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ABSTRACT
SQL has been extremely successful as the de facto standard lan-
guage for working with data. Virtually all mainstream database-like
systems use SQL as their primary query language. But SQL is an
old language with significant design problems, making it difficult to
learn, difficult to use, and difficult to extend. Many have observed
these challenges with SQL, and proposed solutions involving new
languages. New language adoption is a significant obstacle for
users, and none of the potential replacements have been successful
enough to displace SQL.

In GoogleSQL, we’ve taken a different approach - solving SQL’s
problems by extending SQL. Inspired by a pattern that works well
in other modern data languages, we added piped data flow syntax
to SQL. The results are transformative - SQL becomes a flexible
language that’s easier to learn, use and extend, while still leveraging
the existing SQL ecosystem and existing userbase. Improving SQL
from within allows incrementally adopting new features, without
migrations and without learning a new language, making this a
more productive approach to improve on standard SQL.
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1 INTRODUCTION
SQL has been tremendously successful, standing the test of time for
50 years[17] as the primary language for structured data processing,
supported near-universally across databases and query tools.

SQL is not an easy language to learn or use. Even for expert
users, SQL is challenging to read, write and work with, which
hurts user productivity. Several alternative languages have been
proposed, but none have gained widespread adoption or displaced
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SQL. Migrating away from existing SQL ecosystems is expensive
and generally unappealing for users.

This paper presents a different approach. After describing the
most critical problems with the SQL language, we present a solu-
tion – adding pipe-structured data flow syntax to SQL. This makes
SQL more flexible, extensible and easy to use. This paradigm works
well in other languages like Kusto’s KQL[5] and in APIs like Apache
Beam[1]. We show pipe syntax can be added to SQL too, without
removing anything, and while maintaining full backwards compat-
ibility and interoperability.

In SQL, the standard clauses occur in one rigidly defined order.
Expressing anything else requires subqueries or other workarounds.
With pipe syntax, operations can be composed arbitrarily, in any
order. This increases flexibility, radically simplifies the user experi-
ence, and enables clean language extension.

For example, standard SQL cannot express multi-level aggrega-
tions without subqueries, resulting in queries with complex “inside-
out” data flow. This is query 13 from the TPC-H benchmark:

SELECT c_count, COUNT(*) AS custdist
FROM

( SELECT c_custkey, COUNT(o_orderkey) c_count
FROM customer
LEFT OUTER JOIN orders ON c_custkey = o_custkey

AND o_comment NOT LIKE '%unusual%packages%'
GROUP BY c_custkey

) AS c_orders
GROUP BY c_count
ORDER BY custdist DESC, c_count DESC;

With pipe syntax, equivalent logic can be expressed sequentially,
applying operators top-to-bottom in arbitrary orders.

FROM customer
|> LEFT OUTER JOIN orders ON c_custkey = o_custkey

AND o_comment NOT LIKE '%unusual%packages%'
|> AGGREGATE COUNT(o_orderkey) c_count

GROUP BY c_custkey
|> AGGREGATE COUNT(*) AS custdist

GROUP BY c_count
|> ORDER BY custdist DESC, c_count DESC;

Stonebraker writes in [13] (via [15]):
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My biggest complaint about System R is that the team
never stopped to clean up SQL. . . All the annoying
features of the language have endured to this day. SQL
will be the COBOL of 2020, a language we are stuck
with that everybody will complain about.

It’s been 50 years. It’s time to clean up SQL. This paper shows
one promising approach.

1.1 GoogleSQL
We’ve implemented pipe syntax in GoogleSQL[19], the SQL dialect
and implementation shared across all1 SQL systems at Google in-
cluding F1[28], BigQuery[2], Spanner[19] and Procella[18], and the
open-source release, ZetaSQL[12]. GoogleSQL is a shared, reusable
component, enabling many systems to share the same SQL dialect.
This shared component allowed implementing pipe syntax in one
place and then enabling it across many products.

2 EVALUATING STANDARD SQL
2.1 Syntax problems
Many critiques of SQL have been written, from 1984[21] through
2024[25]. [15] describes many challenges in detail.

Fundamentally, the SQL language is difficult for users. For begin-
ners, SQL is hard to learn. Even for expert users, SQL is awkward
and annoying – it’s hard to write, hard to read and hard to edit.

Here, we describe several syntax issues. (Pipe syntax addresses
all of these!)

2.1.1 Clause order. SQL’s challenges start from its basic query syn-
tax: SELECT ... FROM ... WHERE ... GROUP BY, etc. This operation2
order is rigid and arbitrary and doesn’t reflect the actual data flow,
which starts with table scans in the FROM. Figure 1 illustrates this
disconnect.

While common, this operation order is far from universal, and ex-
pressing any other ordering requires using subqueries. Reordering
specific clauses could improve readability somewhat, but wouldn’t
address the limited expressivity.

2.1.2 Redundant clauses. SQL works around rigid clause order in
particular cases by adding duplicate clauses, which increases lan-
guage complexity. To filter results before and after aggregation, and
after window functions, SQL uses WHERE, HAVING and QUALIFY. These
all express the same filtering operation, in different places, with
different syntaxes, and with subtly different rules and behaviors.

2.1.3 Need for subqueries. Many simple operations can only be
expressed using subqueries:

• Filtering anywhere other than the three supported locations.
• Aggregating two or more times.
• Projecting computed expressions before the final SELECT so
they can be referenced multiple times by name, in later
SELECT items, WHERE clauses, JOINs, etc.

• Using queries as table-valued function (TVF) inputs.

1Except CloudSQL hosted third-party databases and Postgres-compatible AlloyDB.
2Terminology: We use operation as in relational algebra operation, generalized to

include the query engine’s supported logical operations. We use operator to describe
particular syntactic clauses in the query, including pipe operators.

Figure 1: SQL syntactic clause order doesn’t match semantic
evaluation order. (From [25].)

Figure 2: In pipe syntax, operator order matches semantic
evaluation order. (Execution order will still be optimized.)

Subqueries require indentation to reflect nesting clearly, which
hurts readability. Editing SQL typically involves frequent refac-
toring, wrapping query fragments into subqueries, indenting, and
adding repetitive SELECT and GROUP BY clauses, before the desired
operation can finally be added.

2.1.4 “Inside-out” data flow. With the inline FROM clause, data flow
in standard SQL starts in the middle with the most deeply nested
table reference. Then logic builds outwards, applying operations
both above and below the starting point, while traversing outwards
through layers of nested subqueries.

This “inside-out” structure makes tracing through SQL logic
difficult. In large queries, it can be hard to even find the starting
point.

WITH clauses help, but don’t fully solve this. WITH clauses (defin-
ing Common Table Expressions or CTEs) can help split up queries,
reducing nesting and moving initial logical blocks earlier in the
query text, but CTE solutions have several caveats:

• There is significant boilerplate per CTE subquery – at least
“WITH ... 𝐶𝑇𝐸𝑘 AS (SELECT * FROM 𝐶𝑇𝐸𝑘−1)”.

• The CTEs and the final query each still have inside-out data
flow starting from their local FROM clause, referencing an
earlier CTE by name. It’s still not possible to read the whole
query top-to-bottom.

