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ABSTRACT

An important feature of modern query optimizers is the ability to
produce a query plan that is optimal for the underlying data set.
This requires the ability to estimate cardinalities and computational
costs of intermediate query plan nodes, which is highly dependent
on both the query shape and the underlying data distribution. Tra-
ditional methods include collecting statistics on base tables and
implementing cardinality and computational cost derivation inside
the optimizer, which is error-prone for complex query shapes. This
paper presents Presto’s novel history-based optimization frame-
work (HBO), which collects execution histories and uses them to
optimize similar queries in the future. The framework produces
accurate estimates for complex query shapes in a lightweight, auto-
mated manner, and adapts automatically to changes in underlying
data distributions. We present the design and implementation of
the HBO framework and provide details on its use in various op-
timization rules, as well as details on implementing the statistics
store on top of a Redis key-value store. We also present the results
of running HBO in production in two large data infrastructure
organizations (Meta and Uber).
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1 INTRODUCTION

An important component of every query engine is its query op-
timizer. This is the part of the system responsible for taking the
input query tree (typically an abstract query tree produced by the
parser/analyzer) and converting it into an efficient execution plan.
As the complexity of queries grows, so does the search space of
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select *x from
(select * from R

where type='X"' and date="'...') R
join

(select * from S

where status='Y' and date='..."') S

on (R.id=S.id)

Figure 1: Example SQL join query

possible plans, and having a good query optimizer becomes crit-
ical for navigating that search space and producing an efficient
execution plan. Today, most enterprise-grade query optimizers are
cost-based [7, 11, 15, 26, 28, 30, 31, 37], meaning they use a costing
function to predict how computationally expensive a query plan
is and select the one with the lowest cost estimate for execution.
The costing module typically uses knowledge of data statistics and
computation cost to compare different query plans and guide the
optimizer into selecting the best query plan. This module often
relies heavily on estimated data distribution and cardinalities.

To demonstrate the above, consider the query snippet in Figure 1,
which joins two tables after applying some filters.

In a distributed query engine there may be multiple alternative
query plans that evaluate the above query, where some are more
computationally expensive than others. Depending on the cardi-
nalities of the two sides, a different join order may work better.
Moreover, due to data being distributed, the optimizer is also re-
sponsible for selecting a distribution strategy that collocates data
to be joined on the same nodes. Figure 2 shows two alternative
plans for the query of Figure 1. If one of the sides is small, the query
optimizer may choose to broadcast that side to all worker nodes
and leave the large join side as is (Figure 2b), whereas in other cases,
a better query plan will repartition (shuffle) the two sides on the
corresponding join attribute (see Figure 2a).

The most important component when costing query plans is car-
dinality estimation: research has found a strong correlation between
the quality of cardinality estimators and query performance [22].
Traditional cost-based optimizer typically rely on an offline process
to collects statistics about input data such as number of rows, num-
ber of distinct values and histograms summarizing data distribution.
This is then paired with compile-time estimation of cardinalities
of intermediate nodes in the query plan, which takes into account
things like selectivity of filter and join predicates, and number of
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Figure 2: Alternative plans for the SQL query in Example 1

distinct keys for predicting cardinalities of various operator nodes.
However, this approach has several limitations and disadvantages.
First, it requires data to be analyzed before it can be queried. In
addition, cardinality estimators makes a number of simplifying
assumptions such as data uniformity, independence of filters and
columns, etc. They are often incapable of estimating selectivity
of complex expressions, such as conditional expressions, function
calls, and multi-key aggregations. There have been attempts to store
more complex statistics such as multi-column and join histograms,
but those require additional time and space to compute, and are
often non-trivial to work with. As a result, it is not surprising that
even industry-strength cardinality estimators routinely produce
large errors in estimation [22]. Beyond the traditional cost estima-
tion approaches, the past several years have seen an explosion in
learning-based approaches to cardinality and cost estimation (see
Section 7 for a review). While these are promising and overcome
many of the simplifying assumptions in traditional methods, they
require an even bigger upfront effort in training and refining the
models. Learning-based approaches also present a challenge to op-
erations, as they may provide less robustness in situations that call
for predictable performance. They are also hard to debug when
something goes wrong: explicability and provenance in learned
models is still an active area of research.

To overcome the challenges presented above, in this paper we
present Presto’s history-based query optimizer (HBO) that has been
used in production for several years at several large data infras-
tructure groups including those of Meta and Uber. In a nutshell,
HBO tracks query execution statistics at the operator node, and
uses those to predict future performance for similar queries. This
is possible due to the observation that while complex, queries are
repetitive in nature: they are often generated by a template and
follow the same structure. This is true for many large scale offline
pipelines (such as daily or hourly ETL and data analytics jobs), as
well as in more interactive use cases such as dashboards, where
again queries are often generated by a template and follow the same
structure.

HBO solves many of the problems that previous approaches
failed at, namely:

e Accuracy: Statistics are recorded during actual execution
runs and tracked at the operator level, thus eliminating
large estimation errors introduced from deriving cardinali-
ties of complex expressions using only base table statistics.
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e Automation: Histories are tracked by a light-weight pro-
cess with every query run, thus avoiding the need for sam-
pling overhead or model training for priming the statistics
estimators.

Adaptiveness: Changes to the underlying data distribution
are automatically reflected in tracked histories and used in
future optimizations.

