
X-Stor: A Cloud-native NoSQL Database Service with
Multi-model Support

Hongyu Lei
Chunhua Li∗
Ke Zhou

hylei@hust.edu.cn
li.chunhua@hust.edu.cn

zhke@hust.edu.cn
WNLO, HUST

Jianping Zhu
Kezhou Yan
Fen Xiao

felixzhu@tencent.com
kezhouyan@tencent.com
cherryxiao@tencent.com

Tencent Inc.

Ming Xie
Jiang Wang
Shiyu Di

reganxie@tencent.com
wangjiang@hust.edu.cn
sparrow@hust.edu.cn

Tencent Inc.; WNLO, HUST

ABSTRACT
In recent years at Tencent, we have observed that the use of multiple
NoSQL databases for storing business data with diverse models has
led to increased programming and deployment costs, as well as in-
efficient maintenance and underutilized resources. In this paper, we
report X-Stor, a cloud-native NoSQL database system that supports
multiple data models by extending different storage engines and effi-
ciently managing them through a unified control plane. This design
significantly reduces expenses and enables rapid expansion of new
models, while seamlessly supporting their complete functionality
through storage engine extensions. By consolidating multi-tenant
services and data models on the same physical machines, X-Stor
significantly enhances the utilization of cluster resources. Addition-
ally, X-Stor introduces a standardized metric called Request Unit
(RU) to measure tenant resource consumption for consumption-
based pricing purposes. Leveraging this metric, we design RU-based
resource management strategies and achieve efficient multi-tenant
resource isolation and system load balancing. Currently, X-Stor
manages a storage capacity of over 12PB for online operational
data, including more than 100,000 tables with multiple data models.
It handles 700 billion requests per day with a peak of 30 million
requests per second. We evaluate the performance of X-Stor on
popular benchmarks and production workloads. The results show
that X-Stor performs well under diverse data models.
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1 INTRODUCTION
NoSQL databases have become indispensable tools for managing
massive amounts of data in many businesses ecosystem due to
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their specialized optimization and support for various data mod-
els. For instance, in the field of finance, key-value databases are
used to store and process large volumes of transaction records and
achieve quick read and write operations. In the field of Internet of
Things, time-series databases can effectively store vast amounts
of time-series data generated by devices, and support rapid query
and analysis based on time ranges. In e-commerce field, document
databases can be used to store and manage a large amount of prod-
uct information, user reviews and order data. The flexible document
structure can adapt to different types of goods and support complex
query, helping enterprises achieve personalized recommendations
and precision marketing. Meanwhile, graph databases are used
to modeling complex relationships between entities and provide
powerful querying service in social networks.

Tencent Inc., as the largest social network service company in
China, whose cloud databases provide data storage and manage-
ment services for massive users, supporting diverse businesses
covering social networks, games, e-commerce, finance, advertising,
etc. These businesses make use of various NoSQL databases to man-
age data for different purposes. For instance, graph databases are
used in social networks to store user relationships and wide-column
stores [12] are employed to maintain user profiles, while document
databases are utilized in advertising services for storing material
data and time-series databases record user behavior data.

As businesses operations expand, some issues have arisen when
storing operational data in different NoSQL database. First, incorpo-
rating support for novel data models into an existing system incurs
high costs because it necessitates developing a new NoSQL system
from scratch, which also entails redundant functionalities. Second,
deploying multiple heterogeneous databases at scale leads to sys-
tem resources isolation for different NoSQL databases, which not
only complicates maintenance but also hinders efficient resource
sharing among clusters.

To address these issues, we develop X-Stor, a cloud-native multi-
model NoSQL database system that supports the storage and opera-
tion of multiple data models within a single cluster. It allows rapid
extension to new data models, thereby reducing development costs.
Additionally, it decouples database services from resource control
functions and manages cluster resources and various models of
databases through a unified control plane. This design not only
improves the reusability of components, but also greatly simplifies
system maintenance and further reduces deployment costs.
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In the design of X-Stor, we focus on the following two funda-
mental properties:

Comprehensive multi-model support. Most existing NoSQL
database systems adopt a single storage engine architecture to fa-
cilitate multiple data models, wherein additional data models are
derived from an underlying implementation of one specific data
model. For example, MongoDB’s WiredTiger [25] storage engine
facilitates storage and operations for document model data, as well
as query operations for graph and time-series data. ArangoDB
[8] uitilizes RocksDB [26] as its storage engine to store JSON ob-
jects and provides support for key-value and graph data models.
Conversely, Redis [37] stores key-value model data in memory
while enabling writing and querying capabilities for document and
time-series data through Redis Modules [38]. These solutions lack
extensibility to novel data models, and the extended data models
often only support a subset of data operations, resulting in inferior
performance compared to dedicated single-model systems.

In contrast, X-Stor achieves multi-model support through the
extension of different storage engines. When there is a need to
support novel data models, it simply requires extending the cor-
responding storage engine and data access interfaces within the
X-Stor system. Independent storage engines can fully support their
respective data models, with performance comparable to that of
their single-model counterparts.

Multi-tenancy and serverless. X-Stor is a multi-tenant archi-
tecture that stores the same mode of data from different tenants
on the same physical machines to ensure high resource utilization,
achieving cost savings for our customers. For reasonable resource
management, X-Stor introduces a standardized metric called Re-
quest Units (or RUs, for short) to quantify the consumption of
system resources per request by a tenant, including CPU, mem-
ory, disk IO and network IO, etc., enabling consumption-based
pricing. Further, X-Stor implements RU-based admission control
and performance isolation and prevents database from overload.
It also achieves load balancing in multi-tenant clusters through
RU-based replica placement and scheduling, effectively improving
the utilization of cluster resources.

X-Stor is also a serverless database service that can be deployed
at a large scale in the cloud, ensuring high availability and elastic
scalability. Tenants are only required to initialize the database for
their respective data models, enabling them to focus on data storage
and management with different APIs. Moreover, tenants only need
to pay for the resources they actually use based on the amount of
Request Units.

In summary, our key contributions are as follows:
•We have developed X-Stor, a cloud-native NoSQL database that

effectively supports multiple data models. It is fully capable of large-
scale cloud deployment and facilitates the storage and manage of
diverse data models within a single cluster.
•We describe how X-Stor supports various models through mul-

tiple pluggable storage engines, a unified data structure and a set of
X-Stor commands. This approach is essential for expanding X-Stor
to new data models and providing the models with comprehensive
functionality support and respectable performance.
•We introduce a standardized measure called Request Unit to

quality the resource consumption of database requests in multi-
tenant clusters, and provide a detailed description of its definition

and calculation, as well as how to perform resource isolation and
load balancing based on RUs.
•We exhibit extensive experimental results on production work-

loads and popular benchmarks (including YCSB [7] and TSBS [6]).
The results show that X-Stor performs well under diverse data
models.