• Referencing CTEs by name ismore verbose and complex than
sequential pipe operators. It’s necessary to read carefully to
understand CTEs are actually sequential, with each 𝐶𝑇𝐸𝑘
referencing just 𝐶𝑇𝐸𝑘−1.

• Adding, removing or reordering operators in a CTE sequence
requires updating name references in other CTEs or the main
query.

• CTEs are too verbose to fully expand with one CTE per op-
eration, so CTEs themselves are often non-trivial subqueries.
(Pipe operators are naturally 1:1 with relational operations
and can directly express any operation sequence.)
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2.1.5 Side-effects at a distance. Even locally within single queries,
behavior is complex and non-local, and syntax is repetitive. SELECT
and GROUP BY are thoroughly intertwined, and aggregation mod-
ifies the behavior of other clauses. The same columns are cross-
referenced in SELECT, GROUP BY and ORDER BY, and corresponding
edits are often required in three places.

2.1.6 Poor extensibility. Extending SQLwith new query operations
is difficult. TVFs are a powerful extension mechanism but the call
syntax makes TVFs awkward to actually use since they compose
poorly with built-in operations and other TVFs, requiring more
nested subqueries as a workaround. (More in 4.3.)

Summary. These syntax issues combine to make SQL difficult to
learn, and excessively difficult to work with, even for SQL experts.

2.2 Besides the syntax, SQL is great!
SQL’s foundational semantics work very well. The relational data
model, where everything is a table and relational operations con-
sume and produce tables, provides excellent composability, allowing
users to factor logic arbitrarily with views, TVFs, temp tables, and
subqueries. Subqueries also support natural transitions between
expressions and tables. While compound data types weren’t con-
sidered originally, SQL extends cleanly to support structured data
types like arrays, structs, protocol buffers[28] and JSON[26].

Declarative semantics differentiate SQL from many other lan-
guages and APIs, and make SQL particularly well-suited for express-
ing query workloads. SQL, and relational algebra, clearly separate
the syntactic and semantic description of what to compute from the
implementation details of how to compute it. Query optimization
is fundamental in SQL and a key enabler for performance, efficiency
and scalability, decoupling logical requests from physical storage,
query execution strategies, and optimizations like indexing.

Finally, SQL is pervasive. SQL works in almost all database and
query systems, making basically all data available through SQL
somewhere, and joinable across systems using federated engines
like F1 or BigQuery. Many front-ends, business intelligence tools,
data modeling layers, object-relational mappings and other tools
are built assuming a SQL backend.

This extensive ecosystem and large userbase make SQL sticky.
Adopting non-SQL systems is more difficult and leads to fragmen-
tation across the user’s data ecosystem, where other SQL systems
are likely still used.

Most alternative-to-SQL languages are lacking in some of these
areas. None have the ecosystem or existing userbase, and many
are lacking the foundational semantics or composability to express
relational algebra fully. Declarative semantics are often lacking,
sometimes because alternative platforms don’t have the same opti-
mization capabilities, forcing users to entangle business logic and
execution strategy.

2.3 Why not create a better language?
It seems possible to create a new language that keeps the good
properties of SQL, while offering better syntax and usability. Why
hasn’t this happened yet?

Actually, maybe it has. Many alternative “better than SQL” lan-
guages have been proposed (e.g. [11],[25]). None have becomemain-

stream or widespread solutions that seem like SQL replacements,
for several reasons:

• SQL is a huge language with many features, accumulated
over decades. New languages are unlikely to offer feature
parity, and will often be missing some needed features.

• A new language requires an excellent implementation before
it can be practically used. Existing SQL products benefit from
decades of engineering.

• A new language isn’t useful until users learn to use it well.
• New languages usually lack interoperability and compos-
ability with existing SQL, making incremental adoption diffi-
cult. Code gets siloed between old and new languages, until
there’s some hard cut-over after some large migration.[30]

The challenges that come with learning and adopting a new
language, and migrating to it, make it a difficult choice for an orga-
nization to adopt an alternative language. Without provable large
improvements, it’s hard to commit to migration. Large migrations
are notoriously expensive, slow and failure-prone.[23]

Creating a new language with SQL parity often means building
on the same relational algebra fundamentals, supporting at least
the same features. The resulting language may effectively be SQL
but with different syntax, making it insufficiently different to justify
learning a new language and moving to new tools.

Some challenges are mitigated if the new language is imple-
mented as a proxy that rewrites into SQL. That allows a new lan-
guage to reuse an excellent existing SQL implementation. Chal-
lenges remain getting users productive in a new language, migrating
existing code to a new tool, and dealing with limited interoperabil-
ity between the new language and legacy SQL. Proxied rewriters
also suffer some practical issues – they introduce additional pro-
duction dependencies which may compromise latency or reliability,
they don’t feel like first-class APIs in the underlying systems, and
they make debugging correctness and performance difficult when
query that actually runs is decoupled from what the user wrote.

Outside the SQL context, conventional wisdom is that it takes a
decade for a new language to succeed and become mainstream –
consider C -> C++, C++ -> Rust, Java -> Kotlin, JavaScript -> Dart,
etc.[30]

2.4 Our alternative: Fixing SQL syntax
Given SQL’s problems, and the challenges involved with replacing
SQL, we propose an alternative approach: Fixing SQL.

We assess SQL at various levels:
(1) SQL’s foundational semantics, from relational algebra, are

excellent.
(2) SQL’s conceptual data model and top-level syntax, with state-

ments representing queries, DDL, DML, etc, and composabil-
ity via subqueries, works well.

(3) SQL’s basic operations within a query (clauses like JOIN,
ORDER BY, etc), all work reasonably well.

(4) SQL’s syntactic structure for composing queries using those
operations is terrible.

(5) SQL’s localized syntax with English-like keyword phrases is
an anachronism, but we can live with it.

(6) SQL’s expression language is fine, and implementations typ-
ically include a good library of existing functions.
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So we will just fix item #4, leaving the rest as is. Fortunately, this
is easy to do. As we’ve seen in other languages, pipe-structured
data flow works well. We simply reuse the existing query clauses
and operations from SQL, preserving their existing syntax where
practical, and recast them as independent operators that can be
composed arbitrarily into queries using pipe-structured data flow.

This gives us an easy-to-use variant of SQL, which requires mini-
mal new learning since it uses all the same concepts and mostly the
same syntax. The data model and top-level statements (CREATE VIEW,
etc) are identical, the concepts and operations are the same, and
the expression language is identical. The query operation syntaxes
are modified but familiar, and they now compose in a simple and
intuitive way.

Section 4 describes our language design in more detail.

3 RELATEDWORK
Chamberlain describes the origin and evolution of SQL in [16],
including the original design goal to have a “walk up and read”
property, motivating SQL’s pseudo-English syntax. This was a sig-
nificant tradeoff since it meant SQL was not a “functional” or com-
posable language, as would be expected and preferred by more
technical users. This design choice has aged poorly as SQL’s com-
plexity has increased over time, beyond the core language from
SQL-92.

Many critiques of SQL have been written (see 2.1). [25] is a good
example, describing several challenges similar to those we describe.
Then it proposes a new alternative language, SaneQL, which like our
proposal, cleanly expresses data flow through relational operations.
Like other SQL alternatives, this proposal would require users to
learn a new language and migrate away from their SQL ecosystem,
which are significant obstacles.