Explicability: users and DBAs can view where the esti-
mated data came from and how far it is from the actual
value.

The rest of the paper is organized as follows. Section 2 gives
background on Presto - the underlying open-source database and
its existing query optimizer. Section 3 presents the architecture
of HBO, including how and when statistics are tracked, and their
usage in various optimizations. In Section 4 we describe the APIs
for communicating with the stats store, and give details on imple-
menting the stats store in the Redis [4] open-source key-value store.
Section 5 describes the tools we built to make HBO easy to oper-
ate. Section 6 presents extensive experimental evaluation of using
HBO in production at two large data infrastructure organizations,
namely those of Meta and Uber. Finally, we review related work in
Section 7 and conclude in Section 8.

2 BACKGROUND

Below we give background on Presto and its existing query opti-
mization framework.

2.1 Presto query engine

Presto [29, 33] is a distributed query engine used for low-latency
interactive use cases as well as long-running ETL jobs at Meta. It was
originally launched at Meta (called Facebook at that time) in 2013,
and donated to the Linux Foundation in 2019. Presto supports ANSI-
SQL and has an extensible framework of plugins that allows reading
data from various sources such as Hive, Iceberg, etc. Presto was
designed as a shared-everything system: all queries share resources
in a cluster without hard isolation. It was designed for latency over
scalability, so the query optimizer helps support this goal.

Since the focus of this paper is the Presto query optimizer, in the
following we will focus on this component and will refer the reader
to [29, 33] for more details on the overall architecture of Presto
and components beyond the query optimizer such as scheduler and
coordinator.

2.2 Presto’s Query Optimizer

Historically, Presto’s query optimizer was designed as a rule-based
engine, which implemented multiple standard optimization tech-
niques such as join reordering, projection and filter-pushdowns,
and more recently ML-workload specific optimizations that target
operations on semi-structured data in the form of maps and arrays.
Presto’s optimization engine executes rules in a sequential way,
as depicted in Figure 3. It starts with the input AST produced by
the parser/analyzer component and as output produces the final
execution plan passed to the scheduler and execution component.
As depicted in this Figure, each optimization rule takes the input
plan and transforms it into a new plan. Some optimization rules
are invoked for specific patterns in the query tree (and apply more
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Figure 3: Presto’s rule-based query optimizer

localized transformations), whereas others implement a visitor API
to walk down and transform the plan tree. Presto also supports a
connector optimization framework [1], that allows different con-
nectors to implement optimizations such as selection pushdown
in the storage layer. Initially, all optimization rules were heuristic,
meaning they performed a transformation without knowledge of
the underlying data distribution or compute cost. Thus, many of
the query optimization rules came with a configuration parameter,
which allowed users to enable or disable optimizations as needed.
At the time of writing, Presto implements nearly 150 optimization
rules, and about a third of them can be enabled or disabled with a
configuration parameter [3].

2.3 Stats and cost estimation in Presto

Around 2016 Presto’s optimizer was augmented with basic costing
capabilities to aid some of the major optimizations such as join
reordering and picking join distribution. The main component of
costing is the cardinality estimator, which in turn relies on base
table statistics to derive cardinality estimates for intermediate plan
nodes. Presto stores statistics at the partition level! and include the
following:

o overall cardinality of the partition
e column statitstics including
— Average size
— Number of distinct values
— Number of null values
— Range (min/max) for the values

At the moment, Presto does not support additional well-established
data distribution sketches such as histograms [20]. There are on-
going efforts to add support for these from our open-source partners,
but at the time of writing these were not part of the main Presto
distribution.

Using the base table statistics above, Presto implements a stats
calculator that produces cardinality estimates for intermediate
nodes in the query. The stats calculator is implemented as a vis-
itor on top of the plan tree, and propagates the base table stats
throughout the tree by making a few simplifying assumptions such
as uniform distribution of column values, and independence of
columns. As an example, to estimate the cardinality of range predi-
cate x BETWEEN (m, n), the stats intersects the range defined by the
predicate with the range [M, N] defined in the base column stats
to produce n — m/(N — M) as the estimate, and the cardinality of

In our experience most users of Presto choose to partition their data on a temporal
column to allow of fast retrieval of data from a specific date/time interval.
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a multi-key group by is estimated as the product of the distinct
values for each of the columns.

3 ARCHITECTURE

Presto’s cost based optimizer produces useful estimations for simple
queries, but the error margin increases exponentially as queries
and the underlying expressions get more complex. For example,
the cost-based framework is able to decently estimate statistics for
expressions with single column constraints - but gets perplexed
even if we add a conjunction to it. In this case, it is impossible to
get accurate statistics without finding correlation between different
columns used in the expression. It is very common in our data
warehouse for queries to have complex expressions and user defined
functions for business logic. In these cases, traditional cost-based
estimation techniques prove ineffective.

Presto’s History Based Optimizer (HBO) leverages the fact that
most of the data warehouse queries are programmatically generated
- usually arising from data pipelines and user dashboards. These
queries often share a common structure, differing only by symbols
and constants use. These symbols usually represent a different date
range predicate to select newly arrived data, or selecting different
parameter values in a dashboard. HBO leverages the precise run-
time statistics of similar queries that have executed in the past to
predict statistics of future execution. The resulting statistics are
more accurate and also more verbose than CBO?. In this section
we dive into the architecture of HBO and discuss how HBO tracks
similar queries and predicts statistics. Then, in Section 3.7 we give
details on how statistics computed by the HBO framework are used
during query optimization to estimate the compute cost of query
plans and make other performance related decisions.

