

The first method is k-hop sampling, primarily used to collect

neighbor nodes within k hops from the target node, as well as the

edges connecting these neighbors to their preceding nodes in the

hop sequence. The definition of k-hop sampling is:

Definition 2.3. K-hop Sampling. Given a graph 𝐻𝐺 = (𝑉 , 𝐸), a
target node 𝑣0, and a maximum number of hops 𝑘 , k-hop sampling

refers to the process of returning a subgraph 𝐻𝐺 ′ = (𝑉 ′, 𝐸′) where
𝑉 ′ includes 𝑣0 and all nodes 𝑣 that are reachable from 𝑣0 within 𝑘

hops, 𝐸′ includes all edges that connect nodes within 𝑉 ′.

However, due to the over-smoothing issue [33, 66], information

from too many hops become indistinguishable, limiting its ability

to leverage long-distance information. To address this, meta-path

sampling was introduced. Meta-path [55], by defining a sequence

of nodes and edges, more precisely connects distant nodes to the

target node, effectively reducing the over-smoothing problem and

enabling the model to utilize a broader range of information. The

definitions of meta-path and meta-path sampling are:

Definition 2.4. Meta-path. A meta-path 𝑝 is a path denoted in

the linear form of 𝑜1
𝑙1−→ 𝑜2

𝑙2−→ · · · 𝑙𝑚−1−−−−→ 𝑜𝑚 , where 𝑜𝑖 and 𝑙𝑖 are

node types and edge types, respectively, and subscripts indicate the

order of appearance for nodes or edges.

Definition 2.5. Meta-path Sampling. In a heterogeneous graph

𝐻𝐺 = (𝑉 , 𝐸), given a target node 𝑣0 and a meta-path 𝑝 , meta-path

sampling identifies all sequences of nodes and edges starting from

𝑣0 that follow the pattern specified by 𝑝 . These sequences are called

meta-path instances.

2.3 Complex-Path
Although meta-paths can capture long-distance linear path types

(see Definition 2.4), they struggle to represent some nonlinear con-

ditional path types, which are important in real-world rich-content

commercial graphs as shown in Fig 2. Using graph query language,

we extracted information corresponding to these nonlinear con-

ditional path types and discovered a strong correlation with our

3975

1o
1l

2o 2l

3l

3o

(a) Parallel edges

1l
2o

2l
3o

3l
4o

1o

(b) Forking structure

1o
1l

2o
2l

3l 4l
3o

4o

(c) Fork-Join structure

Conditional Constraints:

1o
1l

2o 3o
2l

2 1 2 2. .o f a l f b

(d) Conditional constraints

Figure 4: Four examples of nonlinear conditional paths.

labels. However, graph query languages usually represent paths

using operations provided by graph databases (e.g., (), ->, Where),

such as the example shown in Listing 1. Although this is very flexi-

ble, most of them need a parser to transfer the language into the

path structure, while meta-paths can let HGNNs directly capture

the path structure, like the order of nodes or edges and their type.

Therefore, our goal is to refine the Meta-path definition to convey

nonlinear conditional paths while maintaining a generalized path

schema suitable for HGNNs.We proposed four improvements based

on the four situations illustrated in Figure 4.

• For the situation shown in Figure 4(a), we replace the single edge

type 𝑙 with an edge list 𝐿: 𝑝 = 𝑜1
𝐿1−−→ 𝑜2

𝐿2−−→ · · · 𝐿𝑚−1−−−−→ 𝑜𝑚 ,

where 𝐿𝑖 = [𝑙𝑖,1, 𝑙𝑖,2, · · ·]. Then, the path in Figure 4(a) can be

represented as 𝑝 = 𝑜1
[𝑙1]−−−→ 𝑜2

[𝑙2,𝑙3]−−−−−→ 𝑜3.

• For the situation shown in Figure 4(b), we switch to using tu-

ples to represent the relations at each hop, where the first ele-

ment of a tuple indicates its connection to a prior node: 𝑝 =[︁
(𝑜1, 𝐿1, 𝑜2), · · · , (𝑜𝑖 , 𝐿𝑗−1, 𝑜 𝑗), · · · , (𝑜𝑛, 𝐿𝑚−1, 𝑜𝑚)

]︁
, where 𝑖 <

𝑗 . Then, the path in Figure 4(b) can be represented as 𝑝 =

[(𝑜1, [𝑙1], 𝑜2), (𝑜2, [𝑙2], 𝑜3), (𝑜2, [𝑙3], 𝑜4)].
• For the situation shown in Figure 4(c), we define the elements

of the edge list 𝐿 to be either edge type 𝑙 or path type 𝑝: 𝑝 =[︁
(𝑜1, 𝐿1, 𝑜2), · · · , (𝑜𝑖 , 𝐿𝑗−1, 𝑜 𝑗), · · · , (𝑜𝑛, 𝐿𝑚−1, 𝑜𝑚)

]︁
, where 𝐿𝑖 =

[· · · , 𝑒𝑘 , · · ·], 𝑒𝑘 = 𝑙𝑘 or 𝑝𝑘 . Then, Figure 4(c) can be represented

as 𝑝 = [(𝑜1, [𝑙1], 𝑜2), (𝑜2, [𝑙2, [(𝑜2, [𝑙3], 𝑜3), (𝑜3, [𝑙4], 𝑜4)]], 𝑜4)].
• For the situation shown in Figure 4(d), we add the conditional con-

straints𝐶 to the path: 𝑝 = {[(𝑜1, 𝐿1, 𝑜2), · · · , (𝑜𝑖 , 𝐿𝑗−1, 𝑜 𝑗), · · · , (𝑜𝑛,
𝐿𝑚−1, 𝑜𝑚)] | 𝐶}. Then, the path in Figure 4(d) can be represented
as 𝑝 = {[(𝑜1, [𝑙1], 𝑜2), (𝑜2, [𝑙2], 𝑜3)] |𝑜2 .𝑓1 > 𝑎 ∧ 𝑙2 .𝑓2 < 𝑏}.
We name this optimized definition ’Complex-path’. The final

definition of Complex-path is:

Definition 2.6. Complex-path. A complex-path is defined on

a heterogeneous graph 𝐻𝐺 = (𝑉 , 𝐸) and is represented as 𝑝 =

{[(𝑜1, 𝐿1, 𝑜2), · · · , (𝑜𝑖 , 𝐿𝑗−1, 𝑜 𝑗), · · · , (𝑜𝑛, 𝐿𝑚−1, 𝑜𝑚)] | 𝐶}. Each tu-

ple (𝑜𝑖 , 𝐿𝑗−1, 𝑜 𝑗) connects the 𝑗-th node 𝑜 𝑗 to the prior 𝑖-th node 𝑜𝑖
through any edge or complex-path in 𝐿𝑗−1 = [· · · , 𝑒𝑘 , · · ·], where
𝑒𝑘 = 𝑙𝑘 or 𝑝𝑘 , 𝑖 < 𝑗 .𝐶 is the conditional constraints on the attributes

of all nodes and edges.

0506

08

Company ID

07

Node

Industry ID

09

Node Features

Node TablesEdge Tables

03
02

Account IDCustomer ID

01

Region ID
District Sub-district

04

11

Level 3Level 1 Level 2

10

Figure 5: The overall structure of our graph.

Table 1: The feature count of each type of edge.

Edge Index 01 02 03 04 05 06 07 08 09 10 11

Feature Count 120 120 120 1 34 5 27 7 1 1 1

Table 2: The feature count of each type of node.

Node Type Region Customer Account Industry Company

Feature Count 59 96 44 24 7

2.4 Problem Definition
Given a large-scale heterogeneous graph 𝐻𝐺 = (𝑉 , 𝐸), a set of

target nodes 𝑉𝑜
tgt

and a set of labeled target nodes 𝑉 label ⊂ 𝑉𝑜 tgt

with binary labels (0 for negative and 1 for positive), we aim to

train a model using 𝐻𝐺 and𝑉 label
to rank all the target nodes𝑉𝑜

tgt

based on the predicted positive probability. Specifically, our goal

is to rank customers of a major logistics company based on their

potential to become high-value customers.

3 GRAPH CONSTRUCTION
Our data, which mainly comes from a logistics company, can be

represented as a heterogeneous graph with 5 types of 1 billion
nodes and 11 types of 10 billion edges, as illustrated in Figure 5.

Next, we will introduce the contents and structure of our graph.

3.1 Data Description
Our dataset contains two forms: edges (relations), and nodes (enti-

ties). We convert the associated attributes of these edges and nodes

into numerical features. The feature counts for each type of edge

and node are specified in Tables 1 and 2, respectively. Note that to

enhance privacy, all key identifiers (e.g., customers and accounts)

have been encrypted, we only keep the encrypted ID in the graph.