PRQL[11] is another recent alternative language, implemented
as a front-end that translates to SQL. It also provides composable
relational operations, but the unfamiliar syntax and detachment
from SQL make adoption challenging.

Our work contrasts with SaneSQL and PRQL by solving the same
problems inside SQL, rather than by replacing SQL and hoping users
will adopt new tools. The concepts we’re using are not particularly
novel, but applying them inside SQL is new.

SQL++[26] also extends and modernizes SQL, but is primarily
focused on improving support for structured data types like JSON,
without addressing SQL’s core syntax problems.

Python DataFrame APIs like Pandas[9] have become popular. For
many users, Python and data frame APIs are more usable than SQL,
especially for ad hoc data exploration and wrangling. These APIs
also offer operator chaining with pipe-like data flow. Data frame
implementations typically execute imperatively within a Python
process, so they don’t get the declarative semantics, scalability and
performance of SQL systems. While data frame APIs are popular,
they fill slightly different niches, and are unlikely to replace SQL.

Others have argued that SQL is too low-level and should be
replaced by higher-level languages or APIs (e.g. [6],[7]). Higher-
level languages work well in many contexts, but don’t replace SQL.
Typically, they are implemented as front-ends that generate SQL.
Pipe SQL syntax is also useful here, to simplify generating SQL,
and to make generated SQL easier to understand and debug.

User-friendliness is less important in the context of generated
queries, but humans still read and write SQL frequently. Many
across the industry see value in improving SQL usability[24][27]
and like Google, have been adding incremental usability features
like GROUP BY ALL[4]. Pipe syntax offers a more transformative us-
ability improvement.

[29] chronicles repeated attempts over many decades to replace
SQL and the relational model, and how the industry keeps returning
to SQLwhen alternatives fail. It argues this will continue for decades
more, and new ideas won’t become mainstream until they’re avail-
able in SQL. Pipe syntax makes SQL and the relational model ex-
tensible (see 4.3), facilitating experimentation and quick adoption
of new features and paradigms. It’s not necessary to invent new
languages and systems to prove out new concepts first if extending
SQL directly is easy.

4 PIPE SYNTAX IN SQL
4.1 Syntax
Any query can have zero or more pipe operators as a suffix, delin-
eated with the pipe character “ |> ”. Each pipe operator starts with
an operator name (one or more keywords) followed by its own
argument grammar. Many of these operators reuse the existing
grammar for standard SQL clauses. Operators can be applied in any
order, any number of times.

Additionally, we make standalone FROM clauses valid queries,
which can be followed by pipe operators to build arbitrary queries.

The basic grammar is:

<query> :=
{all existing query syntaxes}
| "FROM" <from_body> -- New: FROM as a query
| <query> "|>" <pipe_operator> -- New: pipe suffixes

<pipe_operator> :=
"WHERE" <expression>
| "ORDER" "BY" <order_by_body>
| "JOIN" <table_expression> [["AS"] alias]
...

Figure 2 shows how this aligns syntax with semantics.
Figure 3 shows the pipe operators added in GoogleSQL to achieve

parity with standard SQL queries.

4.1.1 Projection operators. Wedefinemultiple projection operators
for convenience:3

FROM orders
|> SET o_orderstatus = LOWER(o_orderstatus)
|> EXTEND ROUND(o_totalprice) AS dollars
|> DROP o_comment
|> AS result
|> SELECT o_custkey, result.dollars

• SELECT produces a new table with exactly the listed columns,
like the outermost SELECT in a table subquery. Standard fea-
tures like SELECT DISTINCT and SELECT * are also supported.

3Except where noted, example queries use TPC-H tables. They are runnable in
ZetaSQL[12] using the execute_query tool.
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Operator Output (modified rows and columns)
SELECT <expr> [[AS] alias], ... Same rows, with exactly these selected columns.

DISTINCT, * and other common SELECT modifiers are also allowed here.
EXTEND <expr> [[AS] alias], ... Same rows, with added columns.
SET <column> = <expression>, ... Same rows, with updated values for modified columns.
DROP <column>, ... Same rows, minus dropped columns.
AS <alias> Same rows and columns, but with a new table alias available. Old table aliases

are removed.
WHERE <condition> Subset of input rows passing condition.
LIMIT <n> [OFFSET <m>] Subset of input rows subject to counts, respecting order if input table was ordered.
AGGREGATE <agg_expr> [[AS] alias], ... Full-table aggregation, with one row, with a column for each aggregate expression.
AGGREGATE [<agg_expr> [[AS] alias], ...]

GROUP BY <grouping_expr> [AS alias], ...

Aggregation with grouping, with one row per group.
The column list has the grouping columns and then the aggregate columns.
Aliases can be assigned directly on grouping expressions.

[LEFT|...] JOIN {table/subquery/...}

[ON <condition> | USING(col, ...)]

Join results, with a filtered cross-product of the pipe input table and the table
expression following JOIN.

ORDER BY <expr> [ASC|DESC], ... Same rows but sorted.
{UNION|INTERSECT|EXCEPT} {ALL|DISTINCT}

(<query>), (<query>), ...

Set operation output, including combined rows from the input table plus one or
more tables passed as arguments.

CALL tvf(args, ...) Table-valued function output rows and columns. The pipe input table is passed
to the TVF as its first table-typed argument.

TABLESAMPLE <method> (<size> {ROWS|PERCENT}) Subset of rows produced by the chosen sampling algorithm.
PIVOT (agg_expr FOR col IN (value1, ...)) New table with rows pivoted to become columns.
UNPIVOT (value_col FOR key_col IN (col1, ...)) New table with columns pivoted to become rows.

Figure 3: Pipe operator syntax and behavior

• EXTEND propagates the existing table, adding additional com-
puted columns, similar to SELECT *, new_column. EXTEND also
preserves table aliases, which can be necessary for disam-
biguation (e.g. WHERE t1.x = t2.x).

• DROP removes columns, similar to SELECT * EXCEPT (column)

in GoogleSQL.
• SET replaces column values, similar to SELECT * REPLACE

(expression AS column) in GoogleSQL.
• AS introduces a table alias for the current row, which is occa-
sionally useful.

DROP and SET aren’t strictly necessary but are convenient. EXTEND
is useful to project values without losing existing columns or table
aliases. For example, EXTEND can compute new columns between
JOINs, while preserving existing table aliases.

Unlike standard SQL, projection operators can be applied repeat-
edly to incrementally compute expressions without (non-standard)
lateral column references. Those computed columns are then visi-
ble to use in operators like WHERE. The SQL optimizer should still
combine these computations as appropriate.

FROM lineitem
|> EXTEND l_quantity * l_extendedprice AS cost
|> EXTEND cost * l_discount AS discount
|> WHERE discount > 1000
|> AGGREGATE SUM(cost), SUM(discount)

These projection operators are allowed4 to compute window
functions (with OVER), but cannot do aggregation. Aggregation is
a standalone operator, which simplifies syntax and semantics and
preserves operator independence.