3.1 Desiderata

When designing the history-based optimization framework we took
several requirements into account:

o Estimates need to be accurate: As discussed above, tra-
ditional cardinality estimation frameworks fail to produce
accurate estimates for complex query shapes.

e Accommodate changes to both data and queries: In
our use case neither data nor queries are static. However,
the changes are often not dramatic: data distribution rarely
changes significantly in a short period of time (but may over
a longer period). Similarly, queries in a given pipeline or

2Throughout the paper we will refer to the legacy approach to cost estimation as CBO
to distinguish it from HBO, which will denote the new methodology using histories
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dashboard are often generated by code and follow a similar
template.

Minimal overhead to query processing: Both traditional
and novel learned-based approaches rely on precomputing
base table or intermediate statistics using sampling and
learning methods, and continuing to do so as data and
queries change. We wanted a lightweight mechanism with-
out huge upfront computation.

Ease of use and operation: we want to design a "hands-
free" solution that requires no user input to work. At the
same time, the solution needs to provide a high-degree of
clarity and debugability to be able to answer questions like
why a certain query plan was selected.

Seamless integration with classic methods for deriv-
ing cost: We want to support a mechanism to fallback to
classic cost estimation in case histories are not yet available.
Moreover, it should be easy to mix and match the two in a
single query to allow for cases where histories are available
for a block of the query but not the full query.

In the following sections, we describe our approach, which
achieves all of the above requirements.

3.2 Overview

As shown in Figure 3, the query optimizer of Presto applies a se-
quence of rules to compute the optimal execution plan. In this
process, the input plan tree undergoes a series of equivalence-
preserving transformations. Some of the transformations (also
called cost-based/CBO rules) take cost estimates into account when
producing the resulting plan. The main idea behind HBO is to col-
lect run-time statistics for each node in the query plan during query
execution, and later during query optimization to search the stats
store for previously executed similar query plans.

Figure 5 shows the API available for optimizer rules to get sta-
tistics. The API takes a plan node and returns the corresponding
statistics if available. Statistics can be derived from either HBO or
the traditional CBO framework. Optimizer rules are agnostic to
the source of statistics. The Presto optimizer chooses the statistics
which are more likely to be accurate - typically preferring HBO
statistics. It is not uncommon for CBO to build upon HBO stats for
downstream plan nodes in case histories are only present for part
of a query. A mix of HBO and CBO statistics boosts coverage and
accuracy of stats to a large extent. HBO statistics are more verbose
than CBO statistics as well. HBO can store runtime information like
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def fetchStats(PlanNode) -> Optional[Stats]

# Stats seen by optimizer rules
class Stats:

source: Enum["HBO", "CBO"]
cardinality: int
size : int

Figure 5: API of HBO Framework
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Figure 6: Plan hashing in HBO

shuffle fanout sizes and task parallelism in addition to the classic
cardinality and data size statistics. Next, we’ll look into the secret
sauce for finding similar plan nodes from history.

Finding similar plan nodes is the crux of HBO, and there are
several main challenges to doing that:

e Queries change: while queries often follow the same tem-
plate, parameter values may change across runs

Query plans change: the same query template may have
run with a different (but equivalent) query plan depending
on which optimization rules triggered

Searching for similar query plans has a high overhead: there
may be millions of queries executed daily and exhaustive
search for previous runs is prohibitively resource intensive.

The solution to the above challenges can be summarized with
the following: computing canonical plans and hashing plan nodes.
Below, we give details on each of these aspects.

3.3 Computing canonical plans

In a large warehouse, searching through all query plans that were
executed previously has an unacceptable overhead. HBO uses a
different strategy to transform plan nodes to a canonical form before
writing them to the stats store. All similar plan nodes will share
the same canonical form, which can be used as a key to read and
write stats. We use different strategies to create several canonical
forms, and use them in order of their confidence.



There are two main parts to computing the canonical represen-
tation of a query: (1) approximate the template that generated the
query by ignoring constants used as parameter values, and (2) map
equivalent plans into the same canonical query plan.

Canonicalizing Table scans: In our data warehouse tables are
usually partitioned on a temporal column, and new data lands into
new partitions on a regular basis (for example daily or hourly).
As many of our pipelines operate on most recently landed data,
the table scan nodes in our query trees typically have a partition
filter attached. For example, the table scan plan node in a query
like SELECT * from customers WHERE date = '2024-01-01' will se-
lect data for ‘January 1st 2024°. Likely, this query came from a
template predicate WHERE date = $date$, and subsequent runs of
the query will use a different parameter value for the date predicate.
To compute the canonical representation of this node, we replace
the original predicate with date IN ('X', 'X'), mapping the literal
value to a symbol X. In doing so we make the simplifying assump-
tion that partitions have similar size, thus treating all partitions as
equal. We describe later how to relax this assumption.

Pruning constants: Nodes in a plan tree can contain different
constants, leading to different queries from the same template. Ide-
ally, we’d like to scrub most of them and replace them with X*as
we do with table scan partitions. We use several strategies based
on how conservative we want to be in removing these constants.
We store canonical forms arising from all such strategies, and read
from the safest canonical form available during stats fetching. Let’s
take a look at different strategies:

o Prune constants from equality predicates on partition
key: Prunes constants only from table scan partitions, as
seen above.