3.2 Graph Structure Design
Motivation.Traditional graph neural network platforms like PyG[17]

and DGL[62] need to load the entire graph into memory, which

cannot work well for our huge data. To address this challenge,

we drew inspiration from some newer distributed platforms, such

3976

as AliGraph [69, 82] and Galileo [31], which construct graphs in

the form of tables that can be accepted by distributed relational

databases and then utilize operations supported by distributed

systems to process large-scale heterogeneous graph data. Specif-

ically, we used two types of tables to construct our graph: Edge

Tables E = [· · · , E𝑙 index , · · ·] and Node Tables V = [· · · ,V𝑜 type , · · ·],
where 𝑙 index ∈ {𝑙01, 𝑙02, · · · , 𝑙11} indicates the edge type and 𝑜type ∈
{𝑜Region, 𝑜Customer, 𝑜Account, 𝑜 Industry, 𝑜Company} indicates the node
type. Below are the detailed formats of these tables:

• EdgeTable: Each edge table, denoted as E𝑙
𝑖
, includes two columns

that store the IDs of the head and tail nodes associated with each

edge, identified by node types 𝑜𝑖 and 𝑜 𝑗 . These columns are rep-

resented as E
𝑙𝑖 .𝑜𝑖 and E

𝑙𝑖 .𝑜 𝑗 , respectively. Additionally, the table

contains 𝑑𝑙𝑖 columns for edge features, collectively referred to

as E
𝑙𝑖 .f𝑙

𝑖
, where 𝑑𝑙𝑖 is the feature count for edge type 𝑙

𝑖
.

• Node Table: Each node table, denoted as V
𝑜𝑖
, comprises a col-

umn for storing the IDs of the nodes, which is referenced based

on its node type 𝑜𝑖 as V𝑜
𝑖
.𝑜𝑖 . The table also includes 𝑑𝑜𝑖 columns

for node features, which are collectively referred to as V
𝑜𝑖 .f𝑜

𝑖
,

where 𝑑𝑜𝑖 is the feature count for node type 𝑜
𝑖
.

Additionally, we use a special node table V
label

to store the la-

beled target nodes with type 𝑜tgt, which is 𝑜customer
for our task.

Each month, we used approximately 130,000 labeled nodes.

• Labeled Node Table. The labeled node table, denoted as V
label

,

includes a column for storing the IDs of the labeled nodes, re-

ferred to asV
label .𝑜tgt. In addition, it contains a column indicating

the date when the sales contacted the customer associated with

that node ID, represented as V
label .date, and a column contain-

ing labels reported by the sales after the contact, denoted as

V
label .label. The value of Vlabel .label[𝑖] is binary, with 1 indicat-

ing that the sales believes the 𝑖-th customer has the potential to

become a high-value customer, and 0 indicating otherwise.

Data Leakage Prevention. To avoid using information obtained

after sales have already contacted the customers, we constructed

12 heterogeneous graphs 𝐻𝐺 = (E,V), each based on data available

up to the first day of each month, from 2022.10.01 to 2023.09.01.

For every labeled node, we exclusively relied on the heterogeneous

graph corresponding to the first day of the month specified by its

contacted date V
label .date to gather information during training.

3.3 Complex-Path Implementation
Complex-Path Representation: First, based on our definition of

complex-path, we can represent many nonlinear conditional path

types in our graph that meta-paths cannot express. For example,

the path type in Figure 2 can be represented as shown in Listing

2, where superscripts indicate the type of each node or edge, and

subscripts indicate their position. For instance, 𝑜
company

5
represents

a node of type ’company’ that appears fifth in the path.

Complex-Path Selection:Although our graph contains numerous

complex-path types, most of them are not effective for our task.

Therefore, we employed a data-driven approach to select useful

complex-paths. We initially kept 534 types of complex-paths that

start with the target node type 𝑜tgt (𝑜customer
) and have up to six

edges. We then trained a model using all these complex-paths and

p = { [(𝑜customer
1

, [𝑙05
1
], 𝑜company

2
),

(𝑜company
2

, [[(𝑜company
2

, [𝑙09
2
], 𝑜industry

3
),

(𝑜industry
3

, [𝑙09
3
], 𝑜company

5
)],

[(𝑜company
2

, [𝑙06
4
], 𝑜region

4
),

(𝑜region
4

, [𝑙06
5
], 𝑜company

5
)]], 𝑜company

5
),

(𝑜company
5

, [𝑙05
6
], 𝑜customer

6
)]

| 𝑜industry
3

!= NULL ∧ 𝑜
region
4

!= NULL

∧ 𝑜customer
6

.𝑓value == 'high'}

Listing 2: The complex-path representation for Figure 2.

recorded the AUC results on the test set. Next, we iteratively re-

moved each type of complex-path and retrained the model. If the

AUC decreased by more than 0.001 after removal, we added the

complex-path back. This process yielded a final set of 53 complex-

path types that maintained the optimal performance.

Sampling Result Format: In later computations, we will sample

numerous instances of each complex-path type. Each instance will

be stored in a row of the path table corresponding to its specific

complex-path type. The detailed format of path table is as follows:

• Path Table. Each path table P contains three types of columns:

node ID, node features and edge features, which correspond to

the nodes and edges appearing in the path. We use P.𝑜𝑖 to denote

the node ID column corresponding to each node involved in

a complex-path, P.f𝑜
𝑖
to denote the feature columns from the

node table V
𝑜𝑖 .f𝑜

𝑖
, P.f𝑙

𝑖
to denote the feature columns from the

edge table E
𝑙𝑖 .f𝑙

𝑖
. For example, for the complex-path represented

as Listing 2, the columns in corresponding path table P will

be [P.𝑜customer

1
, P.f𝑜

customer

1 , P.f𝑙
05

1 , P.𝑜
company

2
, P.f𝑜

company

2 , P.f𝑙
09

2 ,

P.𝑜
industry

3
, P.f𝑜

industry

3 , P.f𝑙
09

3 , P.f𝑙
06

4 , P.𝑜
region

4
, P.f𝑜

region

4 , · · ·].

4 METHOD
In this section, we show the detailed design of CompNode. As

shown in Figure 6, CompNode includes three stages. In Stage 1,

based on selected complex-paths, we aggregate the same type of

complex-paths by their starting nodes to reduce the computational

complexity. Then, in Stage 2, we train a node classification model us-

ing the aggregated complex-path features from Stage 1 and labeled

target nodes. Finally, in Stage 3, we use the aggregated complex-

path features from Stage 1 and the model trained in Stage 2 to rank

all the target nodes based on their predicted positive probability.

4.1 Complex-path Pre-aggregation
Motivation. In recent years, most HGNNs [29, 39, 52, 65] have

adopted a two-stage approach to aggregate path information: intra-

path level aggregation, which aggregates node information within

the same path type, and inter-path level aggregation, which aggre-

gates information from all paths. The primary reason for the high

memory and time consumption of HGNNs is the intra-path level

aggregation. This is because each starting node can correspond to

a large number of paths of the same type, and the number of paths

grows exponentially with increasing path length [81]. However,

recent studies [19, 24, 70] have shown that sometimes averaging the

nodes features of the same type within a path does not significantly

3977

Aggregated

Complex-path Features

Trained CompMP Model

Stage 1: Complex-path Pre-aggregation

Stage 2: Node Classification Model Training Stage 3: Node Ranking

Heterogeneous Graph

Type 2

Type 1

Selected Complex-paths

Complex-path Sampling Type 1

Type 2

Aggregated Complex-

path Sampling

Aggregated Complex-

path Sampling

Feature Aggregation

Complex-path Aggregation

Complex-path Based Message Passing (CompMP)

BCE

Loss

Probability-based Node Ranking

Labeled Target Nodes

Positive: A

Negative: B

Labeled Target Nodes

Positive: A

Negative: B

Heterogeneous Feature Data

Intra-Path Message

Uniformed Feature Data Path Embedding

Type 1

Type 2

Feature Projection

Type 1

Type 2

Type 1

Type 2

Inter-Path Message

All Target Nodes

1 2 3

AA AA AA

11 0.911 0.9 7 0.87 0.8 3 0.73 0.7

Figure 6: Three stages in the workflow of our CompNode framework.

impact performance. This approach saves memory and sampling

time because the number of paths of the same type no longer affects

the required computational resources.

Inspired by this idea, we designed a pre-aggregate stage that

takes place before model training and prediction. In this stage,

the information of nodes and edges of the same type within each

complex-path is aggregated based on the path’s starting node, us-

ing pre-defined aggregation functions. However, even with this ap-

proach, the aggregation process still consumes a significant amount

of time and memory. A common solution to this challenge is the

use of distributed systems [49], which leverage the resources of

multiple computers to overcome memory and computation time

constraints. In this section, we introduce a method called ’Complex-

path Aggregation,’ which efficiently completes pre-aggregation of

complex-paths using only operations between tables that are com-

patible with distributed systems designed for relational databases.

Next, we will introduce two key modules of this method.

Complex-path Sampling. To obtain all instances correspond-

ing to each complex-path 𝑝 ∈ [𝑝1, 𝑝2, · · · , 𝑝𝑁𝑝], where 𝑁𝑝 is the

number of selected complex-paths, we propose ’Complex-path Sam-

pling’. This method, based on our graph structure, is compatible

with distributed systems. Algorithm 1 presents the pseudo-code of

Complex-path Sampling, with inputs and outputs described below:

P = CompSampling(𝐻𝐺, 𝑝), (1)

where 𝐻𝐺 is our heterogeneous graph and P is the path table cor-

responding to each complex-path 𝑝 , as described in Section 3.3.