4.1.2 Aggregation. Full-table aggregation is expressed with a list
of aggregate columns to compute.

FROM orders
|> AGGREGATE SUM(o_totalprice) AS price, COUNT(*) AS cnt

Aggregation with grouping is expressed by adding a GROUP BY

as part of the AGGREGATE operator5.

FROM orders
|> AGGREGATE SUM(o_totalprice) AS price, COUNT(*) AS cnt

GROUP BY EXTRACT(year FROM o_orderdate) AS year

The output table contains the grouping columns (which can be
computed expressions, with assigned aliases) if any, and then the
aggregate columns. GROUPING SETS, etc also work here.

4Rationale: We originally had a separate WINDOW operator but found using it
inconvenient. Projecting scalar and window functions at the same time is common.
Another awkward pattern occurred when users compute a window function just to
use it in WHERE or ORDER BY and then need to drop the computed column.

5Rationale: We used the same operator name for full-table and grouped aggrega-
tion to minimize edit distance between these operations. Unfortunately, this puts the
grouping and aggregate columns in different orders in the syntax and output. Putting
GROUP BY first would require adding a required keyword before the AGGREGATE list.
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Unlike standard SQL where columns must be repeated between
the SELECT and GROUP BY, pipe AGGREGATE is a single standalone op-
erator that achieves both. Expression matching (between GROUP BY

and SELECT, including grouping by ordinals or aliases), isn’t needed
since the grouping expressions occur just once.

Since AGGREGATE already produces exactly the grouping and ag-
gregate columns, it’s often unnecessary to write a SELECT in queries
that includes pipe AGGREGATE.

4.1.3 Filtering. The pipe WHERE operator can be added anywhere,
including after AGGREGATE. Separate operators aren’t needed for
HAVING and QUALIFY.

4.1.4 Why have a pipe character? People ask why not just allow
writing operator clauses in arbitrary orders without using a pipe
character. Some other languages have this structure without using
pipe characters – notably GQL[3], the SQL-adjacent Graph Query
Language.

The pipe character is useful for several reasons.
Familiarity and precedents:

(1) Unix pipes are a widely understood paradigm that helps
make this syntax and behavior familiar and easy to under-
stand.

(2) Other data processing languages (e.g. KQL) use pipe syntax,
and it works well for their users.

(3) Pipe-like dataflow is common in more imperative data pro-
cessing APIs like Pandas DataFrames and Apache Beam.

Technical reasons:

(1) SQL parsing depends heavily on reserved keywords (which
can’t be used as unquoted identifiers). Many clauses can end
with an optional identifier or alias, which cause parsing am-
biguities with unreserved keywords. Using a pipe character
clearly delineates pipe operators without requiring every
operator to begin with a reserved keyword.

(2) Simple parsing facilitates language extensibility. See 4.3.
(3) Adding pipe operators on the end of queries in standard

syntax is clearer when using a pipe character, making it ob-
vious where pipe operators begin. Many pipe operators reuse
the names of corresponding standard clauses, so it could be
ambiguous whether they are intended as pipe operators or
standard SQL clauses.

(4) Pipe operators have slightly different behaviors than the
corresponding standard SQL clauses. In particular, pipe oper-
ators can only see columns from the immediate input table.

(5) Standard SQL clauses don’t work as standalone operators or
in arbitrary order. It’s misleading to use syntax that appears
to allow that. For example, standard SELECT and GROUP BY are
co-dependent and have side-effects on other clauses.

Aesthetic and readability reasons:

(1) It can be useful to identify at a glance whether a query is
using pipe operators, and where it transitions from standard
syntax.

(2) Some pipe operators have multiple clauses (like AGGREGATE

... GROUP BY) which are part of the same operator, but are
naturally formatted on multiple lines. Without pipe charac-
ters, they can be misread as independent operators.

(3) Pipe characters make the syntax more obviously structured,
and visually splittable as a sequential list of N operations.
It seems useful for the syntax to reflect this logical query
structure.

As a thought exercise, if it was possible to parse statements
without semicolon separators, or SELECT lists or functions calls
without commas between arguments, would those syntaxes be
preferable?

4.1.5 Why use ‘ |> ’ for the pipe character? The most natural and
obvious choice would be to use ‘ | ’. Unfortunately, in GoogleSQL
(and many other SQL dialects), ‘ | ’ is already used for bitwise OR,
and reusing it for pipe operators causes parsing ambiguities. e.g.,

FROM Part
| SELECT *, p_size+1
| EXTEND p_type
| SELECT p_name
| AGGREGATE -COUNT(*)

could be parsed as

FROM Part
| SELECT *, (p_size+1 | extend) AS p_type
| SELECT (p_name | aggregate) - COUNT(*)

This claim on ‘ | ’ is unfortunate since bitwise math is used rarely
in SQL queries, while pipe operators will be used frequently. It
would be preferable to use the better syntax for pipe operators,
relegating bitwise OR to an alternate syntax.

To avoid this conflict, we used ‘ |> ’, which is also used for similar
purposes in other languages (including JavaScript[10], F#, R, and
OCaml).

We explored deprecating existing usage and reclaiming ‘ | ’ for
pipe syntax. In existing usage, we saw ‘ | ’ used mostly within paren-
thesized expressions (where it would be unambiguous), or where
simple lookahead heuristics (for numeric literals or parentheses)
could resolve most cases. Such heuristic solutions could allow over-
loading ‘ | ’ for both purposes, avoiding most breaking changes,
but these approaches do not seem robust. More drastic solutions
requiring users to migrate queries did not seem desirable.

4.2 Data model and semantics
Intermediate (and final) results in SQL are tables. A table has one
or more columns, optionally with names, and zero or more rows.
Relational operations produce a table as output, and SQL queries
resolve as a tree of relational operations.

With pipe syntax, a query starts with a nullary relational opera-
tion, which produces an initial table. These syntaxes can be used to
start a pipe query:

• Any standard-syntax SQL query (SELECT ... FROM ... WHERE

... GROUP BY, etc).
• A standalone SELECT clause without FROM, which produces a
single row.

• TABLE t, which produces a full table scan of one table.
• Any standard-syntax FROM clause, written alone.

The first three items are supported as queries already. The last
item is new, and allows queries to start with a FROM clause. The FROM
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clause can contain table scans, joins, TVF calls, array UNNEST, VALUES,
and other common syntaxes to produce an initial result table.

Zero or more pipe operators can follow that initial query frag-
ment. Each pipe operator is a unary relational operation that takes
one table as input and produces one table as output. Most opera-
tors take additional arguments to specify exactly what to compute.
Some operators (like JOIN) accept table-typed arguments (possibly
subqueries), effectively making them binary (or N-ary) relational op-
erations. All pipe operators treat the pipe input table as the primary
table input, and produce one pipe output table.

4.2.1 Name scoping. Intermediate tables have a visible schema
describing an ordered list of columns, optionally with names, re-
flecting what SELECT * would produce for that table. Additionally,
there can be hidden columns (called pseudo-columns in GoogleSQL,
which are selectable by name but are not included in SELECT *) and
table aliases (which can be dereferenced using alias.column_name).
The name scope for an intermediate table describes the visible
columns, plus these hidden columns and table aliases.