2 THE ARCHITECTURE OF X-STOR
X-Stor consists of multiple microservices, which are fully deployed
in containers and orchestrated through Tencent Kubernetes Engine
(TKE) [5]. Figure 1 depicts the internal architecture of an X-Stor
cluster, which consists of multiple Data Planes and one Control
Plane. Each Data Plane only serves for a specific data model, namely,
the similar businesses operations from different tenants are served
by the same data plane, thus X-Stor is also a multi-tenant architec-
ture. The control plane is responsible for centrally executing man-
agement operations on database resources and cluster resources
across all data planes, such as partitioning, table creation, node
deployment, and pod eviction.

Data Plane. The Data Plane enables users to perform CRUD
operations on their data with APIs from different databases. These
APIs come not only from popular open-source NoSQL databases like
Redis and InfluxDB [23], but also from some of our own in-house
NoSQL databases. The Data Plane comprises three layers: Access
Layer, Cache Layer and Storage Layer. Storage Layer serves as the
core of X-Stor, encompassing a cluster of storage nodes. Each node
hosts multiple database pods, each of which runs an autonomous
database storage engine container that stores partitioned data for
tenants. These pods work together to serve the tenants. X-Stor’s
multi-tenant architecture enables data from different tenants to
be stored in a single storage engine, facilitating resource sharing
among tenants within a container.

The Access Layer consists of a group of gateway nodes, each of
which deploys multiple pods to offer gateway services. Typically,
tenant requests first reach the Access Layer. Then, the Protocol
Adapter converts different types of API calls made by tenants into
unified commands for X-Stor (details in section 3), and sends them
to the appropriate storage node based on routing information man-
aged by the Router. The gateway service also offers functionalities
such as filtering, aggregation and sorting for across-storage-node
requests. Besides, it employs the Consistency Manager to govern
the read logic based on various consistencymodels including strong,
eventual and bounded staleness consistent reads. The Cache Layer
is formed by a group of distributed cache nodes that store hot
partition data for tenants and perform replica management and
consistency based on multi-Raft protocol [20].

Control Plane. The Control Plane manages all resources within
an X-Stor cluster and offers metadata service for all Data Planes.
It consists of Admin Service, Resource Manager and Metadata Ser-
vice. The Admin Service provides authorization and authentication
for data management requests from tenants and OSS (Operations
Support System) via User Admin and Service Admin components.

TheWorkflow Service is the core service of the Control Plane, re-
sponsible for executing all management operations within the clus-
ter. X-Stor abstracts all asynchronous and time-consuming manage-
ment tasks into workflows, including resource control workflows
like CreateDatabase workflow and data management workflows
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Figure 1: The architecture of an X-Stor cluster. It consists of multiple Data Planes and one Control Plane, with each Data Plane
supporting database services for a specific data model. That is, the similar businesses from different tenants are served by the
same Data Plane, which achieves multi-tenancy isolation at the Access Layer and the Storage Layer. The Control Plane offers
metadata service for itself and all Data Planes, and centrally performs management operations on database resources and
cluster resources (such as partitioning and table creation, node deployment and pod eviction). In addition, the Monitor collects
and aggregates real-time database service status from storage nodes, such as SLA metrics and pod resource usage, and sends it
to the Resource Manager on Control Plane for making decisions on replica placement and scheduling for Data Plane.

such as MigrateNode workflow. Tenants, OSS, and other services
call the Workflow Service’s internal RPC server interfaces, trigger-
ing the Workflow Service to construct and execute the workflows
they need. The Resource Manager stores such metrics as resource
usage about cluster and database provided by Monitor, and formu-
lates resource management strategies based on these metrics, such
as decisions on partition placement and procedures for addressing
disk failures. The Metadata Service, comprising MongoDB clus-
ters, manages metadata for all Data Planes and Control Plane and
executes real-time updates using change streams.

Each storage node in the Data Plane deploys a Node Agent for
collecting real-time database service status information (such as
SLA metrics and pod resource usage) from its node and pushes it
to the Monitor. The Monitor aggregates this information and sends
it to the Resource Manager in the Control Plane. When X-Stor
launches, all gateways and cache nodes in the Data Plane register
with the Resource Cache, which is responsible for validating and
distributing metadata for the Data Plane. The Scheduler periodically
inspects Data Planes based on these metadata information and
decides whether to trigger the resource management interface of
Control Plane. The Control Plane then constructs and executes the
corresponding workflows for Data Plane, such as replica placement
and scheduling workflow as discussed in Section 5.3.

3 LARGE SCALE DEPLOYMENT
X-Stor decouples database service from resource management and
adopts a shared-nothing architecture at Storage Layer, where each
storage node independently manages its own system resources and
disk space. This architecture benefits X-Stor deployment at a large

scale in cloud, offering both scalability and isolation. Currently,
the storage capacity of X-Stor cluster for online operational data
exceeds 12PB, including over 100,000 tables from different tenants,
with more than 700 billion daily requests and 30 million peak QPS.
To reduce deployment costs, we consolidate different services and
data models on a single physical machine to enhance resource
utilization within the cluster.

Service consolidation. We deploy some gateway pods on stor-
age nodes with lower workloads to utilize the idle resources avail-
able on those nodes, i.e. the gateway pods and database pods share
resources on the same physical machine. Although database pods
on storage node belong to the same Data Plane, gateway pods can
come from any Data Plane within an cluster due to their state-
lessness. We exploit HPA [30] to dynamically scale the number of
gateway pods in response to fluctuations in traffic, thereby optimiz-
ing performance during peak periods and costs during lulls.

In order to reduce the probability of data loss caused by disk
failures, inspired by Copyset replication [15], we further divide
Data Plane into two hierarchical levels: Subcluster and Subcluster
Group. As illustrated in Figure 2, a Subcluster Group is formed
from 27 storage nodes, serving as the fundamental unit for scaling.
Within a single Subcluster Group, there are 12 Subclusters, each
consisting of database pods from 27 distinct storage nodes. In terms
of data distribution, the three replicas of a data partition are con-
fined to a single Subcluster. Most Subcluster Groups consist of 27
storage nodes, while some smaller clusters only contain 9 storage
nodes. These configurations depends on the trade-off between data
reliability and data recovery speed.
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Data model consolidation. In the early development of X-
Stor, we employed storage nodes with high-capacity SSD (Solid
State Disk) to support data models that require persistent and high
performance storage, such as key-value and time-series models.
Additionally, we equipped in-memory models with nodes featuring
large memory capacity. However, we noticed that a significant por-
tion of the SSD nodes’ memory was not effectively utilized. Based
on our shared-nothing and multi-engine architecture, we can easily
consolidate a group of database pods with different data models
onto the same storage node, enabling data models with varying
resource requirements to take full advantage of the resources of a
single storage node.

As we all know, the in-memory model requires less disk space
and can coexist with other models that require large capacity on
storage nodes. The Resource Manager periodically initiates a migra-
tion workflow based on the memory usage of nodes. This workflow
aims to reallocate DBS pods dedicated to the in-memory model to
nodes with high capacity SSDs. When a node clears pods on it, the
hosted in-memory model automatically goes offline. The process
first tries to clear the node with the lowest memory usage by mov-
ing all its pods and then disabling the node. If no node is available,
the workflow will resort to a worst-fit [41] strategy, moving pods
from nodes with higher memory usage to SSD nodes with lower
memory usage, in ascending order of memory usage. This continues
until all SSD nodes reach a predetermined memory threshold or
the maximum number of migration operations is reached.