Our overall approach in Algorithm 1 is as follows: We first se-

quentially retrieve the edge table E𝑘𝑝 corresponding to each 𝐿𝑘𝑝
(Line 2-12), then join the corresponding node tables V𝑜 with each

edge table E𝑘𝑝 (Line 13-16). Next, we join all the edge tables E𝑘𝑝 to

generate the path table P (Line 17). Finally, we apply conditional

constraints, denoted as 𝑝.𝐶 , on the node and edge attributes along

the path (Line 19).

Algorithm 1 Complex-Path Sampling (CompSampling).

Require: Heterogeneous Graph 𝐻𝐺 = (E,V) ; complex-path 𝑝 .

Ensure: Path table P.

1: function CompSampling(𝐻𝐺, 𝑝)

2: for 𝑘𝑝 = 1 to Length(𝑝) do
3: 𝑜𝑖 ← 𝑝 [𝑘𝑝 , 0], 𝐿𝑘𝑝 ← 𝑝 [𝑘𝑝 , 1], 𝑜𝑘𝑝+1 ← 𝑝 [𝑘𝑝 , 2] ⊲ 𝑖 ≤ 𝑘𝑝
4: for 𝑘𝐿 = 1 to Length(𝐿𝑘𝑝) do
5: 𝑒𝑘 ← 𝐿𝑘𝑝 [𝑘𝐿]
6: if 𝑒𝑘 = 𝑙𝑘 then
7: L← E

𝑙𝑘

8: else if 𝑒𝑘 = 𝑝𝑘 then
9: L← CompSampling(𝐻𝐺 , 𝑝𝑘)

10: end if
11: E𝑘𝑝 ← L if 𝑘𝐿 = 1 else E𝑘𝑝 ⊲⊳

E𝑘𝑝
.𝑜𝑖=L.𝑜𝑖∩E𝑘𝑝 .𝑜𝑘𝑝+1=L.𝑜𝑘𝑝+1

L

⊲ ⊲⊳ means outer join

12: end for
13: if 𝑘𝑝 = 1 then
14: E𝑘𝑝 ← E𝑘𝑝 ⋈︁

E𝑘𝑝
.𝑜𝑖=V

𝑜𝑖 .𝑜𝑖

V
𝑜𝑖 ⊲ ⋈︁ means inner join

15: end if
16: E𝑘𝑝 ← E𝑘𝑝 ⋈︁

E𝑘𝑝
.𝑜𝑘𝑝+1=V

𝑜𝑘𝑝+1 .𝑜𝑘𝑝+1

V

𝑜𝑘𝑝+1

17: P← E𝑘𝑝 if 𝑘𝑝 = 1 else P ⋈︁
P.𝑜𝑖=E𝑘𝑝 .𝑜𝑖

E𝑘𝑝

18: end for
19: P←Limit(P, 𝑝.𝐶)

20: return P

21: end function

Feature Aggregation. Using Equation 1, we can obtain the path

table P corresponding to each type of complex-path 𝑝 as described

in Section 3.3. We then aggregate all node feature columns P.f𝑜𝑖

3978

and edge feature columns P.f𝑙𝑖 in each path table using the path

start node column P.𝑜1 as the key. P.𝑜1 is the same as P.𝑜tgt, as we

described in Section 3.3. The aggregation function is shown below:

V𝑝 = Aggregate(P, 𝑓 𝑝
agg
), (2)

where 𝑓
𝑝
agg

is the aggregation function we choose for each complex-

path 𝑝 (𝑓
𝑝
agg
∈{’AVG’, ’SUM’, ’MAX’, ’MIN’, ’STD’}). V𝑝 = [V𝑝𝑜1 ,V

𝑝

𝑙1
,

· · · ,V𝑝𝑜𝑚] is a list of aggregated feature tables for each complex-

path 𝑝 . The length of this list, 𝑁
𝑝

𝐿
, is the total number of edges and

nodes in the path. Each aggregated feature table V
𝑝
𝑜𝑖 or V

𝑝

𝑙𝑖
has an

𝑜tgt node ID column and aggregated feature columns V
𝑝
𝑜𝑖 .f

𝑜𝑖
or

V
𝑝

𝑙𝑖
.f𝑙𝑖 , which originate from P.f𝑜𝑖 or P.f𝑙𝑖 , respectively.
Based on Equation 1 and 2, the input and output of the entire

Complex-path Aggregation method can be represented as follows:

V𝑝 = CompAgg(𝐻𝐺, 𝑝, 𝑓 𝑝
agg
) . (3)

By aggregating the instances corresponding to each complex-

path 𝑝 ∈ [𝑝1, 𝑝2, · · · , 𝑝𝑁𝑝] using Equation 3, we obtain the aggre-

gated feature tablesV = [V𝑝1 , · · · ,V𝑝𝑁𝑝] for all complex-paths.

4.2 Node Classification Model Training

Motivation. In this stage, we aim to train a node classification

model (Complex-path Based Message Passing) based on labeled

nodes, enabling us to rank target nodes according to their pre-

dicted probabilities of being positive. Through Equation 3, we have

aggregated the instances of each complex-path type 𝑝 to their cor-

responding start node 𝑜tgt. This process results in each target node

having only one path instance for each complex-path type, sig-

nificantly reducing the required system memory and sampling

time for the model based on it. Therefore, we first design a corre-

sponding sampling method (Aggregated Complex-path Sampling)

for the aggregated complex-path features. Then, to more accu-

rately complete node classification, we follow the design of many

HGNNs [19, 32, 65] while considering our own situation. We first

map the various features to the same dimension, and then use the

attention mechanism to consider the mutual influence of nodes and

edges on the same path and the interactions between different paths.

Finally, we synthesize these results to make the ultimate prediction.

Next, we will introduce the key components of our model.

AggregatedComplex-path Sampling.Wefirst designed amethod

to sample the aggregated complex-path features of target nodes on

each complex-path. The input and output of this method can be

represented as:

F
sample, Fsample = AggCompSample(V,Vsample), (4)

where F
sample

denotes the original features of the sampled node

V
sample

, and F sample = [F𝑝1 , · · · , F𝑝𝑁𝑝] represents the aggregated
features of V

sample
corresponding to each complex-path. For each

F𝑝 ∈ F sample
, F𝑝 = [F𝑝𝑜1 , F

𝑝

𝑙1
, · · · , F𝑝𝑜𝑚], F

𝑝
𝑜𝑖 and F

𝑝

𝑙𝑖
represent the

aggregated features from the node type 𝑜𝑖 and edge type 𝑙𝑖 of the

complex-path 𝑝 .

For F
sample

, each type of F
𝑝
𝑜𝑖 and F

𝑝

𝑙𝑖
, the corresponding features

are obtained as follows:

F
sample = V

sample ⊲⊳
V
sample .𝑜tgt=V𝑜

tgt

.𝑜tgt
V
𝑜tgt .f𝑜

tgt

F
𝑝
𝑜𝑖

= V
sample ⊲⊳

V
sample .𝑜tgt=V

𝑝
𝑜𝑖
.𝑜tgt

V
𝑝
𝑜𝑖
.f𝑜𝑖

F
𝑝

𝑙𝑖
= V

sample ⊲⊳
V
sample .𝑜tgt=V

𝑝

𝑙𝑖
.𝑜tgt

V
𝑝

𝑙𝑖
.f𝑙𝑖 ,

(5)

where ⊲⊳ means left join. Through left join, we can obtain the

corresponding features for each target node and the result preserves

the order of the nodes in V
sample .𝑜tgt. The original features of the

target node 𝑜tgt is represented as V𝑜
tgt

.f𝑜
tgt

as introduced in Section

3, and V
𝑝
𝑜𝑖 .f

𝑜𝑖
and V

𝑝

𝑙𝑖
.f𝑙𝑖 denote the aggregated features of node

type 𝑜𝑖 and edge type 𝑙𝑖 on each complex-path 𝑝 obtained through

the first stage.

Based on Equation 4 and labeled node table V
label

, we can obtain

the corresponding original features F
label

and all the aggregated

complex-path features F label
.

F
label, Flabel = AggCompSample(V,Vlabel) (6)

Simultaneously, we extract the label column from the labeled

node table to serve as the labels for the node in each row.

Y
label

= V
label .label (7)

where Y
label

∈ R𝑁label×1
, 𝑁

label
is the number of labeled nodes.

F
label

and any F
𝑝
𝑜𝑖 , F

𝑝

𝑙𝑖
∈ F label

also contain 𝑁
label

rows of data.

Feature Projection. Since different node types and edge types

have different features, as shown in Table 1 and 2, the features in

F
label

, F
𝑝
𝑜𝑖 , F

𝑝

𝑙𝑖
, which come from different types of nodes and edges,

respectively, also have different dimensions. We first use several

MLP modules to transform F
label

, F
𝑝
𝑜𝑖 , F

𝑝

𝑙𝑖
to the same dimension:

H
label = MLP

𝑜tgt (Flabel),H𝑝𝑜𝑖 = MLP
𝑜𝑖 (F𝑝𝑜𝑖),H

𝑝

𝑙𝑖
= MLP

𝑙𝑖 (F𝑝
𝑙𝑖
), (8)

where H
label

, H
𝑝
𝑜𝑖 , and H

𝑝

𝑙𝑖
∈ R𝑁label×𝑑ℎ

represent the transformed

features (embedding) with standardized embedding length 𝑑ℎ .

Then, we stack the embedding from the same complex-path 𝑝

and add a position embedding to indicate their relative positions.