Each pipe operator is a self-contained operation that can see only
its input table and its arguments, and can only resolve names from
the scope associated with the pipe input table. (Inside subqueries,
correlated references to names from outer queries are also allowed.)
Pipe operators have no visibility to earlier or later operations in
the same query, so complex scoping or data flow is impossible by
construction. This makes pipe operators naturally composable, so
they can be applied in any order, any number of times.

4.2.2 Defining pipe operators. Each pipe operator can be defined
by specifying:

• What arguments does it take (with what syntax)?
• How does it affect columns? (More precisely, what’s in its
output name scope?)

• How does it affect rows?
• Does it preserve order?

Most operators fit in one of these categories, depending how
they affect input columns:

(1) Operators that pass through input columns unchanged:
e.g. WHERE, ORDER BY, LIMIT

(2) Operators that produce an entirely new (operator-defined)
column list:

SELECT – produces a new table with the specified columns
AGGREGATE – produces a new table with the grouping and

aggregate columns
CALL – produces a new table with a TVF’s output schema

(3) Operators that augment or modify the input column list:
EXTEND, DROP, SET – projection operators that modify the

column list
JOIN – extends the input table with columns and a table

alias for the joined table

Order preservation property is used with ORDER BY and LIMIT.
As in standard SQL, table scans and most operations produce un-
ordered tables. ORDER BYmakes its result ordered. Specific operators
(primarily projection operators like SELECT) preserve order. If LIMIT
is applied on an input table with order, it selects the top-N rows.
Otherwise, LIMIT selects N rows arbitrarily.

4.2.3 Declarative semantics. Queries with pipe syntax still have
declarative semantics. Pipe syntax appears to imperatively describe
the computation as sequential steps, but the syntax specifies declar-
ative semantics only, not an execution strategy. As in standard SQL,
queries are typically converted to an algebraic form and then opti-
mized, such that they run faster but produce equivalent results, “as
if” the query was run as written. (“Equivalence” allows for ordering
differences and other artifacts that can result from reordering joins,
using indexes, etc.)

4.2.4 Pipe operators vs relational operations. Unlike standard SQL,
where resolving a query to relational operations is complex, pipe op-
erators correspond basically 1:1 with relational operations. Simple
relational operations can always be expressed as one pipe operator.

In a few cases, for user convenience, pipe operators can expand
to multiple sequential relational operations. For example, SELECT
DISTINCT produces a projection and then an aggregation. Projection
operators like SELECT can include window functions, and thus ex-
pand to a projection followed by windowed aggregation. Other
operators that accept expressions may introduce a projection be-
fore the main operation.

This duality between relational algebra and SQL syntax is useful
and does not exist with standard SQL. Bi-directional translation is
possible – SQL generators no longer need to introduce complex
transformations that make generated SQL difficult to read. Opti-
mized query plans could be converted back into equivalent pipe
SQL explaining clearly how a query will actually run. Query en-
gines might support a feature to execute a pipe query as written,
without optimization.

4.3 Extensibility
4.3.1 Extensibility with table-valued functions. Table-valued func-
tions (TVFs) are a powerful extensionmechanism in SQL, effectively
allowing users to add arbitrary relational operations.

TVFs with only scalar arguments are nullary relational opera-
tions, which can be called in FROM clauses to produce tables dynam-
ically. With SQL TVFs, these are effectively parameterized views.
Non-SQL TVFs can produce arbitrary input tables.

TVFs that take at least one table argument are unary or N-ary
relational operations. Non-SQL TVFs with table arguments can
extend SQL with arbitrary new relational operations.

The major caveat when extending SQL using TVFs is that the
syntax is too awkward. For example, BigQuery uses TVFs to express
ML model lookups[31], which can look like:

SELECT *
FROM ML.PREDICT(

MODEL `my_project.imdb_classifier`,
(

SELECT *
FROM ML.PREDICT(

MODEL `my_project.nnlm_embedding_model,`,
(SELECT '<text>' AS input, 7 AS rating))

)
)

With pipe syntax, these TVFs can be invoked directly using the
CALL operator without using nested subqueries, like this:
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SELECT '<text>' AS input, 7 AS rating
|> CALL ML.PREDICT(MODEL `my_project.nnlm_embedding_model`)
|> CALL ML.PREDICT(MODEL `my_project.imdb_classifier`)

Any TVF can still be called with the usual syntax in FROM or JOIN,
but TVFs that take table arguments can also be called with the pipe
CALL operator. The provides near-first-class syntax for operators
implemented as TVFs.

A standard TVF that can be invoked like

FROM some_tvf((SELECT ...), arg2, arg3, ...)

can be invoked with pipe CALL like this:

SELECT ...
|> CALL some_tvf(arg2, arg3, ...)

The TVF’s first table-typed argument is treated like a this argu-
ment (in object-oriented call style), and implicitly receives the pipe
input table. Other arguments are written with the usual argument
syntax.

This allows invoking TVFs in a natural way, expressing the logi-
cal order of computation without excessive nesting and subqueries.
The difference is particularly stark when considering nested or
chained TVF calls, which require deeply nested subqueries in stan-
dard syntax (as in the example above), but look like flat sequential
calls in pipe syntax.

TVF CALLs with pipe syntax are as composable as any pipe oper-
ator, so they can be used like language extensions. CALLs are limited
to using function call syntax, but optional named arguments and
structured types allow significant flexibility. (A potential extension
could allow TVFs to provide a plug-in grammar snippet, allow-
ing TVFs to have first-class syntax too. Grammar extensions are
impractical in standard SQL, but one pipe operator can be parsed
independently between successive pipe characters.)

4.3.2 Extensibility for built-in operators. Standard SQL is difficult
to extend and evolve, even for built-in operations. Many opera-
tions don’t fit naturally anywhere in standard SQL grammar. New
operations must be forced into the SELECT ... FROM ...GROUP BY

flow somewhere, which usually involves complex syntactic and
semantic interactions.

Standard SQL’s pseudo-English syntax depends heavily on re-
served keywords to parse unambiguously. Adding new syntax with-
out new reserved keywords is often difficult, or requires oppor-
tunistically reusing existing reserved keywords in novel ways. New
reserved keywords are always breaking changes for some potential
existing queries, making such additions difficult.

This may partly explain why SQL has evolved slowly, and why
new functionality sometimes has awkward syntax.

For example, consider PIVOT[20] (which is non-standard but
widely supported), which produces multiple columns with slices
of aggregate values taken from multiple rows, “pivoting” rows to
become columns. For example, this query:

SELECT *
FROM (

SELECT n_name, c_acctbal AS bal, c_mktsegment
FROM customer JOIN nation ON c_nationkey = n_nationkey

) PIVOT(SUM(bal) AS bal
FOR n_name IN ('PERU', 'KENYA', 'JAPAN'))

behaves like a shorthand for:

SELECT
c_mktsegment,
SUM(IF(n_name = 'PERU', bal, NULL)) AS bal_PERU,
SUM(IF(n_name = 'KENYA', bal, NULL)) AS bal_KENYA,
SUM(IF(n_name = 'JAPAN', bal, NULL)) AS bal_JAPAN

FROM
(SELECT n_name, c_acctbal AS bal, c_mktsegment
FROM customer JOIN nation ON c_nationkey = n_nationkey)

GROUP BY c_mktsegment

In standard SQL, there’s no natural place to put the PIVOT opera-
tor, so it’s kludged in as a suffix on subqueries in the FROM clause.
PIVOT acts on all columns of the input table, so it’s almost always
necessary to use a subquery to prepare the input table, and it’s
always required to have more query syntax around PIVOT, at least
doing SELECT *. So PIVOT queries are always complicated.