4 COMPLETE MULTI-MODEL SUPPORT
In this section, we describe how X-Stor supports various models
through multiple pluggable storage engines, a unified data structure
and a set of X-Stor commands.

Multiple Storage Engines. X-Stor utilizes multiple storage en-
gines at storage layer to support the scalability of data models. Each
data model is supported by a single storage engine. For example,
to support a time-series model, X-Stor develops a Time-Structured
Merge Tree (TSM) [24] engine. In contrast to the typical design
of storage engines, X-Stor’s storage engines only retain the most
basic data access interfaces. For instance, for key-value models, only
Get/Set/Del and MGet/MSet/Mdel interfaces are retained, as well as
data snapshot import and export interfaces. Other functionalities
such as write-ahead logging (WAL) and replicators are deployed as
separate components in storage layer.

This pluggable storage engine design facilitates rapid develop-
ment of a new data model. We just need to design a simplified
storage engine that focuses on its basic CRUD operations. In ad-
dition, optimizations can be applied to individual storage engines,
enabling performance improvements for the respective data models.
For example, we optimize the inverted index for the TSM engine,
enhancing the efficiency in time range queries.

Universal Row. The challenge of multi-storage engine system
lies in handling a multitude of custom structures during data trans-
fer and processing in the system. Moreover, in order to accommo-
date multiple protocols, it is necessary to define various structures
and fields for storing command parameters. To address these issues,
X-Stor introduces a unified data structure called Universal Row to
represent the data models of different storage engines.
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DBS Pod
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DBS Pod
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DBS Pod
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Figure 2: Subcluster Group and Subcluster on a Data Plane

Universal Row (URow, for short) consists of a Row Key, a Row
Value and Row attributes. The Row Key includes a partition group
and a range group, which is an array made up of partition keys and
range keys. The partition key determines which partition the data
belongs to, while the range key is used for sorting data within the
same partition to facilitate sort searches and range queries. The
Row key also contains the hash value of the partition group because
we employ hashed sharding. Figure 3 illustrates how to express
mainstream NoSQL data models using URow. As the figure shows,
the Row Value encapsulates one of four different data types: primi-
tive values such as int, float, or string; container values such as map,
set, or array; column objects; or document objects (JSON). The Row
properties are initialized by the system and include basic properties
of URow, such as the last modified version and timestamp.

URow has two patterns in X-Stor: serialized and structured. The
serialized URow is used for network transmission, where it is en-
coded in BSON (binary form of JSON) or FlexBuffers [3] format
to achieve higher transmission efficiency while reducing memory
footprint. The structured URow, on the other hand, is used for
manipulating data in requests.

However, due to the flexibility of URow definition, some storage
engines may not be able to handle an individual URow-structured
data. To solve this issue, we define a more fine-grained data struc-
ture at the storage layer, called Record, which further subdivides
the URow structure. The value of Record can only be a primitive or
container value, while its key includes the hash value of the original
URow, the Row key, and additional subkeys (if the URow has been
subdivided). Record standardizes the interaction interface between
components at storage layer, enabling WAL, replicator and storage
engine to interact based on it.

X-Stor Commands. In order to convert operations from various
NoSQL systems into a generic expression within X-Stor, we design
a set of X-Stor commands, which provide a unified expression for
manipulating data at storage layer. Each command is composed of
a URow and an Action, where the Action contains one specific op-
eration type, i.e., Fetch, Update, Put, Delete, Scan, or Query. When
manipulating data with the X-Stor command, differences in data
models between different storage engines are not taken into ac-
count. For example, if a table is configured as read-only, the X-Store
command like Update, Put, and Delete operations on any data model
will be rejected.
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Figure 3: Supporting diverse data models via Universal Row

Based on above designs, X-Stor requires only three key interfaces
to manipulate data. As shown in Table 1, ITransform.Transform() ac-
cepts a URow and transforms it into a new URow. Depending on the
Action, the new URow is either used to create the response or saved
back to the engine. The ITranslator.Map() is used to split a URow
into multiple Records, while ITranslator.Reduce() is responsible for
combining a batch of Records into a single URow.

Figure 4 illustrates an example where a tenant uses the Redis
HMSET command to insert some data into X-Stor. The Protocol
Adapter in access layer first translates the Redis command into
an X-Stor command, in which the data is converted into a URow
structure. Then, in storage layer, we utilize the Taskflow Framework
[4] to implement different data read and write processing flows.
Next, the Translator parses the X-Stor command and splits it into
several Records. Afterwards, the Encoder encodes each Record
into a Binary Large Object (BLOB), thereby reducing the storage
footprint for records in the storage engine. Finally, the basic write
interface of the storage engine is invoked to insert the binary data.

Table 1: Key interfaces for Universal Row

Method Parameters Returns

ITransform.Transform( ) Input URow Output URow
ITranslator.Map( ) URow Batch of Records
ITranslator.Reduce( ) Batch of Records URow

5 MULTI-TENANT RESOURCE MANAGEMENT
The multi-tenancy feature of X-Stor allows tenants to share re-
sources within a single database container, which means database
requests from different tenants can access replicas managed by the
storage engine. In this section, we first introduce the definition of
Request Unit (RU) and its quantification methods, then we describe
how X-Stor achieves multi-tenant resource isolation and resource
scheduling based on RUs.

5.1 Request Unit
The resource consumption varies significantly among database
requests, and each request has its dominant resources. For exam-
ple, key-value model requests primarily consume CPU and I/O
resources, whereas some time-series model queries require not
only CPU but also a significant amount of memory. Therefore, it is
crucial to accurately measure the resource consumption of tenant
requests for serverless billing and resource management in cloud
databases. X-Stor introduces a standardized metric to measure the
resource consumption of tenant requests from different data models,

Protocol Adapter

Redis Protocol TSSD Protocol InfluxDB
Protocol ...

Redis > HMSET myhash field1 "Hello" field2 "World"

Access Layer

Storage Layer
Taskflow Framework

Universal Row:
RowKey >

PrimitiveValue:string
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['field1': 'Hello', 'field2':
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X-Stor Command 

Record
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10,'myhash' 'field1'
13411008 -> 'Hello'

Record 2:
10,'myhash' 'field2'
13411008 -> 'World'Encoder

Pluggable Storage Engine

LSM Engine TSM EngineMem Engine ...

Blob Key
Blob Value

WAL Replicator Transaction

Figure 4: An illustration of X-Stor multi-model support

which is called Request Unit (RU). All tenants’ database requests
will consume a certain amount of RUs, representing the system
resources consumed by the requests. We summarize the design
principles of RU as follows:

Represent dominant resources. The RUs needs to reflect the
dominant resources consumed by a request, which is relative to the
configuration resources of the pod being accessed.

Hardware independence. Requests that consume the same
amount of resources should incur the same RU charges, regard-
less of differences in hardware configurations across storage nodes.

Real-time computing. The RUs for a request needs to be cal-
culated rapidly within a time constraint to meet real-time require-
ments.