Prune constants from projections: Prunes all constants
from table scan partitions and projection expressions. For
example SELECT *, '2024-01-01'AS date is canonicalized
to SELECT *, 'X'AS date. Removing constants like these
don’t usually lead to varying statistics.

Prune constants from equality predicates: Prunes con-
stants from table scan partitions, select expressions and
specific constants from filters. Here we prune constants in
equality predicates, for example WHERE id = 128 is canoni-
calized to WHERE id = 'X'. This strategy is less conservative
than the above ones as it assumes a uniform distribution
for all id values, and may produce incorrect stats if that
is not the case and historical stats got recorded for values
with different distribution from the current ones.

Prune constants from range predicates: In this strat-
egy we also prune constants used in range predicate filters.
Note that this may lead to significant mis-estimations, as for
example the predicates WHERE count >= 1 and WHERE count
>= 1000 can lead to vastly different statistics. Similarly it is
dangerous to prune constants in parameters of user defined
functions as well. We do not employ this canonicalization
strategy as of now but believe it can be used in combina-
tion with classic cardinality estimation, where the use of
histograms can inform us if the relative distributions of the
two predicates are the same and guard the use of historical
stats only in that case. This is subject of future work.

4081

Canonicalizing plan nodes: Here we attempt to compute
canonical representation of otherwise equivalent query plans. We
then proceed to serialize the canonical plan node into a string using
the pseudo code below. In essence, the representation of a plan
node includes all its descendants along with the node itself:

def str(planNode):
return str(planNode.information) + [str(c) for c in
planNode.children]

The individual canonicalization steps are as follows:

e Coalesce all inner join nodes into one. It is defined as:

str(A join B join C)
str(B), str(C)1)

str(join, [str(A),

Sort serialized child plan nodes when their order doesn’t
matter - in case of unions and inner joins. Combined with
above coalescing, this decouples the plan node representa-
tion from join order given by user and join decision taken
by optimizer. More formally:

str(A join B join C) str(join,
sorted([str(A), str(B), str(C)1))

All right joins are rewritten as left joins when canonicaliz-
ing.

Canonicalize expressions in projections and filters so ex-
pressions like a > band b < aend up the same. This can be
done recursively as expressions have a tree like structure
as well.

Presto optimizer may introduce temporary variables as the
query becomes complex. We inline their values, as they
are populated from columns, constants or other temporary
variables. This removes variable names from the represen-
tation.

Limit expressions may lead to eager termination of the
query, causing incomplete stats in upstream plan nodes. For
cases like these, a downstream limit node representation is
attached with such plan node. This implies that stats of such
plan nodes will only be used when a similar downstream
Limit node is present as well. Presto has several operators
which do eager termination, and this is enabled for all such
cases.

Hashing: A plan node may have hundreds of descendants - and
the string representation can be quite big. However, we are not
concerned with the contents of this representation. We can simply
use a hashing algorithm like SHA256 to hash the serialized plan
node. Stats store will be a key value store with key being the plan
node hash, and value being the stats. This can save a lot of storage
and network overhead. We will look into details of stats store in
Section 4.

3.4 Ever-changing query plans

Presto optimizer continuously transforms plans by applying a se-
quence of rules. Ever-changing plan nodes makes it harder to search
for similar plan nodes from the past - even the canonicalized hash
may keep changing as rules run. Moreover we can only know stats
for the final plan nodes which are executed - intermediate plan
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nodes that exist in the optimizer are lost during planning. This
makes searching for plan nodes in the stats store very tricky.

HBO overcomes this by introducing an intermediate rule in the
optimizer. This rule ("History Fetching" in Figure 4) runs at a later
stage in the optimizer just before cost based estimation is required.
It goes over the current plan tree and finds relevant plan node
histories for all the nodes from the stats store. We keep a copy of
the current version of plan nodes and store them alongside. We
call these nodes as "Stats-Equivalent" plan nodes. When the query
is finished, runtime stats are mapped with the Stats-Equivalent
version of plan nodes and written in the stats store.

Plan transformations by optimizer rules can change plan nodes,
but they keep the same Stats-Equivalent Plan Node. This mapping
is internally maintained by the HBO framework, and rules don’t
have to explicitly handle it. Whenever a part of plan is modified, its
topmost modified node and all unmodified nodes will preserve the
Stats-Equivalent mapping. Naturally, rules are correctness preserv-
ing - so they will preserve output for the topmost node they modify.
This makes the plan hashing robust to small plan modifications
made by the optimizer. For example, physical shuffle node is absent
in the Stats Equivalent plan in Figure 6.

If needed, we can apply "History Fetching" rule several times in
the optimizer. This will fetch stats for newly created plan nodes
as well. In Presto, we only use 2 instances of this rule amongst
our collection of 150+ optimizer rules. This rule also serves as a
checkpoint to batch all calls to the stats store, thus saving overhead
from any serial network calls.