H𝑝 = Stack(H𝑝𝑜1 ,H
𝑝

𝑙1
, · · · ,H𝑝𝑜𝑚) + Expand(h

𝑝
pos
, 𝑁

label
) (9)

where H𝑝 ∈ R𝑁label×𝑁 𝑝𝐿 ×𝑑ℎ , h𝑝
pos
∈ R𝑁

𝑝

𝐿
×𝑑ℎ

, h
𝑝
pos

is randomly ini-

tialized for each complex-path 𝑝 , and will be trained along with

other parameters. Expand(·) replicates h𝑝
pos

for 𝑁
label

rows, result-

ing in an embedding of dimension R𝑁label×𝑁 𝑝𝐿 ×𝑑ℎ .
At this point, we have the transformed original features (em-

bedding) H
label

of the labeled nodes and the stacked aggregated

complex-path features (embedding)H label = [H𝑝1 , · · · ,H𝑝𝑁𝑝].
Intra-Path Message Passing. For the embedding of each complex-

path H𝑝 , we first use the QKV attention mechanism [58] to under-

stand the mutual influence among nodes and edges on the path.

The detailed formula is:

Q = W𝑝

𝑄
H𝑝 ,K = W𝑝

𝐾
H𝑝 ,V = W𝑝

𝑉
H𝑝

H𝑝
QKV

= softmax(QK
𝑇√︁
𝑑𝑘

)V + H𝑝 .
(10)

3979

whereW𝑝

𝑄
,W𝑝

𝐾
,W𝑝

𝑉
∈ R𝑑ℎ×𝑑ℎ are trainable parameters for each

complex-path, H𝑝
QKV

∈ R𝑁label×𝑁 𝑝𝐿 ×𝑑ℎ is the updated embedding

for the complex-path 𝑝 .

Then, we flatten the updated embedding H𝑝
QKV

into a two di-

mensional embedding and use an MLP to transform the embedding

of different complex-paths into the same dimension.

H
𝑜
𝑝 = MLP

𝑝 (Flatten(H𝑝
QKV
)) (11)

where H
𝑜
𝑝 ∈ R𝑁label×𝑑ℎ

represents the embedding for each complex-

path. Flatten(·)will transfer the dimension ofH𝑜
QKV

toR𝑁label×(𝑁 𝑝𝐿 ×𝑑ℎ) .

Inter-Path Message Passing. To integrate the embedding H
label

and the embedding H
𝑜
𝑝 corresponding to each complex-path, we

first stack them together.

H𝑜 = Stack(Hlabel,H𝑜𝑝1 , · · · ,H
𝑜
𝑝𝑘
, · · · ,H𝑜𝑝𝑁𝑝) (12)

where H𝑜 ∈ R𝑁label×(𝑁𝑝+1)×𝑑ℎ

Then, we employ another QKV attention mechanism to learn

the interactions between target nodes and different complex-paths.

Q = W𝑜
𝑄H𝑜 ,K = W𝑜

𝐾H
𝑜 ,V = W𝑜

𝑉H
𝑜 ,

H𝑜
QKV

= Softmax(QK
𝑇√︁
𝑑𝑘

)V + H𝑜
(13)

where W𝑜
𝑄
, W𝑜

𝐾
, W𝑜

𝑉
∈ R𝑑ℎ×𝑑ℎ are trainable parameters, H𝑜

QKV
∈

R𝑁label×(𝑁𝑝+1)×𝑑ℎ
is the updated embedding.

Then, we flatten the updated embedding H𝑜
QKV

into a two di-

mensional embedding and use an MLP for prediction.

Y
pred

= MLP
𝑜 (Flatten(H𝑜

QKV
)) (14)

where Y
pred
∈ R𝑁label×1

represents the predicted probability for

each labeled node. Each element inY
pred

is between 0 and 1. Flatten(·)
will transfer the dimension of H𝑜

QKV
to R𝑁label×((𝑁𝑝+1)×𝑑ℎ)

.

The input and output of the entire Complex-path Based Message

Passing method from Equation 8 to 14 can be represented as:

Y
pred

= CompMP(Flabel, Flabel), (15)

where Y
pred
∈ R𝑁label×1

.

Loss. We train the CompMP model with BCE loss.

L = −[Y𝑇
label

ln Y
pred
+ (1 − Y

label
)𝑇 ln(1 − Y

pred
)] (16)

4.3 Node Ranking
Through the first stage, we have already obtained the aggregated

featuresV of all the complex-paths. Then, by applying Equation 4,

we can acquire the original features F
tgt

and all the complex-path

aggregated features F tgt
corresponding to all target nodes V

𝑜 tgt
.

F
tgt, Ftgt = AggCompSample(V,V𝑜tgt) (17)

Through the second stage, we have successfully trained a node

classification model CompMP represented by Equation 15. Now, we

can directly use it to complete the prediction for all target nodes.

Y
tgt = CompMP(Ftgt, Ftgt) (18)

where Y
tgt ∈ R𝑁tgt×1

, where 𝑁tgt is the number of all target nodes.

Based on the prediction results Y
tgt
, we can rank all target nodes

in descending order of their predicted probabilities, such that nodes

with higher rankings are more likely to be positive.

5 EXPERIMENT
In this section, we carefully design our experiments by considering

the following key research questions:

• RQ1: Is our framework more effective than other baselines?

• RQ2: Is it necessary to use such a large amount of evolving

training data and so many types of complex-paths?

• RQ3: Is our framework more efficient than other methods?

• RQ4: Does our pre-aggregation stage affect model performance?

• RQ5: Are all the design elements of our model effective?

• RQ6: Is each type of node in the graph necessary?

• RQ7: Are complex-paths also effective for other tasks?

5.1 Experimental Setup

Hardware. For the pre-aggregation stage, we utilized a Spark [49]

cluster consisting of 200 executors, each equipped with 4 cores and

16GB of memory. For stages 2 and 3, we used 4 P40 GPUs, each

with 24GB of memory, along with 180GB of system memory.

Datasets. Details for the raw dataset used can be found in Section

3. We constructed 12 heterogeneous graphs based on data prior

to the first day of each month from 2022.10.01 to 2023.09.01 and

obtained over 1.5 million labeled nodes based on feedback from

sales between 2022.10.01 and 2023.09.30. The labeled nodes were

split chronologically into three datasets according to their associ-

ated contact time (V
label

.date), with each dataset containing nodes

contacted in 4 consecutive months. The corresponding contact time

periods for datasets 1-3 are 2022.10.01 to 2023.01.31, 2023.02.01 to

2023.05.31, and 2023.06.01 to 2023.09.30, respectively.

Within each dataset, we further divided the labeled nodes chrono-

logically based on their associated contact time into training, val-

idation, and test sets. The first three months of labeled nodes in

each dataset were used for training, while the fourth month was

split into validation and test sets, with the first half of the month

used for validation and the second half for testing. For example, in

dataset 3, labeled nodes from 2023.06.01 to 2023.08.31, were used as

the training set; labeled nodes from 2023.09.01 to 2023.09.15, were

used as the validation set; and labeled nodes from 2023.09.16, to

2023.09.30, were used as the test set. Furthermore, each sample was

only associated with the heterogeneous graph corresponding to

the first day of its contact month. For instance, a node contacted on

2023.09.10 would only utilize the graph constructed on 2023.09.01.

Baselines. We compared our approach with six state-of-the-art

HGNNs, which are: (i) Relational Graph Convolutional Networks

(R-GCNs) [52]; (ii) Heterogeneous Graph Attention Network (HAN)

[65]; (iii) Heterogeneous Graph Transformer (HGT) [29]; (iv) Meta-

path Aggregated Graph Neural Network (MAGNN) [19]; (v) Simple-

HGN [39] and (vi) Simple and Efficient Heterogeneous Graph Neu-

ral Network (SeHGNN) [70].

These HGNNs fall into two categories: those based on k-hop

sampling (R-GCNs, HGT, Simple-HGN) and those based on meta-

path sampling (HAN, MAGNN, SeHGNN). For models based on

k-hop sampling, we sample the 2-hop subgraph for each target

node and use these sampling results as input. For models based on

meta-path sampling, we filtered the 53 complex-paths that were

used in CompNode based on the definition of Meta-path, which

3980

Table 3: Accuracy comparison between baselines and our framework on potential high-value customer classification.