Definition. To meet the different requirements of different sce-
narios, we define two distinct types of RU: the Physical RU (PRU)
and the Logical RU (LRU). The Physical RU is represented using a
four-dimensional vector that abstracts the resource consumption of
CPU, memory, disk IOPS, and network bandwidth incurred by re-
quests. In our system, retrieving 1KB data is stipulated to consume
1 Physical RU, which represents the minimal resource consumption
associated with a single request, i.e.,

𝑃𝑅𝑈 =
⟨︁
𝑃𝑅𝑈𝐶𝑃𝑈 , 𝑃𝑅𝑈𝑚𝑒𝑚𝑜𝑟𝑦, 𝑃𝑅𝑈𝐼/𝑂 , 𝑃𝑅𝑈𝑛𝑒𝑡𝑤𝑜𝑟𝑘

⟩︁
(1)

The Physical RU is used for scenarios requiring fine-grained re-
source management across different dimensions within the system,
such as replica scheduling (discussed in section 5.3). On the other
hand, the Logical RU is a scalar value derived from the Physical
RU. It is tailored for tenant-oriented scenarios, such as multi-tenant
isolation (discussed in Section 5.2) and billing.

Calculation. The RU is quantified in two parts: the RU consump-
tion by requests and the RU capacity of pods. First, we measured
resource consumption in four dimensions resulting from retrieving
1KB data in different models, described as 1𝐾𝐵 𝑅𝑒𝑎𝑑𝑑𝑖𝑚 , Where
𝑑𝑖𝑚 represents the four dimensions of system resources, i.e., CPU,
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memory, I/O and network. Next, we establish the maximum re-
source capacity for each of the four dimensions of a pod based on
its configuration, which is described as PodResourceCapacity. After
that, we can calculate the pod’s Physical RU capacity:

𝑃𝑜𝑑 𝑃𝑅𝑈𝑑𝑖𝑚 =
PodResourceCapacity𝑑𝑖𝑚

1𝐾𝐵 𝑅𝑒𝑎𝑑𝑑𝑖𝑚
(2)

We choose the minimum Physical RU capacity of this pod as its
Logical RU capacity, so the Logical RU represents the dominant
resources of this pod:

𝑃𝑜𝑑 𝐿𝑅𝑈 = min
𝑑𝑖𝑚
(𝑃𝑜𝑑 𝑃𝑅𝑈𝑑𝑖𝑚) (3)

The next step is to calculate RU consumption of requests. To
calculate PRU consumption, we first analyze the modules in the
system that consume the most resources when processing requests.
These modules typically occur in protocol encoding and decoding
processes, X-Stor command conversion processes, and read/write
operations of the storage engine. Then, we consider the resources
used by each module when processing a certain amount of data.
For example, to calculate the PRU consumed by a module when
retrieving 1KB data, we first measure the module’s resource con-
sumption in four dimensions, represented as ModuleCost. Then, we
can calculate the RU consumption based on this metric:

𝑀𝑜𝑑𝑢𝑙𝑒 𝑃𝑅𝑈𝑑𝑖𝑚 =
𝑀𝑜𝑑𝑢𝑙𝑒𝐶𝑜𝑠𝑡𝑑𝑖𝑚

1𝐾𝐵 𝑅𝑒𝑎𝑑𝑑𝑖𝑚
(4)

After completing the iterative computation, we compile a Physi-
cal RU table that documents the PRU consumption of various mod-
ules when handling data with different sizes. For a tenant’s request,
we only need to identify the involved modules and their invocation
frequency. Then, we can refer to the PRU table to determine the
PRU consumption. For the Logical RU, it can be calculated as:

𝑅𝑒𝑞𝑢𝑒𝑠𝑡 𝐿𝑅𝑈 = 𝑃𝑜𝑑 𝐿𝑅𝑈 ∗max
𝑑𝑖𝑚

(︃
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑃𝑅𝑈𝑑𝑖𝑚

𝑃𝑜𝑑 𝑃𝑅𝑈𝑑𝑖𝑚

)︃
(5)

Through the above calculation, the Logical RU represents the
consumption of dominant resources by a request in a hardware-
independent manner.

5.2 RU-based Multi-Tenant Isolation
Based on RU, X-Stor is able to determine the resource consumption
of requests in real time, thereby achieving more precise resource
management and performing performance isolation in a multi-
tenant environment. First, X-Stor performs admission control at
access layer to prevent storage nodes overload while ensuring that
tenants can obtain the equivalent system resources to their billing.
Then, within the database pods in a storage node, X-Stor further
protects nodes against overload while maximizing system resource
utilization when nodes are idle and avoiding performance degrada-
tion due to resource competition among tenants when nodes are
constrained.

Admission Control at Access Layer. As illustrated in figure
5, X-stor has multiple gateway services at the access layer. In or-
der to minimize the blast radius in the event of a gateway failure,
we logically divide all gateways into separate access pools, with
each tenant being assigned to only one access pool. This strategy
also reduces the memory overhead associated with storing data

Load Balancer

Gateway-1 Gateway-2 Gateway-N

Access Pool-1

...

Access Pools

Gateway-1 Gateway-2 Gateway-N

Access Pool-N

...

Access Layer

...

RU Scheduler-N

Storage Layer

RU Scheduler-1

ClientClient

Database request

Client Client

Figure 5: X-Stor access layer overview. Gateway services are
logically isolated into separate access pools, serving only a
group of tenants.

partition routing information in the gateway services and the cost
of Resource Cache routing updates. We assign tenants a certain
number of LRU quotas based on their billing, and initially these
quotas are evenly distributed across all gateways within the access
pool. If the LRU consumption exceeds the quota allocated on the
gateway per second, it will reject further requests to prevent an
overload of requests entering the storage layer.

The Load Balancer uses a simple load distribution strategy based
on QPS to distribute tenant requests across the various gateways.
However, balanced QPS distribution doesn’t guarantee even RU
consumption among gateways due to varying RU costs for different
requests, leading to the tenant actually receiving fewer LRUs than
their billing. The RU Scheduler in each access pool is responsible for
monitoring the RU consumption of each gateway per second, and
adjusting the LRU quota on the gateways based on changes to the
tenant billing strategy or changes in the number of gateways within
the access pool. The RU scheduler addresses load imbalance and
traffic bursts between gateways in two mechanisms: autoscaling
and burst packages. With autoscaling, the RU scheduler periodi-
cally evaluates the distribution of LRU usage across gateways and
reassigns LRUs from less active gateways to those facing higher
demand based on their proportion of idleness. For traffic bursts
lasting less than one second that occur at any gateway, the RU
scheduler provides “bursting packages” for each gateway. These
packages consist of a reserved number of LRUs, which can be used
by any tenant within the gateway when their LRU consumption
exceeds their allocated quota. To avoid gateway overload, there is
a limit to the number of burst packages that each tenant can use
per second.