3.5 Storing and fetching stats

We have defined procedures to create canonical representations for
all plan nodes in the plan. During history fetching phase, we fetch
the mapped stats from the stats store for these nodes. As the query
runs, Presto workers periodically send aggregated operator (run-
time version of plan node) statistics to Presto coordinator. Presto
coordinator keeps aggregating stats until the query finishes, and is
able to write them into the stats store at the end. Storing stats at
granularity of plan nodes allows us to share them across different
queries as well. Queries with common subqueries can benefit from
this and share some common stats.
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3.6 Adapting to change in data

In the above section, we canonicalized table scan plan nodes by
treating all partitions as the same. For example, selecting any 2
partitions from a table will lead to the same canonical form. How-
ever, it is not uncommon to have partitions with varying sizes. Say,
a user chooses to partition their table by column country. Due to
different demography around the globe, partition sizes will vary
significantly.

To account for this, we store several stats mapped to a plan node.
With each version of statistics, we associate the total size of the
partitions that it read from. If the plan node (including its children)
ended up reading from several tables, we store this information for
all such tables. Figure 7 shows a simplified case where we store 2
version of stats for the same plan node. These correspond to two
previous executions, where the input table contained 1M rows in
first case, and 2M in another. When looking up stats for a plan
node, we find an entry closest to the current partition sizes that the
query is trying to read. In the example, stats for 1M input rows are
closest to the query which has 1.2M rows. It is also possible to use
statistical models like linear regression to predict statistics for new
partition sizes - however we have not found a need for it so far.

In practice, we store both row counts and byte sizes of partitions.
A full representation of what we store is described in Section 4.1. If
the available statistics have partition sizes that are too far from the
partition sizes in our query, we don’t use HBO stats. For every plan
node, we store stats for several runs with different input statistics.
We invalidate older runs when new ones come in, and try to only
store runs with varying input statistics. We put a limit on number
of different statistics that can be stored. This limit needs to be big
enough to capture varying input patterns. We use a gracious limit
of 50 in our deployment, while still maintaining a reasonable bound
on storage overhead. Most of the plan nodes end up storing many
fewer stats.

3.7 Using HBO in query optimization rules

Several presto optimizations use HBO as the cost estimation frame-
work. HBO is more powerful than CBO as it can store various
runtime statistics related to scheduling as well. Let’s take a look
at few optimizations which leverage HBO to come up with better
query plans.

¢ Join reordering: Presto implements a dynamic program-
ming algorithm to explore the space of possible join trees
and uses the cost estimation framework to select the most
optimal join tree.
HBO can accurately predict stats for join orders that have
run in the past. For other join orders, we use CBO to predict
their stats. This leads to more accurate cost estimations.
However, mixing HBO and CBO stats does not always give
the best results due to high variance of CBO stats. For
example, HBO may give the right stats for the ideal join
order, but CBO may inaccurately favor other join orders.
HBO will not be able to try all the join orders to learn from
them, but can learn from join orders run in other queries.
Note that since we store plan stats per node (as opposed to
the full query only), a query containing commonly joined
tables will be able to benefit from accurate statistics for
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Figure 8: Partial aggregation optimization

the subplan containing those tables computed by other
queries previously. HBO can thus predict better join orders,
compared to only using CBO.

e Join distribution type: HBO is also used in deciding how
to perform the distributed join. The Presto optimizer gets
the size of join inputs and uses a cost model to decide
whether to do broadcast join or repartition join, like the
ones in Figure 2.

Partial aggregations Presto can split an aggregation into
partial and final stages when the aggregation is composable,
such that data is pre-aggregated locally on the worker nodes
before it gets shuffled across the network, see Figure 8. Par-
tial aggregation is helpful when it can reduce the size of
output. However, if partial aggregation does not decrease
the size of intermediate results it will only add overhead in
processing. It can also increase the size of intermediate data
that gets shuffled due to the additional pre-aggregated val-
ues that get stored for every group. Thus, this optimization
rule is cost-based and only triggers when the partial aggre-
gation reduces the cardinality by more than a pre-defined
ratio (typically 0.5). Note also that while the final size of the
aggregated result may decrease significantly, this may not
be the case for the partial aggregation stage. Using HBO
we can track the output and input size of the partial aggre-
gation and store more accurate data to guide the optimizer
into choosing aggregation strategy in the future.

Skew mitigation Outer joins can result in many NULL
values for the outer side columns, and when one of these
columns is used as a join key, this can cause skew in pro-
cessing. Presto has an optimization rule which mitigates
such skew by coalescing the NULL values to non-NULL val-
ues that get more evenly shuffled across workers. It works
by rewriting join keys as shown in Figure 9 so that NULL
values are cast to non null values that will never match.
Since this is a cost-based decision dependent on the ratio of
NULL values in the output, we employ the HBO framework
to track the number of NULL join keys, and turn on this
optimization when the ratio of NULLs exceeds a threshold.
This optimization can be generalized to handle other skew
scenarios beyond null skew.
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-- Original query:
SELECT * FROM t1 LEFT JOIN t2 ON t1.key = t2.key

-- Rewritten query:
SELECT * FROM t1 LEFT JOIN t2
ON COALESCE(
CAST(t1.key AS VARCHAR),
"1'" || CAST(random(hash_partition_count) AS
VARCHAR)
) = COALESCE(
CAST(t2.key AS VARCHAR),
'r' || CAST(random(hash_partition_count) AS
VARCHAR)

Figure 9: Query rewrite in NULL skew optimizer to mitigate
skew in outer joins

e Scaled writers An important problem for INSERT queries
is to correctly estimate the number of writer tasks: too many
tasks may result in a lot of small files, but too few may create
a bottleneck if the data to be written is large. Writer scaling
is used in Presto to reduce the number of small files during
INSERT operations. With the scaled writer optimization,
Presto first starts with one single writer task, and as the
size of output data increases, the number of writer tasks
also increase. However, one disadvantage of this approach
to writer scaling is that it can be a bottleneck when the
number of writer tasks is low. We use the HBO framework
to record the number of tasks written in historical queries,
and start with half of the original number of tasks from
history instead of one.