Model Dataset 1 Dataset 2 Dataset 3
AUC AP P@5k P@10k P@20k AUC AP P@5k P@10k P@20k AUC AP P@5k P@10k P@20k

MLP 0.578 0.0401 4.98% 4.47% 4.20% 0.559 0.0367 4.28% 4.02% 3.80% 0.572 0.0392 4.58% 4.27% 4.12%

MetaAgg-MLP 0.597 0.0412 5.64% 5.28% 4.41% 0.573 0.0377 4.36% 4.12% 4.06% 0.592 0.0416 5.46% 4.62% 4.28%

CompAgg-MLP 0.647 0.0520 8.02% 6.73% 5.63% 0.618 0.0429 6.16% 5.60% 5.44% 0.639 0.0473 7.58% 6.70% 5.65%

R-GCNs 0.604 0.0423 5.98% 5.09% 4.65% 0.570 0.0385 5.26% 4.48% 4.22% 0.594 0.0416 5.84% 4.96% 4.43%

HAN 0.609 0.0429 5.86% 5.24% 4.82% 0.572 0.0378 4.46% 4.11% 3.97% 0.586 0.0407 4.68% 4.42% 4.21%

HGT 0.621 0.0485 6.72% 5.84% 5.31% 0.587 0.0412 5.48% 5.03% 4.91% 0.612 0.0454 6.18% 5.49% 5.13%

Simple-HGN 0.613 0.0448 6.08% 5.32% 4.76% 0.573 0.0398 5.32% 4.71% 4.36% 0.601 0.0429 5.88% 5.12% 4.62%

MAGNN 0.610 0.0431 5.96% 5.21% 4.77% 0.568 0.0393 4.94% 4.49% 4.35% 0.603 0.0418 5.54% 4.91% 4.57%

SeHGNN 0.628 0.0471 6.88% 6.02% 5.29% 0.592 0.0415 5.26% 4.83% 4.72% 0.616 0.0453 5.94% 5.37% 4.98%

CompNode 0.676 0.0597 9.94% 8.95% 7.43% 0.647 0.0509 8.02% 7.22% 6.36% 0.664 0.0542 9.02% 8.15% 6.63%

resulted in 8 meta-paths. We then utilized the sampling results of

these 8 meta-paths as input.

In addition, we employed Multi-layer Perceptron (MLP) [50] to

validate the effectiveness of our selected complex-paths and the

proposed framework CompNode. Specifically, for MLP, we used

three types of input: (i) the features of the target node itself (MLP),

(ii) the features of the target node concatenated with the aggregated

features from the 8meta-paths used inHGNNs (MetaAgg-MLP), and

(iii) the features of the target node concatenatedwith the aggregated

features from our 53 complex-paths (CompAgg-MLP).

Training Configuration. For all the baselines and our model, we

set all hidden layer dimensions to 64, the learning rate to 5e-5. In

each batch, 4,000 samples were randomly selected for training. The

model that performed the best on the validation set was chosen,

and its performance on the test set was used as the final result. For

models based on k-hop sampling, two graph neural network layers

were employed, while default structures were applied for those

using meta-path sampling. In all the HGNNs, we limited samples

to 20 per edge type per hop.

Evaluation Metrics. Following existing studies [19, 52], we evalu-

ate the performance of all the models using Area Under the Curve

(AUC), Average Precision (AP), Precision @ 5000 (P@5k), Precision

@ 10000 (P@10k), Precision @ 20000 (P@20k).

5.2 Overall Performance (RQ1)
To address RQ1, we evaluated the performance of our framework

(CompNode), against other methods on three datasets using default

parameters. The results are shown in Table 3.

From Table 3, we observe that MLP, when utilizing only the

target nodes’ features, exhibits the worst performance. When in-

corporating the features aggregated by the 8 meta-paths used by

HGNNs, MetaAgg-MLP still performs worse than most HGNNs,

which demonstrates the effectiveness of current HGNNs. However,

CompAgg-MLP significantly surpasses various HGNNs when it

incorporates the features aggregated by our 53 complex-paths. This

outcome suggests that current HGNNs lack the capability to au-

tonomously utilize the information from non-linear conditional

paths represented by our complex-paths. Moreover, our model out-

performs CompAgg-MLP, indicating that integrating design strate-

gies from HGNNs can enhance the mining and synthesis of infor-

mation across diverse complex-paths. Furthermore, the decreasing

(a) Data ratio (b) Data length (c) Time interval (d) Usage ratio

Figure 7: Necessity of large-scale data and complex-paths.

values of P@5k, P@10k, and P@20k demonstrate the effective-

ness of ranking target nodes based on the prediction probabilities

obtained from node classification models.

5.3 Influence of Training Data (RQ2)
To address RQ2, we tested the influence of using different portions

of the training data and different portions of complex-path types.

The test results are shown in Figure 7. Next, we will discuss the

results of each test individually.

Evaluation on different proportions of training data. Firstly,
we tested the impact of using different proportions of training data

on the results, which are shown in Figure 7(a). We can observe that

as the number of training samples increases, the model’s perfor-

mance improves significantly. Therefore, it is crucial to enable the

model to train with large-scale data.

Evaluation on different data lengths. We also explored the

impact of using samples from different data lengths. The results

are shown in Figure 7(b). We observed that as the time span of the

samples increased, the performance first improved, then slowly

decreased. This indicates that it is better to utilize data from the

past 90 days to train the model.

Evaluation on different lengths of interval time. To verify

the necessity of continuously updating the data, we tested the

model’s performance on the test set under different time intervals

between the validation and test sets. The results, shown in Figure

7(c), indicated that as the time interval increases, the performance

decreases significantly. This phenomenon suggests that the latest

data can bring a better performance.

3981

Table 4: Theoretical analysis of our method’s efficiency.

Sampling Time Memory Consumption

K-hop sampling O(𝑁𝑇
𝐿∏︁
𝑙=1

∑︁
𝑟 ∈𝑅𝑙

𝜀𝑟) O(𝑁𝑇
𝐿∏︁
𝑙=1

∑︁
𝑟 ∈𝑅𝑙

𝜀𝑟𝐷𝑟𝑙)

Meta-path sampling O(𝑁𝑇

𝐾𝐶∑︁
𝑘=1

∏︁
𝑟 ∈𝑅𝑝

𝜀𝑟) O(𝑁𝑇

𝐾𝐶∑︁
𝑘=1

∏︁
𝑟 ∈𝑅𝑝

𝜀𝑟𝐷𝑟𝑝)

Aggregated complex-

path sampling

O(𝑁𝑇𝐾𝐶) O(𝑁𝑇

𝐾𝐶∑︁
𝑘=1

𝐷𝑟𝑝)

(a) Sampling time (b) Memory consumption

Figure 8: Empirical analysis of our method’s efficiency.

Evaluation on different complex-paths usage ratio. To investi-
gate the effect of using different ratios of complex-paths, we con-

ducted an experiment where only a portion of complex-paths was

retained. The results are shown in Figure 7(d). It can be seen that as

the proportion of complex-paths used increases, the performance

steadily improves. This indicates that by utilizing various kinds of

complex-paths, we can effectively extract latent information from

the graph and improve the performance.

5.4 Efficiency Analysis (RQ3)
Based on our experimental results in Section 5.3, we need to use a

large amount of data to train the model and continuously re-train

it with the newest data. Therefore, our framework must be highly

efficient. However, current HGNNs based on k-hop and meta-path

sampling require significant time and memory to sample and store

neighbor nodes and edges. To address this, our framework employs

a pre-aggregation stage to pre-aggregate the features of the same

type of neighbor nodes and edges to the target node. As a result, our

aggregated complex-path sampling can be highly efficient. Next,

we will validate its efficiency both theoretically and experimentally.

Theoretical analysis. Firstly, from a theoretical perspective, as-

suming the model is processing a sample containing 𝑁𝑇 nodes and

needs to sample the tail nodes of 𝐾𝐶 meta-paths, the number of

features for the tail node corresponding to each kind of edge 𝑟 is

denoted as 𝐷𝑟 . If a k-hop sampling method is utilized, assuming

the maximum number of hops involved across all meta-paths is 𝐿,

and the relations involved in the 𝑙-th hop of these meta-paths are

denoted as {𝑟 ∈ 𝑅𝑙 }, each kind of edge 𝑟 necessitates the addition of

𝜀𝑟 neighbor nodes. Thus, for each hop, we need to sample and store∑︁
𝑟 ∈𝑅𝑙

𝜀𝑟 additional nodes for each node from the last hop. Therefore,

with each additional hop, the count is multiplied accumulatively,

and the final result is shown in Table 4. On the other hand, for the

meta-path sampling method, assuming the edges contained in each

meta-path are denoted as {𝑟 ∈ 𝑅𝑝 }, and 𝜀𝑟 neighbor nodes need to

Table 5: Evaluating the influence of aggregation methods.

Model Dataset 1 Dataset 2 Dataset 3

Complex-path + GCN 0.609 0.589 0.591

Complex-path + GAT 0.618 0.588 0.599

Complex-path + Aggregation 0.614 0.596 0.605

Table 6: Ablation study.

Ablated Design AUC AP P@5k P@10k P@20k

None 0.662 0.0549 8.99% 8.11% 6.81%

Position Embed 0.654 0.0525 8.36% 7.24% 6.49%

Intra-path Message 0.649 0.0523 8.31% 7.46% 6.37%

Inter-path Message 0.643 0.0508 8.06% 6.91% 5.88%

be sampled at each hop. Since each edge on the same meta-path

continues sampling based on the results of the previous hop,

∏︁
𝑟 ∈𝑅𝑝

𝜀𝑟

neighbor nodes need to be sampled and stored for each kind of

meta-path. By summing up the sampling results of each meta-path,

the final result is as shown in Table 4. In contrast, our aggregated

complex-path sampling method only necessitates one round of sam-

pling for each kind of meta-path during the sampling stage, and the

memory required for each node is merely the sum of the feature

lengths corresponding to the tail nodes of all meta-paths.

Empirical analysis. We also validated our results through experi-

ments. We randomly selected 10 groups, each with 20,000 nodes,

and chose 16 meta-paths with lengths of 1, 2, 3, and 4 respectively.