In certain data models within X-Stor, queries typically consume
more LRU compared to write operations, and some large queries
occasionally use up the majority of an entire gateway’s LRU quota.
To do this, gateways store unused tenant LRU quotas in the last
60 seconds, which is a feature X-Stor calls accumulated RUs. For
a query, the LRUs cost is not immediately subtracted from the
current LRU quota of the gateway (this mechanism can also provide
higher privileges for write requests), but from the accumulated RUs
starting from when the query is executed. If the accumulated RUs
is inadequate, the gateway will not forward the query to storage
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layer. Instead, it keeps the query in a waiting queue and will handle
it as soon as there is enough accumulated RUs. In addition, to
further handle queries that consume a large amount of LRUs, the
gateway can schedule a certain amount of accumulated LRUs from
other gateways in the access pool. We prioritize gateways with the
longest waiting queries first, based on a simple priority strategy, in
an attempt to schedule and complete those queries.

Storage Layer Isolation. At storage layer, a storage engine
stores replicas from different tenants. Our main concern is how
to allow tenants in a container to utilize as much of their pod’s
resources as possible, while preventing a “Noisy Neighbor” from
monopolizing all the resources and affecting the performance of
other tenants. X-Stor uses multiple token bucket algorithm to man-
age RUs at storage layer. Each pod owns two tiers of token buckets:
tenant token buckets and pod token buckets. The size of the tenant
token bucket is determined based on the number of partitions the
tenant has on the storage node, while the size of the pod token
bucket is determined by the pod LRU that we have discussed in
Section 4.1. One token corresponding to one LRU. When a tenant’s
request arrives at the storage node, it must acquire enough tokens
before it can be processed. The request first attempts to obtain to-
kens from both the tenant’s token bucket and the pod token bucket.
If there are insufficient tokens available, it will then try to obtain
extra tokens from the pod token bucket.

The tenant token bucket ensures a tenant’s basic resource usage
by allocating a portion of resources that cannot be preempted, thus
providing stable performance when the tenant’s resource consump-
tion is below billing. On the other hand, the pod token bucket allows
tenants to use extra resources when pod resources are idle, im-
proving resource utilization while keeping the aggregate resource
consumption of all tenants within the limit threshold (considering
over-subscription) to prevent node overload.

When both bucket tokens are exhausted, subsequent requests
from the tenant will be rejected. However, for certain models, large
queries still pose a problem at storage layer. For example, in time-
series models, some queries may take longer to complete and the
original token bucket algorithm could lead to prolonged starvation
for such queries. Besides, we aim to ensure that write requests
have a higher priority in time-series models. To do this, we define
a queuing threshold for the pod’s token bucket. If the token con-
sumption rate of the pod’s token bucket exceeds this threshold, we
will enqueue subsequent read and write requests into separate read
and write queues. The system will process the queued requests in
order once the pod has sufficient resources. Write requests will be
dequeued before read if they have a higher priority.

5.3 RU-based Load Balancing
In X-Stor, a partition has multiple replicas, which use the Raft algo-
rithm for consensus and leader election. These replicas experience
varying workloads due to their business characteristics and data
sizes. We define the load of these replicas with the amount of RUs
consumed when they are accessed per second. Through RU-based
replica placement and scheduling strategies, we achieve more effi-
cient workload balancing within the cluster.

5.3.1 Replica Placement. After a tenant creates a table, the Re-
source Manager calculates the number of partitions needed based

on the tenant’s estimation on their own business workload and
required storage space. Subsequently, it generates multiple replicas
of these partitions. We first evenly distribute replicas of the table
across all pods. For the remaining replicas, we calculate a score for
each pod:

𝑆𝑐𝑜𝑟𝑒 =

√︂
𝑈 2
𝑑𝑖𝑠𝑘
+𝐴2

𝑅𝑈
+𝐴2

𝑑𝑖𝑠𝑘
(6)

where𝑈𝑑𝑖𝑠𝑘 reflects the current disk availability, considering the
disk storage capacity already used by the pod. 𝐴𝑅𝑈 is the LRU
allocation rate, which considers the ratio of the total RUs allocated
across all replicas on the pod to the LRU capacity limit of the pod.
𝐴𝑑𝑖𝑠𝑘 is the allocation rate of the pod’s disk space, which is the
ratio of the total disk space allocated across all replicas on the pod
to the pod’s disk capacity. Note that the latter two values take into
account the proportion of over-subscriptions in the cluster. These
three values are normalized before calculating, and any pod with
a value exceeding a predefined threshold is excluded. Replicas are
greedily placed on the pod with the lowest score.

5.3.2 Replica Scheduling. The Node Agent on each storage node
continuously collects the PRU load of each replica and each pod.
This data is then reported to the Monitor, which aggregates the
information and forwards it to the Scheduler on Data Plane. Based
on this information, the Scheduler analyzes the situation like over-
loads and imbalances for clusters every 24 hours. If such situa-
tions exist, it invokes the Workflow Service interface to initiate a
replica scheduling Workflow. We schedule our cluster based on the
most utilized resources, considering a cluster of 𝑁 database pods
𝑃 = [𝑝𝑜𝑑1, 𝑝𝑜𝑑2, ..., 𝑝𝑜𝑑𝑁 ], 𝑃𝑅𝑈 𝑡

𝑝𝑜𝑑𝑖
is the PRU of this resource

on 𝑝𝑜𝑑𝑖 at time point 𝑡 . Replica scheduling aims to minimize the
following three metrics:
• Violations. The number of times that the PRU of pods in the

cluster exceeds the PRU threshold, which is generally set at 60% of
the pod’s PRU limit:

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =
∑︂
𝑖

|︁|︁|︁{𝑡 |𝑃𝑅𝑈 𝑡
𝑝𝑜𝑑𝑖

> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}
|︁|︁|︁ (7)

• Resource Imbalance. We use standard deviation to define it:

𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑠𝑡𝑑𝑝∈𝑃 (𝑃𝑅𝑈𝑝 ) (8)

• Cost. The cost of scheduling also need to be considered:

𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 (9)

Candidate Replica. Algorithm 1 describes how to select can-
didate replicas for scheduling. In a given time period 𝑇 , if a pod’s
load exceeds 𝑘 times its average load, we define this time point as
an anomaly, or if the load exceeds the PRU threshold at 𝑁 consec-
utive time points (typically 3), we define all these time points as
anomalies (Line 1-5). Then, for pod with a number of anomalies
exceeding the warning threshold, we consider it as high-load pod
and select the top 𝑘1 replicas with the highest PRU consumption, in-
crease the contribution of these replicas by one at every time point
(Line 6-10). Last, the top 𝑘2 replicas with the highest contribution
become the candidate replicas for that pod (Line 11).