For language implementers, without a uniform framework for
adding operators, PIVOT is a complex special case in the grammar,
that can attach after tables, subqueries, or TVFs, with complex
interactions with other suffix clauses like TABLESAMPLE. These inter-
actions can trigger subtle bugs so tests must cover all combinations.

Now contrast PIVOT as a pipe operator. While the operation is
exactly the same, using exactly the same syntax inside the PIVOT

clause, it fits naturally as a pipe operator, making it easy to call as
a fully composable operator that can be parsed, implemented and
tested in isolation.

And it’s easy for users to call, without subqueries and with
minimal wrapping. Syntax before and after PIVOT is only needed if
there’s useful logic to express.

FROM customer JOIN nation ON c_nationkey = n_nationkey
|> SELECT n_name, c_acctbal AS bal, c_mktsegment
|> PIVOT(SUM(bal) AS bal

FOR n_name IN ('PERU', 'KENYA', 'JAPAN'))

Similar challenges exist adding other operations added to SQL,
both in the standard and as product-specific extensions. Some ex-
amples:

• MATCH_RECOGNIZE[8] (from SQL:2016) adds a mini-language
for analyzing sequential patterns. Like with PIVOT, there’s no
natural place to add the syntax, so it gets added as another
table suffix inside FROM, requiring subqueries before and after
to prepare input and consume output.

• [14] proposes adding stream processing in SQL. It proposes
using TVFs since that makes the operations composable
with clean semantics, but then suffers from the syntactic
complexities of using TVFs.

New operations like these make more sense as pipe operators,
since pipe syntaxmakes them both easier to use and easier to specify
and implement. Pipe operators are naturally composable and have
locally defined syntax (no need for new reserved keywords!) and
semantics. This potentially unlocks significant innovation in SQL
functionality and usability that is too difficult in standard SQL.
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Pipe operators proposed so far aim for parity with existing SQL
syntaxes, but novel new operators might be supported with pipe
syntax only, maybe with TVF syntax as a fallback.

4.3.3 Some experimental extensions: Debugging operators. Figure 5
shows some additional pipe operators we have prototyped as lan-
guage extensions, going beyond what can be expressed in standard
SQL.

Debugging SQL can be challenging (see also 5.3) compared to
imperative languages where control flow is obvious in the code.
These operators facilitate many common debugging patterns by
making it easier to extract or validate intermediate state in a SQL
query with simple local syntax additions.

These examples show how pipe syntax enables novel language
extensions without any complex interactions with other SQL syn-
taxes. New pipe operators can always be used anywhere in a query,
while they often wouldn’t fit well anywhere inside standard SQL.

4.4 Interoperability and composability
Since pipe syntax is implemented as a feature within the exist-
ing GoogleSQL dialect, the new syntax is fully interoperable and
composable with standard syntax. Any query can be written in
purely standard syntax, standard syntax plus pipes, or fully with
pipes starting from FROM. Subqueries can be written in either syntax,
inside queries written in either syntax. Views and TVFs can be
declared using either syntax. DDL and DML statements containing
queries can use either syntax.6

This allows users to adopt pipe syntax incrementally, where they
find it useful, while continuing to use any existing SQL code they
have. Users might write new queries in pipe form, or convert to
pipe form when updating or debugging existing queries. Where
refactoring (adding table subqueries, etc) would be needed anyway,
users might instead refactor into pipe form, making further logic
changes easier.

Supporting incremental adoption, without requiring migration
or bifurcating SQL codebases, is a major advantage over alternate-
language proposals. Supporting the new syntax inside query en-
gines, without a separate translation proxy, provides full interoper-
ability automatically, including for example, calling views bidirec-
tionally.

5 EVALUATION
This section covers our experience using GoogleSQL with pipe
syntax, including several use cases that benefit.

5.1 Usage at Google
After an initial implementation phase, iterating on the language
design with a small group of early users, we stabilized the language
and made pipe syntax available to users broadly inside Google.

Over the following six months, we’ve seen adoption and usage
increase steadily – see figure 4. The two initial spikes follow an-
nouncements sharing pipe syntax on a SQL users mailing list. The
second followed removing opt-in settings and making pipe syntax
available by default. After initial usage spikes from users trying our

6Operations like INSERT INTO and CREATE [TEMP] TABLE could also work
as terminal pipe operators on the end of a query. We haven’t tried that so far. Keeping
those verbs at the start distinguishes pure queries from statements with side-effects.

Figure 4: Seven-day-active users of pipe syntax in F1.

demo queries, we see many users continue to use pipe syntax as
part of their daily work, with further usage growth as the feature
spreads virally to more users.

The third spike in June followed a SQL workshop presented at
a user conference, to users with a wide range of SQL knowledge.
The workshop included a 40-minute tutorial on pipe syntax, which
was enough time to introduce and teach the language, walking
through several examples applying it. Feedback showed workshop
users were excited about pipe syntax, and we’ve seen significant
continued usage.

Users are applying SQL with pipe syntax for widely varying use
cases, including ad hoc queries, queries backing dashboards and
reports, data processing pipelines, and libraries of reusable SQL
functions and TVFs.

We’ve seen this adoption despite limited documentation and
incomplete tooling (e.g. less auto-complete support inside pipe
syntax). This adoption has been self-serve with minimal need for
support. Many users understand pipe syntax immediately and find
it compelling, reporting that it greatly improves their productivity
and user experience in SQL. Several users have commented that
they “love” using SQL with pipe syntax. The pain points solved
here clearly resonate with users.

We haven’t yet done formal user experience research on SQL
with pipe syntax but plan to as future work. We conjecture that
pipe syntax is easier to teach new users because it decouples SQL’s
conceptual ideas (aggregation, outer joins, window functions, etc)
from syntactic complexity. Teaching pipe syntax first may even
accelerate teaching standard syntax, since users can learn the rela-
tional operations first, understanding clearly how they work, and
later learn how those operations are expressed (poorly) in standard
SQL.

5.2 Complex queries
Pipe syntax naturally expresses queries with linear operator struc-
ture. Complex queries with tree-like structure don’t map as directly
to pipe syntax.

A common pattern is to start a query by joining data from sev-
eral sources (in a FROM clause) and then apply a linear sequence
of operations (filtering, aggregating, projecting, ordering, etc) to
compute the result after those initial joins. This pattern works well
using pipe operators for the work following the initial FROM.
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Operator Behavior and Usage
ASSERT <condition> [, <message>] This adds assertions in SQL – much like assertions in other languages.

Tables flow through unchanged, while validating <condition> for every row. If it’s false for
any row, the query fails, including the optional <message> in the error.
Note: This acts as a partial optimization barrier, since reordering certain operations could lead
to assertion failures.