When we sequentially utilized meta-paths with lengths less than

or equal to 1, 2, 3, and 4, the changes in average sampling time and

memory consumption are illustrated in Figure 8. It can be observed

that, with the increase in the number of hops, both the sampling

time and memory required for the two traditional methods increase

quickly, whereas our method can maintain stable time and mem-

ory consumption. Therefore, k-hop and meta-path sampling based

methods take over 30 days to predict for all our target nodes, while

our framework only requires 1 day.

5.5 Aggregation Influence Analysis (RQ4)
While aggregated complex-path sampling is highly efficient, would

our method decrease the model performance? To answer this ques-

tion, we aggregated the features of nodes of the same type within

the same complex-paths using three different methods: Aggrega-

tion functions (𝑓
𝑝
agg

in Equation 2), GCN, and GAT. The aggregated

features were then fed into an MLP model for prediction. Due to

systemmemory constraints, we could not simultaneously aggregate

all complex-paths using GCN and GAT. Therefore, we randomly

divided all complex-paths into four groups and used the average re-

sults of the four groups as the final performance. The performance

of these three approaches on the three datasets is shown in Table

5. We can observe that our method can achieve better results in

most cases. We believe this is because the complex-path has already

accurately selected neighbor nodes of the same type, reducing the

significance of the dynamic allocation of weights to neighbor nodes.

3982

Table 7: Impact of node type removal.

Node AUC AP P@5k P@10k P@20k

Region 0.629 0.0477 7.18% 6.17% 5.38%

Customer 0.625 0.0465 7.32% 6.22% 5.46%

Account 0.638 0.0486 8.02% 6.92% 5.83%

Industry 0.644 0.0502 7.88% 6.83% 6.04%

Company 0.642 0.0491 7.42% 6.69% 5.78%

5.6 Ablation Study (RQ5)
To address RQ5, we conducted an ablation study to validate the

various designs presented in Section 4.2. The average results on

3 datasets are shown in Table 6, where the first row corresponds

to the performance without ablating any modules. In Section 4.2,

we propose three main designs. First, we add position embeddings

to the features of nodes and edges based on their positions in the

complex-path, allowing the model to consider the different influ-

ences of the same features at different positions. Removing this step,

as shown in the second row of the Table 6, slightly decreases the

model’s performance. Second, in the Intra-path Message Passing

module, we model the mutual influence between different nodes

and edges in the same complex-path using Equation 10. As shown

in the third row of Table 6, ablating this equation and directly trans-

forming the features using Equation 11 also decreases the model’s

performance. Third, in the Inter-path Message Passing module, we

model the mutual influence between different complex-paths us-

ing Equation 13. As shown in the fourth row of Table 6, ablating

this equation and directly making the prediction using Equation 14

significantly decreases the model’s performance.

5.7 Significance of Diverse Source Data (RQ6)
To address RQ6, we remove each type of node from the graph

sequentially to observe their impact on model performance. The

results are shown in Table 7. From the results, it is evident that the

model’s final performance decreases significantly when any type

of information is missing. Also, we employed Shap-Value [38] to

analyze the importance of features [16, 73] from various sources.

We extracted the top 100 features based on their importance and

identified their sources: Customer (12%), Region (66%), Account

(9%), Company (7%), and Industry (6%). These findings indicate that

features from all sources benefit the final prediction performance.

Notably, features related to the Region are considerably more im-

portant, suggesting a significant correlation between a customer’s

potential value and the region in which the customer lives.

5.8 Evaluation on External Datasets (RQ7)
To verify the effectiveness of complex-paths for other node predic-

tion tasks, we conducted experiments on paper category prediction

using the Microsoft Academic Graph [60]. This is also a billion-scale

heterogeneous graph, which contains various node types such as

papers and authors, along with edge types representing citation and

authorship relations. Given the strong correlation between neigh-

boring and target papers’ categories, we used our Complex-path

Aggregation (Equation 3) to count categories of neighboring papers

connected through various paths. If we use the most frequently

Manually

designed method

Low

Success Rate

Top-K

Customers

Customer

Ranking

Telemarketing

Reachable

Reachable

Customers

Our

CompNode

High

Success Rate

In-person Visits

Reachable

Figure 9: Real-world usage of our framework.

Phase 3

Phase 2Phase 1

Figure 10: Three-phase real-world deployment results.

counted category as the prediction result, counting results based

on meta-paths like "paper

𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛−−−−−−−→ paper" or "paper→ author→
paper" achieved prediction accuracy of 69.83% and 70.58%, respec-

tively. Our complex-path definition, however, allowed for better

selection of relevant neighboring papers through nonlinear paths.

For example, by considering papers that share any author and are

cited by the target paper, the prediction accuracy rose to 72.86%.

6 REAL-WORLD DEPLOYMENT
To further evaluate the impact of our framework, we deploy it

at a major logistics company. Our framework serves as the key

component to rank customers based on their potential to place

more orders with this company. This company contacts customers

through two channels: telemarketing and in-person visits. During
these interactions, customers are asked about their intention to

place orders, and those who express interest will be offered dis-

counts if their future order volume exceeds a certain threshold. As

shown in Figure 9, our framework outperforms the previous ap-

proach in identifying customers who are interested in placing more

orders with a higher success rate, which can help this company

expand its business. In the following sections, we will discuss the

implementation results of our framework in both telemarketing

and in-person visit scenarios.

3983

Table 8: Real world A/B test result.

Model Total Calls Interested Calls Success Rate

Random sampling 714 7 0.98%

Previous method 2,067 50 2.42%

Ours 2,391 204 8.53%

6.1 Upgrading Customers via Telemarketing
Background.Telemarketingmeans contacting customers via phone

calls by telemarketers and is widely adopted in industries due to

its broad customer reach and low cost. Therefore, we deploy our

framework to rank customers according to their potential to be-

come high-value customers, prioritizing calls to customers with a

higher potential of being high-value, which can help telemarketers

contact customers more effectively

3-phase deployment. From December 2022 to September 2023,

we continuously made calls and scaled up each week with the

help of telemarketers, making over 200,000 calls and achieving a

6.1% success rate. The overall situation is depicted in Figure 10. In
Phase 1, we first deployed our model in a few cities and achieved

a more than 10% success rate. Motivated by the promising results,

we further expanded the deployment to more than 360 cities across

China in Phase 2. Before large-scale implementation nationwide

in Phase 3, we compare our model with 1) random sampling and

2) the previous method, which is the best method implemented

by graph database used by the company’s business department.

As shown in Table 8, our model significantly outperforms both

methods in identifying potential high-value customers. Given the

superior performance, we implemented the model nationwide for

identifying top potential high-value customer in Phase 3.

6.2 Upgrading Customers via In-Person Visits
Background. While telemarketing is an effective approach for

upgrading customers, some high-value customers may be difficult

to reach through telemarketing. Therefore, in-person visits [26–

28] to potential customers by professional staff serve as another

important approach for customer acquisition.

Deployment.We first conducted site visits to over 1,500 companies

across three distinct delivery regions in Beijing City, identifying 243

companies that expressed strong interest in placing more orders

with a reasonable discount. We then checked the ranking results of

these interested companies among all visited companies and found

that 233 of them ranked in the top 500. Building on this result, we

expanded the application of our framework to 10 delivery regions.

Collectively, our methodology achieved a success rate of 40% among

all visited companies, significantly benefiting the platform.

7 RELATEDWORK
7.1 Graph Database
Graph databases have been gaining popularity in recent years [51].

Modern graph query languages, such as Neo4j’s Cypher [12], Tiger-

graph’s GSQL [22], and Oracle’s PGQL [47], are seeing rapid adop-

tion in industry. Path queries, which form the core of these lan-

guages, have been studied in database research since the late 1980s [5,

6, 8, 11, 42, 43]. As data grows in size and complexity, new research

topics have emerged. For example, Martens et al. introduced path

multiset representations, which can represent path multisets with

exponential succinctness [41]. Gou et al. proposed a novel algorithm

for persistent regular path queries on streaming graphs [21]. Zhang

et al. proposed a new extension-based approach for shortest path

queries to reduce the required space cost while still guaranteeing

query time [76]. However, for node ranking problems, approaches

relying solely on graph databases require manually designed algo-

rithms to aggregate results from various paths [23, 40]. When the

importance value of a node cannot be explicitly expressed, such

methods struggle to achieve high accuracy.

7.2 Heterogeneous Graph Neural Network
Recent advancements in HGNNs [56, 67, 68] have provided a new

direction for solving problems that are difficult to address with man-

ually defined rules. HGNNs [54, 66] can automatically synthesize

information on a heterogeneous graph based on labeled data and

neighborhood information to solve many downstream tasks, such

as node classification [25, 59, 71], link prediction [75, 77, 78] , and

community search [30, 34, 36]. As neural networks require input in

a fixed format, a unified sampling of the graph structure informa-

tion is needed to design models based on this. Currently, there are

two main sampling methods: k-hop sampling and meta-path sam-

pling. K-hop sampling approaches [29, 52] collect all neighborhood

nodes within k hops from the target node without explicitly filter-

ing node and edge types. For instance, Schlichtkrull et al. proposed

Relational Graph Convolutional Networks (RGCN) for modeling

heterogeneous graphs [52]. RGCN maintains a unique linear pro-

jection weight for each edge type. However, these methods struggle

to leverage long-distance information due to the over-smoothing

issue. To address this, meta-path sampling approaches were intro-

duced, defining a sequence of edges based on prior knowledge and

enabling the model to utilize a broader range of information [65, 70].