Role Switching. The leader replica handles both read and write
operations from tenants, and as a result, it often experiences a much
higher load compared to the follower replicas. Our first strategy is
role switching, which requires very few system resources because
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Algorithm 1: Selecting candidate replicas
1 function Selecting(P)
2 for Pod p ∈ P do
3 for timestamp t ∈ T do
4 if 𝑙𝑜𝑎𝑑𝑡𝑝 > 𝑘 ∗ 𝑎𝑣𝑔𝑞∈𝑃 (𝑃𝑅𝑈 𝑡+𝑖

𝑞 ) or 𝑃𝑅𝑈 𝑡+𝑖
𝑝 >

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,∀𝑖 ∈ [0, 𝑁 − 1] then
5 p.anomaly.add(t)
6 for Pod p ∈ P, |p.anomaly| > threshold do
7 for timestamp t ∈ p.anomaly do
8 𝐶 ← 𝑡𝑜𝑝 𝑘1 RU consumption replicas in p
9 for replica r ∈ C do

10 r.contribution++
11 p.candidates← 𝑡𝑜𝑝 𝑘2 contribution replicas

only the role of the replica needs to be changed. After calculating
candidate replicas for each high-load pod, we iteratively perform
role switching. In each iteration, we first select the low-load pod
with the fewest anomalies as the destination pod for the role switch-
ing. Next, we select the source pod for the role switching, for every
other pod with anomalies, if there exists at least one leader replica
which has a follower on the destination pod, we assign the number
of anomalies as the score for that pod, and choose the pod with
the highest score as the source pod. We select the leader replica
acceptable to the destination pod from candidate replicas in the
source pod, and then perform a role switching with the follower on
the destination pod. If no pod can exchange with this destination
pod in a single iteration, the destination pod will be excluded from
subsequent iterations. The iteration process ends when ether a
high-load pod cannot be found or there are no suitable destination
pods.

Replica Migration. Role switching restricts the range of replica
scheduling, as it only involves switching roles within a fixed set of
pods. Therefore, after role switching, the Scheduler migrates repli-
cas among the pods. For each pod whose anomalies still exceed the
threshold after role switching, we iteratively check the remaining
replicas in its candidate list. For each candidate replica, we select
a destination pod based on the following priorities in descending
order: (1) The destination pod with the least number of anomaly
points after receiving the replica. (2) The destination pod is in the
same Subcluster as the source pod, which is to reduce migration
costs, as cross-Subcluster migration requires migration of all repli-
cas in the partition. (3) The destination pod and the replica have
the minimum PRU similarity, for which we use cosine similarity:

𝑃𝑅𝑈 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑃𝑅𝑈𝑝 · 𝑃𝑅𝑈𝑟𝑒𝑝𝑙𝑖𝑐𝑎
|𝑃𝑅𝑈𝑝 | · |𝑃𝑅𝑈𝑟𝑒𝑝𝑙𝑖𝑐𝑎 |

(10)

where 𝑃𝑅𝑈𝑝 is the vector constituted by the PRU load per minute
of the destination pod in the previous period, and 𝑃𝑅𝑈𝑟𝑒𝑝𝑙𝑖𝑐𝑎 is the
PRU load vector corresponding to the replica. The lower similarity
indicates that the two PRUs are complementary, thereby making
the load on the destination pod more balanced over time. (4) The
destination pod with the smallest total PRU in the previous period.
(5) The destination pod with the lowest current disk usage. When
comparing two pods, if the difference in the values of a priority
is within a set threshold, we then compare the next priority level.

Note that during migration, we always restrict the number of all
replicas of a table on each pod to remain average (typically, the
number on each pod must not exceed the average by more than
5) to prevent the migration process from disrupting the balanced
distribution of replicas in terms of their quantity.

6 EVALUATIONS
Currently, X-Stor provides online support for time series model and
various key-value model, including an in-memory and LSM-tree
pluggable engine, as well as a modification of FasterKV [13]. We
are also actively developing support for other data models. In this
section, We conduct extensive experiments to evaluation the per-
formance within an X-Stor cluster, which comprises 12 subclusters,
each containing 9 database pods. Through Kubernetes pod configu-
ration files, we enforce resource limitations for each pod, allowing
a maximum of 6 cores. The key-value model pods are allocated no
more than 10GB of memory, while the in-memory model pods have
a memory limit of 134GB. For time series model pods, the memory
allocation is restricted to a maximum of 48GB. Additionally, the
gateway pod is configured with 4 cores and 10GB RAM.

6.1 System Performance under different models
Key-value model. X-Stor design a pluggable LSM-tree storage
engine to store and manage key-value data. We evaluate it using
microbenchmark db_bench [2] and select LevelDB [1] as the base-
line database, which is a fast, embedded, and lightweight LSM-tree
storage. Db_bench provides multiple benchmark tests. We choose
fillseq, fillsrandom, and readrandom, which are the most common
operations in actual business scenarios. The dataset size for each
test is approximately 62GB with various value sizes. Figure 6 shows
the throughput and P99 latency under various benchmark tests.
Whether for reading or writing, the throughput of X-Stor exceeds
LevelDB for all value sizes, only slightly lagging behind LevelDB in
random reads with a value size of 1KB. The P99 latency of read and
write operations in X-Stor is generally lower than that of LevelDB,
especially at a value size of 64KB, where LevelDB shows significant
fluctuations in sequential write P99 latency.

In-memory model.We first demonstrate the scalability of X-
Stor using in-memory model. X-Stor adopts a shared-nothing ar-
chitecture in storage layer and can effectively handle load growth
by horizontally scaling the number of pods. We use three simu-
lated workloads with different access patterns. Figure 7 illustrates
the throughput of the three workloads under different numbers
of pods, showing that the throughput of X-Stor’s memory model
almost linearly increases with the number of pods. we also evaluate
the read and write latency of the memory model under different
throughputs on YCSB A and B. We use a uniform key distribution
with a 128-byte value of key. Figure 8 presents the p50 and p99
latency for reads in the two workloads. The latency variation is
minimal regardless of the throughput, especially when the through-
put is below 1M. The p50 latency remains nearly unchanged. Figure
9 shows the p50 and p99 latency for writes, indicating that the
write latency is more stable, with only a slight increase even at a
throughput of 1M.

Next, we focus on the performance of the X-Stor memory model
when dealing with frequently accessed keys, known as hot keys.
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Figure 6: Performance of key-value model on db_bench
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Figure 7: Throughput of in-memory model with pod scaling

We choose Redis as the baseline database to compare with X-Stor’s
in-memory model, as Redis is the most popular in-memory data-
base. The experiment is based on the YCSB and we test workloads
A, B, C, D, and F. In a single test, we create a data with a value of
100B and then launch the corresponding workload. By modifying
the thread parameter, we simulate multiple concurrent users access-
ing the database simultaneously. Figure 10 shows the throughput
of hot key requests under different workloads. As the number of
clients increases, the throughput of both X-Stor and Redis shows an
almost linear upward trend. However, X-Stor’s performance growth
outpaces Redis. When there are 64 clients, except for workload A,
X-Stor’s performance exceeds that of Redis. Figure 11 shows the
latency of hot key requests under different workloads. With fewer
clients, X-Stor’s latency performance is slightly inferior to Redis.
However, as the number of clients increases, X-Stor demonstrates
lower latency compared to Redis. X-Stor specifically optimize the
read performance of memory storage engine, including the design
of lock-free structures and the introduction of multithreading.

Time-series model. For the time-series model of X-Stor, we
choose InfluxDB [23] as the baseline database, which is a very
popular open-source time series database. It is deployed as a pod
on a storage node that matches the configurations of X-Stor, with
its maximum cache size set to 10GB, consistent with X-Stor.

As shown in Table 2, we use the DevOps dataset generated by
TSBS and three production workloads collected from Tencent’s
business. For DevOps, we adjust the host_scale parameter to control
the number of hosts, thereby adjusting the quantity of time series.
Each time series contains 12 hours of data with 1 minute interval.