4 STATS STORE AND CONNECTOR
FRAMEWORK

This section provides a detailed overview of the structure and
methodology of HBO stats store.

4.1 HBO Stats structure

The stats store is essentially a key-value store with (key, value)
pairs as depicted in Figure 10. Every plan node is associated with a
unique key and a respective statistical value. Further details on the
key and value are provided below.

Key: Hash generated from the plan

In Section 3.3, we discussed the process of plan canonicalization,
and how each plan node is first transformed into a canonical form.
This canonical plan is then serialized into a string, followed by the
application of a SHA256 hash algorithm to create a hashed key.

Value: List of execution stats from previous runs

In Section 3.1, we investigated how execution metrics are con-
nected to plan nodes following the query execution. We structure all
statistics into thrift object, which allows future schema changes and
saves storage/networks overhead using compaction. This becomes
our value in the stats store.



Key (Plan hash) —)[ Value ]

4 rowCount: 100 \ 4 rowCount: 250 \

outputSize: 2MB outputSize: 4MB

JoinNodeStats JoinNodeStats

WriterNodeStats WriterNodeStats
PartialAggStats ‘ PartialAggStats ‘
InputStats InputStats
rowCount: 1M rowCount: 2M

outputSize: 1GB

outputSize: 2GB

Figure 10: HBO stats structure

JoinNodeStats WriterNodeStats PartialAggStats
joinBuildKeyNullCount taskCount inputBytes
joinBuildKeyCount inputRows
joinProbeKeyNullCount outputBytes
joinProbeKeyCount outputRows

Figure 11: Plan node type-specific statistics

The mapped value contains execution statistics from several
runs(Figure 10). Execution statistics include details like row count,
output size in bytes, and optional additional information tailored
to specific plan nodes and optimizations. Additionally, compared
to CBO which needs to compute expensive stats like NDVs, HBO
only stores simple statistics that can be easily computed during
runtime without any additional cost. These details are shows in
Figure 11. For example, we store count of null keys in both sides
of join plan nodes to detect null skew. Output and input sizes for
partial aggregation are stored as well. Table writer tasks store their
parallelism as a useful statistic. Additionally, we also maintain a
list of input stats for table scans that are present within the current
plan tree for each plan node. The input statistics represent sizes
of input partitions scanned. If multiple tables are present, we lay
out the stats for all of them in a list. These can be sourced from file
system metastore, which in our case is Hive Metastore. [34]

Time-To-Live: We assign a TTL(Time-To-Live) for every entry
in the stats store. The TTL is refreshed every time an entry is
updated. This way, old entries are garbage collected, reducing our
storage overhead and removing entries which will never be used
again.

4.2 HBO Stats Connector

The primary function of the statistics connector is to store and
retrieve the stored HBO stats from our metastore.

The HBO statistics connector in Presto is implemented as a
simple modular interface, leveraging Presto’s plugin framework
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for flexibility. Presto plugin framework enables the loading of user-
defined, configurable implementations at runtime through plugins.

We saw in section 3.1 that History Fetching rules are responsible
for generating all relevant canonical plan nodes. These rules make
internal calls to our connector API to retrieve HBO stats from the
stats store. Additionally, as illustrated in Figure 4, the coordinator
utilizes an in-memory cache to hold these results on a per-query
basis. This approach reduces the number of network calls required
and guarantees that the optimizer has access to these historical
stats during the subsequent stages of planning.

Connector API: The connector API is shown in the below
interface

# Fetch stats from stats store
def get_stats(planHashes: List[Stringl) ->
Dict[String, Stats]

# Store stats in stats store
def put_stats(statistics: Dict[Hash, Stats])

Figure 12: Connector API

Redis Connector Implementation: We have open sourced
a statistics connector that utilizes Redis [4] as a backend. As an
in-memory database, Redis provides exceptionally quick read/write
operations, making it highly effective for caching scenarios. In
our production setup, we use Redis in a clustered configuration.
The connector is integrated with a stateful Lettuce Redis client,
engineered to keep persistent connections with the Redis cluster.
Additionally, we also take advantage of the asynchronous API of the
Lettuce Redis client, which by default utilizes Redis’ pipelining ca-
pabilities and enhances performance by enabling batch processing
of multiple commands. In our production setup, we have observed
latencies within the range of tens of milliseconds.

5 OPERATIONAL EXPERIENCE

One of the goals when starting the HBO project to create a
framework that is both powerful but also easy to operate from the
standpoint of users and DBAs. In this section we describe the user
experience when interacting with HBO and the various tooling we
built to enable that.

Enabling HBO. Users can enable HBO by setting the following
conﬁguration parameters: track_history_based_plan_statistics
and use_history_based_plan_statistics. Both of these parameters
are set to true in our clusters. While we don’t expect the end user
to need to modify these parameter values, they are a powerful tool
for debugging issues with HBO, performance testing, and allow
disabling the feature to mitigate a problem should one arise.