LOG [(<pipe query fragment>)] This logs part of an intermediate result table to a side channel – much like printf debugging
in other languages. When debugging an unexpected query result, logging can be useful to
examine what data existed earlier in the query.
With no argument, this logs full rows from the table. A query fragment can be provided to
narrow the output with filtering, aggregation, projections, etc.

DESCRIBE This is used like a DESCRIBE table statement, but describes intermediate schema rather than
a table. It returns one row containing a textual description of the input table schema, with
column names and types, including hidden details like table aliases. This metadata can be
helpful when writing queries or debugging why queries are invalid.
This can run in constant time without physically executing the input query.

STATIC_DESCRIBE This is like DESCRIBE but runs at analysis time, sending output to a logging side channel rather
than as query output. It’s a no-op at run time so it can be inserted anywhere to extract metadata
without affecting query behavior. "Static" means it can produce log output without running
the query, including in invalid queries (before the error), EXPLAIN, etc.

Figure 5: Experimental pipe operators which have no standard SQL equivalent

The FROM clause itself is most often written sequentially using
JOIN ON/USING syntax, expressing a left-deep join tree. Left-deep
joins are exactly what the pipe JOIN operator expresses, so a FROM

clause written with JOIN syntax can be written with pipe JOINs
easily. Pipe joins offer additional flexibility, since projections (SELECT
or EXTEND), filtering (WHERE) or even aggregation can easily be done
between joins, without any subqueries.

When the first item in a FROM clause is a table subquery, that
can naturally be unnested as the pipe input query. Joins having
subqueries on the right (non-left-deep joins) can still be expressed
as a pipe JOIN to the same subquery.

Other techniques for factoring tree-like or DAG-like queries still
apply. Subqueries can be extracted as WITH clauses or temp tables,
where this helps to express complex structure or break up long
queries.

In practice, breaking up long queries is somewhat less necessary,
since pipe queries are shorter and don’t need as much nesting or
indentation.

5.3 Editing and debugging workflows
Pipe syntax works particularly well while editing or debugging
SQL queries. Since logic flows top-to-bottom rather than inside-
out, users can write queries sequentially, starting with a simple
table scan and then incrementally adding operators, running the
query as necessary to observe the result so far. Building queries
incrementally in standard syntax is more difficult, often requiring
adding wrapper subqueries, with new logic above and below the
subquery.

Adding logic (filtering, projection, etc) anywhere within a query
is easy, simply by inserting pipe operators, without refactoring
or subqueries. It’s surprisingly convenient that individual pipe
operators can be trivially commented out.

For debugging, queries in pipe syntax have a useful prefix prop-
erty. Each prefix of a query (up to a pipe character) is also a valid
query. In editors with a “run selection” feature, users can select a
prefix of the query and run it to see the intermediate query result
up to that point. (Without editor support, adding a semicolon or
commenting out the tail of the query also works.) For example,
users can easily see the rows before and after an aggregation in the
middle of a query by running two prefixes of the query.

During ad hoc debugging, it’s also very convenient to add a
LIMIT, WHERE or AGGREGATE on the end of a query, or after a selected
query prefix, to see interesting rows or statistics on a final or inter-
mediate result. For example, adding |> AGGREGATE COUNT(*) GROUP

BY column extracts and counts the distinct values in some column.
Ad hoc data exploration often involves computing different ag-

gregates of the same data. This is easy with pipe syntax with the
combined AGGREGATE .. GROUP BY operator since alternate group-
ing can be computed by editing that single clause, without needing
to update (or even include) a corresponding SELECT.

5.4 IDE and tooling support
SQL development environments are generally much less helpful
thanmodern IDEs for other languages. Standard SQL is not amenable
to typical IDE features because queries are too long and inconve-
niently structured, unlike imperative languages with short inde-
pendent statements.

Auto-completion is difficult in standard SQL. The clauses are in
the wrong order – auto-completing in SELECT isn’t possible until
after the FROM clause is written below to indicate what tables are in
scope.Many changes require edits inmultiple places (e.g. SELECT and
GROUP BY, and repeatedly SELECTing the same column in subqueries),
so adding completions at one cursor location is inadequate. Many
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edits require refactoring first, adding subqueries rather than just
inserting text.

Auto-completion works well with pipe SQL. The query flows
sequentially, top to bottom, so the required context is available from
text above. New operators are often added at the end of the query,
but adding new operators in the middle also works. The prefix
property means the auto-completer can analyze a query prefix to
know exactly which names are in scope at any point. Many changes
are possible with one local edit, without requiring corresponding
edits or refactoring elsewhere.

The prefix property makes building an interactive SQL debug-
ger plausible. An IDE could allow clicking on any pipe operator
and then displaying intermediate query results at that operator,
with metadata about columns in scope, or stats about that result.
Single-stepping through pipe operators could work, showing the
intermediate result after each operator. (Single-stepping appears to
imply imperative semantics, but the query prefix to that point could
still be treated as a declarative query and optimized as usual. The
user would step through business logic incrementally, not physical
operators.) Debugging like this wouldn’t work well with standard
syntax because it’s difficult to isolate substrings (not prefixes) of
a standard syntax query as usefully executable fragments, other
than whole subqueries. Combining tool support with language
extensions (see 4.3.3) could be even more powerful.

5.5 SQL code generators and rewriters
SQL code generators are common in reporting tools, object-relational
mappings (ORMs) and other contexts. Generating standard SQL is
excessively difficult. An application typically has some data struc-
ture or API describing the desired query as logical operations, gen-
erally corresponding to relational operation. Converting these op-
erations into standard SQL is difficult because SQL syntax doesn’t
express those operators naturally or composably. SQL generators
typically generate subqueries for many operations since that’s the
easiest way to translate operations independently and reliably. The
output queries are typically verbose and unreadable, with deeply
nested subqueries and indirection through layers of aliasing.

Pipe syntax is easier to generate directly, since relational oper-
ations can be expressed with a single pipe operator and they can
be stacked sequentially. Most wrapper subqueries and layers of
aliasing aren’t needed. (Subqueries are still useful for JOIN right-
hand-sides and expression subqueries.) The resulting queries can
be much shorter, and are structured more like how hand-written
versions of the same query would be expressed.

The same advantages apply in applications that rewrite SQL
queries. For example, Google has applications that rewrite user
queries to add differential privacy or other policy controls. SQL
rewriting is usually done by resolving a query to algebraic form, ap-
plying transformations, and then regenerating a new query. Rewrit-
ten queries then have no connection to the original query, and
are not human-readable. With pipe syntax, most rewrites involve
adding or modifying individual operators (e.g. adding filtering and
adjusting aggregations), and it’s theoretically practical to apply
these rewrites correctly while still preserving the original query
structure, with its original names, comments, etc. This is an area
for future work.

5.6 Potential applications with AI
Applying AI, particularly large language models (LLMs), around
SQL queries is an active research area, including query generation
and query understanding. Standard SQL is a challenging language
for LLMs[22], including for some of the same reasons SQL is diffi-
cult for human readers and writers. SQL has huge query statements
with significant internal cross-referencing that don’t break up nat-
urally into smaller independent steps. This may be one reason SQL
LLMs have been less successful so far than LLM assistants for other
languages like C++ and Java.