Figure 12a illustrates the write throughput of InfluxDB and the
X-Stor time-series model across different host scales of the De-
vOps dataset. In any timeseries scales, X-Stor demonstrates ap-
proximately twice the performance of InfluxDB. Figure 12b shows
the write throughput of the X-Stor time-series model compared
to InfluxDB under production workloads. As we can see, X-Stor
outperforms InfluxDB across all three datasets. Notably, in theMeet-
ing dataset, X-Stor achieves about 4× the throughput of InfluxDB.
These are because the additional optimizations we implement for
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Figure 8: Read latency of In-memory model on YCSB
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Figure 9: Write latency of In-memory model on YCSB

TSM engine, such as introducing series files at the shard level and
parallel data ingestion.

We also evaluate the query performance of both databases. For
DevOps dataset, we focus on three queries: single-groupby, which
aggregates the maximum value every 5 minutes for a host; max-
all, which aggregates all CPU metrics for a host; last point, which
retrieves the latest readings from all hosts. Table 3 shows the aver-
age latency for these three queries at different host scales; as the
number of hosts increases, the latency of the queries also shows a
growing trend. However, X-Stor’s latency is typically lower than
that of InfluxDB, especially in the last point query.

Than we evaluate several commonly used queries in the pro-
duction workloads dataset, including retrieving distinct tag values,
fetching series within a time range, downsampling service failure
counts per hour, and aggregating passive request numbers. Table 3
shows the average latency for these commonly used queries. While
the show tag query exhibits similar performance between the two,
the X-Stor time-series model significantly outperforms InfluxDB
in all other queries. The improvement in query performance is
largely due to indexing optimizations and the concurrent execution
of multiple time series queries within the TSM engine.

6.2 Effectiveness of multi-tenant isolation
To evaluate the autoscaling and bursting packages of RU scheduler,
we introduce the concept of RU satisfied rate, which represents
the ratio of the actual number of RUs consumed by a tenant com-
pared to the expected number of RUs required every second. In
this evaluation, a lower RU satisfied rate indicates that tenants are
experiencing request rejections at the gateway due to their skewed
access patterns, even if their usage is below their allocated capacity.
We use a workload trace from an real tenant. This tenant employs
a time-series model and has three gateways in access pool, which
we label as Gateway 1, Gateway 2, and Gateway 3. The tenant
sends read and write requests to these gateways at random for
15 minutes, with some queries consuming significantly more RU
than the allocated quota. Initially, we divide tenants’ purchased RU
quota equally among the three gateways. Then, we compute the
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Table 2: Dataset summary for Time-series model

Dataset Source Size

Devops TSBS 101,000 to 10 million time series, depends on host_scale.
Monitor System metrics from microservices within Tencent Cloud. Over 2.4 million time series, 44 million data points.
Meeting Meeting schedule information from Tencent Meeting. Over 3.5 million time series, 25 million data points (sparse).

Live Streaming Network metrics from QQ live video streams. Over 100 million time series (large cardinality).
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Figure 10: Hot key throughput of In-memory model on different YCSB workloads
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Figure 12: Write throughput of time-series model

Table 3: Query latencies on TSBS (ms)

Host scale Single groupby Max all Last point

1○ 2○ 1○ 2○ 1○ 2○

1000 17 18 76 68 3158 809
5000 113 118 546 390 19332 4637
10000 318 307 1507 914 60703 17194
100000 4459 2499 20338 8799 749691 216344

1○ InfluxDB 2○ X-Stor

RU satisfied rate for the tenant at each gateway every minute:

𝑅𝑈 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑖𝑒𝑑 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑅𝑈 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑈 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
× 100% (11)

Table 5 displays the average RU satisfied rates for the tenant
across the three gateways. Upon disabling the autoscaling feature,

Table 4: Query latencies on production workloads (ms)

Query pattern InfluxDB X-Stor

Show value 1700 1700
Time range 1100 30

Down sampling 1400 330
Aggregation 200 30

the satisfied rates for Gateways 2 and 3 are only about 70% and
60%, respectively, indicating a skewed distribution of the tenant’s
requests load toward these gateways. However, after enabling au-
toscaling at access layer, there is a improvement in the RU satisfied
rates for Gateways 2 and 3, with Gateway 3 nearing full satisfaction
at 98.5%. Finally, by introducing bursting packages to all three gate-
ways, Gateway 2’s satisfied rate shows a significant increase. This
improvement can be attributed to the bursting package’s ability to
accommodate the tenant’s short-term burst requests within the RU
limitations of the gateway.

Table 5: RU satisfied rate

Without AC AC AC with bursting

Gateway 1 99.7% 100.0% 100.0%
Gateway 2 73.8% 87.3% 96.8%
Gateway 3 62.0% 98.5% 99.0%

AC stands for gateway autoscaling.

To validate the RU-based storage layer isolation, we verifywhether
resource contention leads to performance degradation by observing
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the latency of requests. We first create two databases form differ-
ent tenants on the same pod, each with half the RU capacity of
the database pod. Then, We send two workloads to this pod: the
first tenant initiates writes and gradually increases the amount of
concurrency until reaching the database pod’s RU capacity limit,
the second tenant initiates a smooth workload that is always below
the database pod RU capacity limit but sometimes slightly above
the tenant’s purchased RU.

We first evaluate RU-based database isolation under the key-
value model, where the workload is mostly CPU-intensive and lasts
about 10 hours. Figure 13a shows the p99 latency of the second
tenant, as the workload of the first tenant gradually increases, the
implementation of RU isolation results in a significantly lower
p99 latency for the second tenant. This is because the isolation
mechanism prevents the first tenants from overusing a large amount
of the database pod’s resources for an extended period through RU-
based token bucket. Besides, we calculate the write throughput for
second tenants. The overall throughput decreases by less than 0.1%
after enabling database isolation. This minimal reduction occurs
because when a tenant’s RU consumption exceeds their purchased
allowance and the database pod depletes its RU capacity, subsequent
requests will be rejected until additional tokens are replenished in
the bucket. However, such occurrences are infrequent.