Explain plans. Presto, like most other database engines provides
a way to inspect the output of the query optimizer through an
EXPLAIN command. In a cost-based optimizer explain plans often
contain the stats estimates each plan node. We extended the output
of EXPLAIN to also show the source of the stats estimation (cost-based
or history-based).

As an example, see the explain plan in Figure 13. It is part of a
query plan for UNION ALL query. For the first branch of the UNION



1 Query Plan

s — Output[PlanNodeId 18][orderkey, cnt] => [expr_39:bigint, expr_40:bigint]

4 Estimates: {source: CostBased, rows: 75,175 (1.29MB}
5 - Aggregate(FINAL) [orderkey][PlanNodeId 3]

Estimates: {source: HistoryBased, rows: 15,000 (263.66kB)}

8 - ScanProject[PlanNodeId 11,324][schemaName=tpch, tableName=lineitem]
Estimates: {source: CostBased, rows: 60,175 (1.03MB)]

Figure 13: Explain plan with details on statistics

(rows 5-6 in Figure13) the optimizer used history-based statistics
from a prior run, as visible through the source: HistoryBased tag
on the corresponding plan nodes, whereas for the second branch
(lines 8-9) and final output (lines 3-4), the optimizer used the classic
cost derivation to estimate the size of the output. Note also that
the optimizer is seamlessly able to combine statistics derived in a
different way, so the final output estimation (75K rows) is the sum
of the two types of statistics estimates (15K produced by CBO and
60K extracted from HBO).

Observability. To track the overall health of HBO and provide
insights into its operations at scale, we instrumented the code
in various places to automatically track runtime aspects of HBO,
including the plan nodes for which HBO was recorded or used
(indexed by query id and plan node id), timers to track HBO latency
and others. This allowed us to build dashboards exposing various
operational properties of HBO including: coverage, overall accuracy,
and latency of HBO. We use some of this tooling in our experimental
section next but they are also part of the daily operation of our
warehouse.

6 EXPERIMENTS

In this section, we evaluated HBO over two production workloads
to answer the following questions

e What’s the percentage of queries which can benefit from
history statistics? (Section 6.2)

e How accurate the estimation from history is? (Section 6.2)

e What’s the overhead of running HBO? (Section 6.4)

e How much improvement we get from HBO? (Section 6.3)

6.1 Setup

To answer the above questions, we performed a shadow experiment
in the following way. We derived several workloads using real
production queries with minimal changes: queries were rewritten
so as not to impact any production tables - and writing data to
temporary tables instead. Besides that, queries were identical to the
original ones. For running the workload, we used a test cluster with
the same configuration as production ones. As we had only one
test cluster, compared to several production ones - we shadowed
traffic from different clusters a few days at a time to capture almost
all of the production workloads during testing.

We enabled HBO in our test cluster and shadowed multiple days
of production workload which had HBO disabled. We first gave a
couple days for HBO to start tracking the workloads and storing
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Table 1: Different HBO metrics from Meta and Uber

Metric Meta | Uber
Accuracy 93% | 90%
Query coverage 95% | 95%
Plan node coverage | 80% | 85%
Query plan changes | 30% | 50%
Bad plans fixed 80% | 74%

stats. Then we proceeded to measure several metrics and compared
them against the metrics from production.

Query shapes: Our warehouse workloads include varying use-
cases across dashboards, A/B testing, ETL, machine learning, graph
processing, etc.[33]. We go over some details of query shapes for a
better understanding of the workloads.

Relative distribution of these top plan nodes across all query
plans is shown in Figure 15. 40% of nodes correspond to common
Filter/Project operations, while 20% to table scans. Our optimiza-
tions described above target Aggregation, Join and TableWriter plan
nodes. Let’s go over how many such nodes exist in our workloads.

o Aggregations take up 30% of plan nodes, and are present in
50% of queries.

o Joins take up 6% of plan nodes, but are usually present in
25% of total queries. 90% of these queries use <=5 joins and
99% use <= 10 joins.

o TableWriter nodes take up 5% of plan nodes, but are present
in 40% of queries.

Further details on number of plan nodes in a query is given in
Section 6.2.

6.2 HBO coverage and accuracy of statistics

Table 1 shows different metrics regarding observed after HBO de-
ployment in both Meta and Uber workloads.

We found that the HBO statistics achieve P90 accuracy of 92.8%,
meaning for 90% of the queries the HBO statistics are no more than
7.2% off from the actual cardinality. When HBO is applied, it yields
highly accurate statistics. This means as more queries and their
plan nodes get stats from HBO, they will naturally improve. Let’s
discuss that next.

Our analysis shows query coverage of 95%, meaning 95% of
queries get statistics from historical runs. As we store stats at the
granularity of plan nodes, stats are a mix of HBO and CBO stats in
these queries. We measured distribution of stats coming from HBO
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Figure 15: Top plan nodes distribution

vs CBO. 80% of plan node stats estimations come from HBO, and
the other 20 % from CBO.

HBO resulted in plan changes for 30-50 % of queries in our
warehouses. We ran some backtests to check how many queries
previously had sub-optimal plans. Backtests included simple heuris-
tics on runtime statistics to detect bad plans. We found 74-80% of
these sub-optimal query plans improved to optimal plans using
HBO. In the next section, we will go over these improvements in
detail.