Pipe syntax makes SQL more like typical imperative languages,
with independent sequential operators, with clear state between
operators, with less action-at-a-distance. Speculatively, an LLM
that understands pipe SQL syntax could more clearly understand
operations in a query, and should be able to generate queries more
accurately from its “mental model” of desired query operations.
Generating valid pipe SQL should be easier for LLMs, the same way
it’s easier for algorithmic query generators (and for humans). The
same advantages apply for assistive SQL coding – since more edits
can be applied locally, it’s easier to make suggestions for useful local
edits, making use of accurate metadata that says exactly what’s in
scope at any particular point.

Human validation of AI-generated queries in standard SQL is
extremely difficult since generated SQL is so verbose and unread-
able. Generating SQL with pipe syntax, or translating generated
SQL to pipe syntax, can produce more concise and readable SQL,
facilitating human evaluation and validation.

5.7 Translating SQL to pipe syntax
Automated translation of standard syntax to pipe syntax is useful
for several reasons:

• To help users learn pipe syntax.
• To assist users migrating queries to pipe syntax.
• To facilitate query evolution. Editing SQL is easier after con-
verting to pipe syntax.

• To make queries understandable. Legacy SQL codebases of-
ten include large and complex queries which are difficult
to understand. Converting to pipe syntax should simplify
queries and make them easier to understand, while also fa-
cilitating further refactoring and simplification.

• For debugging. Expert users often help others debug queries,
for correctness or performance. The first step is often decod-
ing a complex query to understand what it’s doing. Translat-
ing to pipe syntax first can make the query shorter, simpler
and easier to understand.

• To simplify generated queries. Generated queries converted
to pipe syntax should be much easier to read.

Automated translation is an area for future work, but seems
straightforward, applying a series of algorithmic refactoring steps,
that reorder clauses and convert to pipe operators, extract and
flatten table subqueries, simplify or drop redundant SELECTs, etc.

6 IMPLEMENTATION
GoogleSQL implements SQL as a reusable component, shared by
several query engines across Google, including F1, BigQuery, Span-
ner, Procella and others. GoogleSQL implements SQL parsing and
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language analysis, fully checking and resolving language seman-
tics and producing a resolved algebraic representation that query
engines consume and convert to physical execution plans. Goog-
leSQL also provides function libraries and other components query
engines reuse in their implementations, and provides a comprehen-
sive suite of compliance tests to validate behavior is correct and
consistent across query engines.

This shared language analysis component allowed us to imple-
ment pipe syntax once, and then enable it in multiple query engines.
Inside Google, we did initial development with F1, with early users,
and then expanded to other internal SQL tools. We’re now explor-
ing enabling pipe syntax for use in public BigQuery and Spanner
products in Google Cloud.

Pipe syntax is also in the open source release, ZetaSQL[12].
Pipe syntax is implemented entirely within GoogleSQL parsing

and analysis code, and required minimal work for query engines to
enable. This analysis produces exactly the same algebra, with the
same operations as standard SQL, so query engines simply enable
the language analysis feature. No new execution or optimization
features are needed. (Our pipe operators so far aim for parity with
existing SQL. Novel operators may be added later.)

This approach makes pipe syntax immediately a first-class fea-
ture in query engines that enable it, making the syntax available
and fully interoperable everywhere SQL queries are used.

Supporting pipe syntax via query translation using a tool or
proxy is also possible. Our initial implementation used translation,
implemented in an Unpipefier library that analyzes queries with
pipe syntax enabled and then uses our SQLBuilder library to gen-
erate a standard-syntax equivalent supported by target systems.

While pipe syntax appears to add significant new language, with
a well-structured implementation, the complexity is manageable.
The new grammar mostly reuses fragments of existing SQL clauses,
and analysis code similarly reuses existing logic. Most pipe oper-
ators were implemented by refactoring existing analysis code so
logic could be shared across standard and pipe operators rather
than creating parallel forks of similar logic. The underlying infras-
tructure for query resolving, like the type system, name scoping,
and expression handling, are all reused as is.

Adding pipe syntax to a SQL implementation is drastically less
work than implementing a new query language, particularly if
trying to achieve parity with SQL functionality.

7 FUTUREWORK
Our initial implementation and work with enthusiastic SQL users
has been helpful while refining the language, adding features and
making adjustments to cover more query patterns and make the
language easier to use. We are now expanding to all SQL users in
Google, including potential users who might now choose to use
SQL given the improved syntax. We’re also exploring supporting
pipe syntax externally in BigQuery and Spanner. Over time, we
will collect more data on usage and patterns. Collecting statistics
on average query length, nesting depth, etc, will be interesting.

Our goal with this paper is to share what we’ve learned so far.
We believe the pipe syntax extensions are useful and would be
appealing to most SQL users, and could potentially be adopted
more widely across the industry. Future standardization of pipe

SQL syntax could be worth exploring if there is broad interest. We
believe pipe syntax offers a transformative improvement to SQL
syntax that could be a good step forwards for the second 50 years
of SQL.

Our initial work focused on achieving parity with the expressibil-
ity of standard SQL. There are many interesting possible features
beyond parity, including features in other data products or APIs
that don’t yet exist in SQL. Adding features in standard SQL syntax
is difficult, but adding extensions as new pipe operators is easy.
(See 4.3.) Pipe syntax creates a better platform for future experi-
mentation and innovation in query functionality and expressibility.
Figure 5 shows some of our experimental extensions.

Outside the language, we continue to explore tooling improve-
ments across the SQL ecosystem. Pipe syntax facilitates better tool-
ing and IDE support for SQL, including auto-completion, automated
refactoring, AI assistants, and interactive debuggers. Our goal is to
make SQL a first-class language, with SQL data engineering tools
and workflows that work as well as software engineering tools and
workflows optimized for C++, Java, etc.

8 CONCLUSION
SQL has been extremely successful over its 50-year history, as the
one standard language for all databases and query engines. That
success has come despite serious language design issues that make
SQL more difficult to learn and use than it needs to be.

SQL has been criticized repeatedly, and many replacements have
been proposed. No replacement languages have achieved broad
success or broad market penetration. Despite its flaws, SQL has a
number of features that make it uniquely well-suited for declarative
query processing, and the SQL ecosystem and userbase is too large
to easily disrupt. It’s exceedingly unlikely that SQL will be replaced
by a successor language any time soon.

But we don’t need to live with SQL’s flaws. The language is
fixable! This paper shows how pipe-structured data flow, inspired
by other languages and APIs, can be added to SQL with moderate
effort.The resulting language is still SQL, but it’s a better SQL.
It’s more flexible, more extensible, and easier to use. Proficient SQL
users can learn and adopt pipe syntax with minimal effort, getting
immediate productivity gains and transforming how theyworkwith
SQL. These improvements go beyond incremental convenience and
cosmetic improvements. Pipe syntax unlocks entirely new ways to
work with SQL, opportunities for improved SQL tooling, and future
language innovation.

Our experience so far suggests pipe syntax is a compelling im-
provement to SQL syntax that could be worth adoption across the
industry. Replacing SQL isn’t necessary, desirable or practical. We
can fix SQL’s most serious challenges from within the language.
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