We also evaluate database isolation under the time-series model,
as memory is the main bottleneck in this model. This workload
lasts for one hour, containing a large amount of writing and a cer-
tain number of memory-intensive queries. Figure 13b shows the
average latency of the second tenant. The latency is significantly re-
duced when isolation is implemented. Unlike the key-value model,
the overall throughput for the time-series model increases by ap-
proximately 20% after database isolation is enabled. The primary
reason for this improvement is the threshold set for the time-series
model, which queues the large queries and permits a batch of write
requests to be executed beforehand.
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Figure 13: Latency of the second tenant with/without isola-
tion under different data models

6.3 Effectiveness of RU-based Load Balancing
We evaluate our replica scheduling strategy using production re-
source traces from a X-Stor cluster. Every minute, we gather the
RU consumption and performance metrics for each pod to ana-
lyze the differences between pre- and post-scheduling. Figure 14
illustrates the RU consumption within the cluster over a period of
approximately 10 hours. Following the completion of scheduling,
the majority of pods fall below the RU threshold. This is mainly

because the role-switch of high load replicas and migration of these
replicas to pods with lower RU consumption based on priority. Ad-
ditionally, it can be observed that most anomalies of the second
type are eliminated (under the k*average line).
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Figure 14: RU consumption before and after scheduling

Table 6: RU metric before and after scheduling

Before After

Violations 2113 265 ( ↓ 87.46% )
Anomalies 2547 258 ( ↓ 89.87% )

Standard deviation 28576 21860 ( ↓ 23.50% )

Table 6 shows the details of scheduling. After scheduling, vi-
olations in the cluster are reduced by 87.46% and anomalies are
reduced by 89.87%. Additionally, the average standard deviation is
reduced by 23.50%, indicating that the imbalance in cluster resource
usage is mitigated. Scheduling also decreases the request latency.
Table 7 shows the p99 request latency of the cluster before and after
scheduling relative to minimum p99 request latency of pods. The
average relative p99 latency across all pods decrease by approx-
imately 24%. This is due to the replica scheduling, which avoids
resource contention for high-load pods. Meanwhile, other pods ex-
perience no contention and as a result, their latency increases only
slightly after replicas move in. Consequently, the overall latency is
reduced.

Table 7: P99 relative latency before and after scheduling

Before After

mean 0.1211 0.0916 ( ↓ 24.37% )
median 0.0480 0.0248 ( ↓ 48.36% )
p99 0.4973 0.4146 ( ↓ 16.63% )

Finally, we calculate the cost of scheduling. There are 69 role-
switching partitions and 130 migrated replicas, compared to the
total of 10,170 partitions and 30,510 replicas across the entire cluster.
Consequently, role-switching partitions account for approximately
0.67%, and migrated replicas make up about 0.42% of the totals. This
demonstrates that the scheduling delivers good results at a fraction
of the cost.

7 LESSONS LEARNED
As X-Stor remains in the initial phases of product adoption, our real-
world deployment has already yielded some important insights.
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Workflow. In X-Stor, all management tasks are designed as
workflows, which are composed of multiple asynchronous exe-
cutable steps. These workflows are both combinable and nestable.
For example, the DropNodeworkflow includes three sub-workflows:
DisableNode, DropDisk, andDeleteNode, where theDropDiskwork-
flow itself includes other workflows such as MigrateReplica. This
design significantly enhances the reusability of resource manage-
ment tasks within X-Stor. The status information of each workflow,
including the intermediate results after each step is executed, is
recorded in the metadata service. In case of a failure, the system
will roll back the entire affected workflow to maintain consistency.

Host network for pod.When deploying database pods through
a virtualized network, we discover that Kubernetes CoreDNS [16]
is a system bottleneck, resulting in a performance degradation of
approximately 20% for large-scale clusters (exceeding 1000 nodes
and 3000 pods) and hindering the implementation of network op-
timization protocols such as RDMA. As a result, we set all pods
to host network mode and developed a component called PortAl-
loc to assign node ports. Upon pod initiation, it requests a port
from PortAlloc on the node, and replica metadata records the pod’s
IP and port directly. This simplifies routing forwarding, enhances
system throughput, and avoids strong dependency on Kubernetes.
Additionally, we are able to use RDMA for network performance
optimization in future.

Single point of failure detection. X-Stor employs only two-
layer data access path (gateway to database or cache to database) but
faces various single points of failure like disk failures, memoryMCE
faults, and gray failures [21]. To address challenges like detecting
new types of single point failures and ensuring quick detection, a
hybrid fault detection mechanism combining proactive and passive
probing is implemented. This includes deploying Node Agent for
active probing and simulating client access to X-Stor, as well as real-
time monitoring of gateway access anomalies for passive probing
and verification of database pod statuses across multiple nodes.
This integrated approach enhances single point fault recall rates
and significantly reduces the time required for fault diagnosis.

8 RELATEDWORKS
NoSQL systems with multi-model.Many NoSQL databases offer
service for multiple data models, such as MongoDB, Couchbase,
Aerospike [22], FoundationDB [28], Oracle NoSQL [34], and Cassan-
dra [12]. OrientDB [35] and ArangoDB are designed to be a native
multi-model DBMSs from the beginning and support cross-model
queries using a unified language. DynamoDB [40] and CosmosDB
[10] offer support for various data models but fully hosted by cloud
service providers for high availability and scalability purpose. X-
Stor is a cloud-native NoSQL database system that opts to support
various data models through multiple storage engines within a
single cluster, aiming at full support for different data models and
rapid model expansion.

Resource management. Effective resource management is cru-
cial for improving the utilization of cluster resources and the service
quality for tenants. Currently, many cloud service providers stan-
dardize the resource consumption of tenant database operations
through an abstract form of requests. For instance, DynamoDB [18]
introduces Read Capacity Units (RCUs) and Write Capacity Units

(WCUs) to represent the resource consumption of tenant read and
write requests, and designed partition-level traffic control based
on this. CosmosDB introduces the concept of Request Units (RUs),
and designs resource consumption control for tenant databases and
containers based on this concept. However, the specific calculation
details are not disclosed.

Multi-tenancy is an important feature of cloud databases, allow-
ing multiple tenants to share resources within a cluster to reduce
costs. Existing implementations of multi-tenancy include using vir-
tual machines [39], or sharing resources at the operating system
level through mechanisms such as CGroups, Job objects, or contain-
ers. SQLVM [17, 32, 33] researches sharing CPU and buffer pool
memory resources in multi-tenant RDBMS. [9] achieves a high de-
gree of oversubscription efficiency in a multi-tenant DBaaS through
CPU and memory reallocation techniques, albeit with isolation in
separated containers. isolation in separated container. X-Stor fo-
cuses on DBMS-level isolation, meaning tenants share resources
within a single database system. It abstracts the consumption of
resources for tenant requests and implements multi-tenant isolation
strategies in the cloud based on this abstraction.

Tenant placement and scheduling are critical to the stability and
performance of cloud databases. Previous research has explored
how to place tenants on nodes within a cluster. Most approaches
use heuristic methods[41]. [29] uses an estimation method to re-
duce the probability of resource violations during tenant placement.
Placement can also be considered as an online bin packing problem
[11, 14, 19, 27, 36], aiming primarily to minimize the number of
machines. Our method employs a variant of the worst-fit approach,
aiming at balancing system resources across nodes through replica
migration. [31] eliminates hotspots and levels load by swapping pri-
mary and secondary replicas. Our framework extends this approach
by introducing role-swapping under a unified resource abstraction,
taking multiple resources into consideration.

9 CONCLUSION
In this paper, we introduce a cloud-native NoSQL database service
called X-Stor that supports multiple data models in a single cluster.
X-Stor provides a practicable solution to the growing challenges
faced by multi-model NoSQL database systems. It does this through
an architecture that decouples database services and resource man-
agement and the scalability of the storage engine. We introduce
the standardized metric Request Unit to measure the resource con-
sumption requested by tenants, and design RU-based performance
isolation strategies which ensure stable system operation and ef-
fective resources utilization. In addition, the load balance of the
system is realized and the access delay is reduced via the RU-based
strategies of replica placement and scheduling.
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