For example, Wang et al. [65] used graph attention networks to

learn the semantic information from different meta-paths.

8 CONCLUSION
In this paper, we proposed a framework for discovering poten-

tial high-value customers in billion-scale heterogeneous graphs.

Specifically, we first introduced the concept of Complex-path to

describe the complex information in heterogeneous graphs. Based

on Complex-path, we design our framework CompNode, which

models large-scale data effectively and efficiently. Results on real-

world datasets show that our framework achieves superior perfor-

mance compared to multiple state-of-the-art methods. Moreover,

our framework is deployed at a major logistics company for nation-

wide high-value customer discovery.

ACKNOWLEDGMENTS
We thank all the reviewers for their insightful feedback to improve

this paper. This work is partially supported by the National Science

and Technology Major Project under Grant 2021ZD0114200, the

National Natural Science Foundation of China (NSFC) under Grant

61925202, and the Jiangsu Provincial Key Research and Develop-

ment Program under Grant BE2022065-1, BE2022065-3.

3984

REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for

Future Graph Query Languages. In International Conference on Management of
Data (SIGMOD). 1421–1432.

[2] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.

Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip

Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,

Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property

Graphs. In International Conference on Management of Data (SIGMOD). ACM,

2423–2436.

[3] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting Beyond a

Yottabyte, or How SPARQL 1.1 Property Paths Will Prevent Adoption of the

Standard. In International Conference on World Wide Web (WWW). 629–638.
[4] Guillaume Bagan, Angela Bonifati, and Benoît Groz. 2013. A Trichotomy for

Regular Simple Path Queries on Graphs. In Symposium on Principles of Database
Systems (PODS). 261–272.

[5] Guillaume Bagan, Angela Bonifati, and Benoît Groz. 2013. A Trichotomy for

Regular Simple Path Queries on Graphs. In Symposium on Principles of Database
Systems (PODS). 261–272.

[6] Pablo Barceló. 2013. Querying graph databases. In Symposium on Principles of
Database Systems (PODS). 175–188.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and

Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates

Inc., Red Hook, NY, USA, 2787–2795.

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.

1999. Rewriting of Regular Expressions and Regular Path Queries. In ACM
Symposium on Principles of Database Systems. ACM Press, 194–204.

[9] Mengru Chen, Chao Huang, Lianghao Xia, Wei Wei, Yong Xu, and Ronghua

Luo. 2023. Heterogeneous Graph Contrastive Learning for Recommendation. In

Proceedings of the Sixteenth ACM International Conference onWeb Search and Data
Mining (, Singapore, Singapore,) (WSDM ’23). Association for Computing Ma-

chinery, New York, NY, USA, 544–552. https://doi.org/10.1145/3539597.3570484

[10] Zixuan Chen, Panagiotis Manolios, and Mirek Riedewald. 2023. Why Not Yet:

Fixing a Top-k Ranking that Is Not Fair to Individuals. Proceedings of the VLDB
Endowment 16, 9 (2023), 2377–2390.

[11] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T.Wood. 1987. A Graphical Query

Language Supporting Recursion. In ACM SIGMOD International Conference on
Management of Data (SIGMOD). 323–330.

[12] cypher. [n.d.]. Cypher Query Language. https://neo4j.com/developer/cypher/.

[13] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable Representation Learning for Heterogeneous Networks. In KDD ’17.
ACM, 135–144.

[14] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.

Butterfly-Core Community Search over Labeled Graphs. Proceedings of the VLDB
Endowment 14, 11 (2021), 2006–2018.

[15] Chenguang Du, Kaichun Yao, Hengshu Zhu, Deqing Wang, Fuzhen Zhuang,

and Hui Xiong. 2023. Seq-HGNN: Learning Sequential Node Representation on

Heterogeneous Graph. In SIGIR.
[16] Alexandre Duval and Fragkiskos D. Malliaros. 2021. GraphSVX: Shapley Value

Explanations for Graph Neural Networks. In ECML PKDD 2021, Bilbao, Spain,
September 13-17, 2021, Proceedings, Part II (Lecture Notes in Computer Science),
Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, and José Antonio

Lozano (Eds.), Vol. 12976. 302–318.

[17] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR.
[18] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor SearchWith The Navigating Spreading-out Graph. Proceedings
of the VLDB Endowment 12, 5 (2019), 461–474.

[19] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath

Aggregated Graph Neural Network for Heterogeneous Graph Embedding. In

WWW (Taipei, Taiwan). 2331–2341.

[20] Di Ge, Zheng Dong, Yuhang Cheng, and Yanwen Wu. 2024. An enhanced spatio-

temporal constraints network for anomaly detection in multivariate time series.

Knowledge-Based Systems 283 (2024), 111169.
[21] Xiangyang Gou, Xinyi Ye, Lei Zou, and Jeffrey Xu Yu. 2024. LM-SRPQ: Efficiently

Answering Regular Path Query in Streaming Graphs. Proceedings of the VLDB
Endowment 17, 5 (2024), 1047–1059.

[22] GSQL. [n.d.]. GSQL. https://www.tigergraph.com/gsql/.

[23] A. Gulino, S. Ceri, G. Gottlob, E. Sallinger, and L. Bellomarini. 2021. Distributed

company control in company shareholding graphs. In ICDE. IEEE.
[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. NeurIPS 30 (2017).
[25] Jinquan Hang, Zheng Dong, Hongke Zhao, Xin Song, Peng Wang, and Hengshu

Zhu. 2022. Outside In: Market-aware Heterogeneous Graph Neural Network for

Employee Turnover Prediction. InWSDM ’22. ACM, Virtual Event, 353–362.

[26] Zhiqing Hong, Guang Wang, Wenjun Lyu, Baoshen Guo, Yi Ding, Haotian Wang,

Shuai Wang, Yunhuai Liu, and Desheng Zhang. 2022. CoMiner: nationwide

behavior-driven unsupervised spatial coordinate mining from uncertain delivery

events. In SIGSPATIAL (Seattle, Washington). Article 10, 10 pages.

[27] Zhiqing Hong, Haotian Wang, Yi Ding, Guang Wang, Tian He, and Desheng

Zhang. 2024. SmallMap: Low-cost Community Road Map Sensing with Uncertain

Delivery Behavior. UBICOMP 8, 2, Article 50 (may 2024), 26 pages.

[28] Zhiqing Hong, Heng Yang, Haotian Wang, Wenjun Lyu, Yu Yang, Guang Wang,

Yunhuai Liu, Yang Wang, and Desheng Zhang. 2022. FastAddr: real-time abnor-

mal address detection via contrastive augmentation for location-based services.

In SIGSPATIAL (Seattle, Washington). Article 64, 10 pages.

[29] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

Graph Transformer. InWWW (Taipei, Taiwan). 2704–2710.

[30] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2017. Community Search

over Big Graphs: Models, Algorithms, and Opportunities. In 33rd IEEE Inter-
national Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017. IEEE Computer Society, 1451–1454.

[31] JDGalileo. 2021. Galileo Repository. https://github.com/JDGalileo/galileo

[32] Houye Ji, XiaoWang, Chuan Shi, BaiWang, and Philip S. Yu. 2023. Heterogeneous

Graph Propagation Network. TKDE 35, 1 (2023), 521–532.

[33] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[34] Ling Li, Siqiang Luo, Yuhai Zhao, Caihua Shan, Zhengkui Wang, and Lu Qin.

2023. COCLEP: Contrastive Learning-based Semi-Supervised Community Search.

In 39th IEEE International Conference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023. IEEE, 2483–2495.

[35] Xiang Li, Danhao Ding, Ben Kao, Yizhou Sun, and Nikos Mamoulis. 2021. Lever-

aging Meta-path Contexts for Classification in Heterogeneous Information Net-

works. In 37th IEEE International Conference on Data Engineering, ICDE 2021,
Chania, Greece, April 19-22, 2021. IEEE, 912–923.

[36] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021. Efficient

Community Search with Size Constraint. In 37th IEEE International Conference
on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 97–108.

[37] Qi Liu, Zheng Dong, Chuanren Liu, Xing Xie, Enhong Chen, and Hui Xiong.

2014. Social Marketing Meets Targeted Customers: A Typical User Selection and

Coverage Perspective. In ICDM. 350–359.

[38] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting

Model Predictions. In NeurIPS (Long Beach, California, USA). 4768–4777.
[39] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He,

Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are We Really

Making Much Progress? Revisiting, Benchmarking and Refining Heterogeneous

Graph Neural Networks. In KDD (Virtual Event, Singapore). 1150–1160.

[40] Davide Magnanimi, Luigi Bellomarini, Stefano Ceri, and Davide Martinenghi.

2023. Reactive Company Control in Company Knowledge Graphs. In ICDE.
3336–3348.

[41] Wim Martens, Matthias Niewerth, Tina Popp, Carlos Rojas, Stijn Vansummeren,

and Domagoj Vrgoč. 2023. Representing Paths in Graph Database Pattern Match-

ing. 16, 7 (mar 2023), 1790–1803.

[42] Wim Martens, Matthias Niewerth, and Tina Trautner. 2020. A Trichotomy for

Regular Trail Queries. In STACS (LIPIcs), Vol. 154. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 7:1–7:16.

[43] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in

Graph Databases. SIAM J. Comput. 24, 6 (12 1995), 1235–1258.
[44] N.G. Nwokah and J. Gladson-Nwokah. 2015. Impact of Social Network on

Customer Acquisition in the Banking Industry in Nigeria. Information and
Knowledge Management 5 (2015), 150–163.

[45] Subhransu Panda and K. Siva Nageswara Rao. 2019. Customer Acquisition and

Retention in Non-Banking Finance Companies (NBFC). Journal of mechanics of
continua and mathematical sciences 5 (2019), 601–613.

[46] Yeonhong Park, Sunhong Min, and Jae W. Lee. 2022. Ginex: SSD-enabled Billion-

scale Graph Neural Network Training on a Single Machine via Provably Optimal

In-memory Caching. Proceedings of the VLDB Endowment 15, 11 (2022), 2626–
2639.

[47] PGQL. [n.d.]. PGQL. https://pgql-lang.org/.

[48] Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao Chen,

Yinan Shan, Yang Zhao, and Ce Zhang. 2022. xFraud: Explainable Fraud Trans-

action Detection. Proceedings of the VLDB Endowment 15, 3 (2022), 427–436.
[49] J. J. Ratey. 2013. Spark. Little, Brown & Company.

[50] Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological Review 65, 6 (1958), 386–408.

[51] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

et al. 2021. The future is big graphs: a community view on graph processing

systems. Commun. ACM 64, 9 (2021), 62–71. https://doi.org/10.1145/3434642

[52] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In ESWC. Springer, Heraklion, Crete, Greece, 593–607.

3985

https://doi.org/10.1145/3539597.3570484
https://neo4j.com/developer/cypher/
https://www.tigergraph.com/gsql/
https://github.com/JDGalileo/galileo
https://pgql-lang.org/
https://doi.org/10.1145/3434642

[53] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. 2019. Real-

time Top-k Personalized PageRank over Large Graphs on GPUs. Proceedings of
the VLDB Endowment 13, 1 (2019).

[54] Yizhou Sun and Jiawei Han. 2013. Mining Heterogeneous Information Networks:

A Structural Analysis Approach. SIGKDD Explor. Newsl. 14, 2 (2013), 20–28.
[55] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. 4 (2011), 992–1003.

[56] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2022. Het-

erogeneous Information Networks: the Past, the Present, and the Future. Proc.
VLDB Endow. 15, 12 (2022), 3807–3811.

[57] Shulong Tan, Weijie Zhao, and Ping Li. 2022. Fast Neural Ranking on Bipartite

Graph Indices. Proceedings of the VLDB Endowment 15, 4 (2022), 794–803.
[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

You Need (NIPS’17). 6000–6010.
[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[60] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,

and Anshul Kanakia. 2020. Microsoft Academic Graph: When experts are not

enough. Quantitative Science Studies 1, 1 (2020), 396–413.
[61] Li Wang, Peipei Li, Kai Xiong, Jiashu Zhao, and Rui Lin. [n.d.]. Modeling Hetero-

geneous Graph Network on Fraud Detection: A Community-based Framework

with Attention Mechanism (CIKM ’21). Association for Computing Machinery,

New York, NY, USA, 1959–1968.

[62] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing

Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis,

Jinyang Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric,

Highly-Performant Package for Graph Neural Networks. arXiv (2019).

[63] Ping Wang, Khushbu Agarwal, Colby Ham, Sutanay Choudhury, and Chandan K.

Reddy. 2021. Self-Supervised Learning of Contextual Embeddings for Link

Prediction in Heterogeneous Networks (WWW ’21). 2946–2957. https://doi.org/

10.1145/3442381.3450060

[64] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S. Yu.

2020. A Survey on Heterogeneous Graph Embedding: Methods, Techniques,

Applications and Sources. IEEE Transactions on Big Data 9 (2020), 415–436.
[65] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. 2019. Heterogeneous Graph Attention Network. InWWW (San Francisco,

CA, USA). 2022–2032.

[66] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32 (2019), 4–24.

[67] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han. 2022. Heterogeneous Network

Representation Learning: A Unified Framework With Survey and Benchmark.

TKDE 34 (2022), 4854–4873.

[68] Guang Yang, Yuequn Zhang, Jinquan Hang, Xinyue Feng, Zejun Xie, Desheng

Zhang, and Yu Yang. 2023. CARPG: Cross-City Knowledge Transfer for Traffic

Accident Prediction via Attentive Region-Level Parameter Generation. In CIKM
(Birmingham, United Kingdom). 2939–2948.

[69] Hongxia Yang. 2019. AliGraph: A Comprehensive Graph Neural Network Plat-

form. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,

Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and

George Karypis (Eds.). ACM, 3165–3166.

[70] Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. 2023.

Simple and Efficient Heterogeneous Graph Neural Network. In AAAI (Washing-

ton, DC, USA).

[71] Wei Ye, Omid Askarisichani, Alex T. Jones, and Ambuj K. Singh. 2023. Learning

Deep Graph Representations via Convolutional Neural Networks (Extended

abstract). In 39th IEEE International Conference on Data Engineering, ICDE 2023,
Anaheim, CA, USA, April 3-7, 2023. IEEE, 3831–3832.

[72] Yuyang Ye, Zheng Dong, Hengshu Zhu, Tong Xu, Xin Song, Runlong Yu, and

Hui Xiong. 2023. MANE: Organizational Network Embedding With Multiplex

Attentive Neural Networks. TKDE 35, 4 (2023), 4047–4061.

[73] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explain-

ability of Graph Neural Networks via Subgraph Explorations. In ICML 2021, 18-24
July 2021, Virtual Event (Proceedings of Machine Learning Research), Marina Meila

and Tong Zhang (Eds.), Vol. 139. 12241–12252.

[74] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V.

Chawla. 2019. Heterogeneous Graph Neural Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery, New

York, NY, USA, 793–803. https://doi.org/10.1145/3292500.3330961

[75] Jiawei Zhang, Jianhui Chen, Shi Zhi, Yi Chang, Philip S. Yu, and Jiawei Han. 2017.

Link Prediction across Aligned Networks with Sparse and Low Rank Matrix

Estimation. In 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 971–982.

[76] Junhua Zhang, Wentao Li, Long Yuan, Lu Qin, Ying Zhang, and Lijun Chang.

2022. Shortest-Path Queries on Complex Networks: Experiments, Analyses, and

Improvement. Proceedings of the VLDB Endowment 15, 11 (2022), 2640–2652.
[77] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural

Networks. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle,

Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 5171–5181.

[78] Yufeng Zhang, Weiqing Wang, Hongzhi Yin, Pengpeng Zhao, Wei Chen, and Lei

Zhao. 2023. Disconnected Emerging Knowledge Graph Oriented Inductive Link

Prediction. In 39th IEEE International Conference on Data Engineering, ICDE 2023,
Anaheim, CA, USA, April 3-7, 2023. IEEE, 381–393.

[79] Yiming Zhang, Lingfei Wu, Qi Shen, Yitong Pang, Zhihua Wei, Fangli Xu, Ethan

Chang, and Bo Long. 2023. Graph Learning Augmented Heterogeneous Graph

Neural Network for Social Recommendation. ACM Trans. Recomm. Syst. 1, 4,
Article 16 (oct 2023), 22 pages. https://doi.org/10.1145/3610407

[80] Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fengqi Liang,

Huan Zhao, Yingxia Shao, Xiao Wang, and Chuan Shi. 2022. Space4HGNN:

A Novel, Modularized and Reproducible Platform to Evaluate Heterogeneous

Graph Neural Network. In SIGIR (Madrid, Spain). 2776–2789.

[81] Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Vik-

tor Prasanna. 2021. Accelerating Large Scale Real-Time GNN Inference using

Channel Pruning. Proceedings of the VLDB Endowment 14, 9 (2021), 1597–1605.
[82] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong

Li, and Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network

platform. Proceedings of the VLDB Endowment 12, 12 (2019), 2094–2105.

3986

https://doi.org/10.1145/3442381.3450060
https://doi.org/10.1145/3442381.3450060
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/3610407

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Graph Databases
	2.2 Heterogeneous Graph Neural Network
	2.3 Complex-Path
	2.4 Problem Definition

	3 Graph Construction
	3.1 Data Description
	3.2 Graph Structure Design
	3.3 Complex-Path Implementation

	4 Method
	4.1 Complex-path Pre-aggregation
	4.2 Node Classification Model Training
	4.3 Node Ranking

	5 Experiment
	5.1 Experimental Setup
	5.2 Overall Performance (RQ1)
	5.3 Influence of Training Data (RQ2)
	5.4 Efficiency Analysis (RQ3)
	5.5 Aggregation Influence Analysis (RQ4)
	5.6 Ablation Study (RQ5)
	5.7 Significance of Diverse Source Data (RQ6)
	5.8 Evaluation on External Datasets (RQ7)

	6 Real-world Deployment
	6.1 Upgrading Customers via Telemarketing
	6.2 Upgrading Customers via In-Person Visits

	7 Related Work
	7.1 Graph Database
	7.2 Heterogeneous Graph Neural Network

	8 Conclusion
	Acknowledgments
	References