Figure 14 looks into how HBO affects queries of different plan
sizes. The chart divides queries into 10 uniform buckets sorted
by size of query plan(number of nodes in the plan tree) and plots
percentage of queries affected by HBO in each bucket. We see that
queries with larger query plans need HBO more than smaller ones.
Larger queries are more complex, and consume more resources as
well. CBO heuristics fall off with plan size, and HBO is able to step
in and improve query plans. Almost 50% of queries with > 34 plan
nodes are improved by HBO. On the other hand, 0% of queries with
< 15 plan nodes need HBO. CBO is able to optimize these small
queries by itself.

6.3 Improvement from HBO

This section shows the improvement on performance and resource
utilization from HBO optimizations. We also show results for the
optimizations described in Section 3.7. Overall P50 CPU and latency
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Figure 18: Percentiles of CPU improvement from HBO

improvements are shown in Figure 17. The vertical axis is the ratio
of CPU cost before HBO optimization over CPU cost after HBO
optimization for our workload, and similar for latency as well.
Larger values means more improvement.

We see roughly 1.1x CPU improvement and 1.2x latency im-
provements on average across all queries affected by HBO in both
Meta and Uber. These numbers hold across our diverse workloads
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Figure 20: Memory utiliza-
tion improvement

involving multiple exabyte scale data sources[33]. This is a good
efficiency win for our large scale data warehouses.

Performance analysis: Figure 18 shows a histogram of cpu
improvements on our workloads. We see that 10% of queries see
more than 2.5x speedup, while the central quartile region sees a
steady 1-1.2x speedup. For the tail end of 10% queries, we see a
performance regression of roughly 8%.

We further analyze the cases with CPU time regression. Some
of these queries don’t see a regression per se, as other metrics like
latency and memory usage improve. However, we do see cases
where the query plan became sub-optimal after HBO was applied.
In these cases, CBO used to predict incorrect stats, but the query
plan luckily turned out fine. When HBO is applied, some of these
stats become accurate, but the remaining non-HBO stats in the
query lead to sub-optimal query plans. Mixing HBO and CBO stats
does not always produce good results due to high variance of CBO
stats. However, we have found it to help most of cases(P90), so
we keep it enabled for all queries in production. Over time, the
sub-optimal cases become less frequent as HBO is able to cover
more stats. For example, when running a regressed query again,
HBO is able to provide all the stats for the query, and the query
plan is good again.

Query Optimizations: In Figure 16, we show CPU and latency
improvements for the five optimizations that we discussed in Sec-
tion 3.7. These specific numbers are from Meta workloads, however
Uber workloads experience similar wins as well. All optimizations
show improvement in both latency and CPU, except the skew opti-
mization which has a slight regression in CPU. This is expected as
we are paying a small computation cost to mitigate skew for latency
improvement, which shows 5.9x improvement in latency. Note that
we have compressed the vertical axis in this case for visual clar-
ity. All other optimizations show performance improvements of
1.1-1.4x.

Join distribution optimization shows most improvements here
(1.4x), since it prevents extra shuffles of large tables and joins are
the bottleneck in query execution in many cases. On the other
hand, aggregations are usually fast, so improvements from partial
aggregation are smaller(1.1x) but these improvements cover a larger
set of queries. Intuitively, we may expect improvements from join
ordering to be high as well - but we found that many customers find
these improvements during implementing the SQL queries. A SQL
query with a bad join order can easily fail due to out of memory
errors. We observed wins from join ordering to be closer to 1.1x.
Scaled writer doesn’t yield any CPU savings, as it just changes
number of writers, but saves latency by 10%.

Figures 19, 20 show improvement in system related memory
metrics in both Meta and Uber workloads after HBO rollout. The
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Figure 21: Latency breakdown of HBO optimizer
Table 2: Size of stats for TPCH queries

Query | Plan size | Stats size || Query | Plan size | Stats size
Q1 5 920 B Q12 7 1.3kB
02 21 3.8 kB 013 |8 1.4kB
03 10 1.8kB Q14 |7 1.3kB
Q4 7 1.3 kB Q15 14 2.5kB
05 15 2.7kB 016 | 11 2.0 kB
Q6 4 0.7 kB Q17 |9 1.6 kB
Q7 15 2.7kB Q18 16 29kB
038 21 3.8 kB 019 |6 1.1kB
Q9 15 2.7 kB Q20 | 16 2.9 kB
Q10 | 12 2.2 kB Q21 | 26 4.7 kB
011 |21 3.8 kB Q22 |16 2.9 kB

total memory usage was reduced by 5% for the Meta workload, and
by 17% for the Uber workload. We also see size of shuffles within
workers decreased by 17-40% in our workloads, which directly
contributes to ingress/egress.

6.4 Overhead of HBO

The compute overhead of HBO comes in two aspects, the addi-
tional latency brought by HBO and the overhead of storing history
statistics.

The result shows that the additional latency from HBO can be
up to 0.5% of the overall query execution time. This holds for short
running queries(seconds). Longer running queries have negligible
overhead. We further breakdown the latency from the HBO opti-
mizer, which is shown in Figure 21. The largest overhead comes
from reading history data (40.1%) and reading from metastore to
get size of input table partitions (38.1%), followed by hashing query
plan (18.1%) and canonicalizing query plan (3.4%). Most of the addi-
tional latency is dominated by network calls, resulting in overhead
on the order of milliseconds.

The storage overhead for HBO is proportional to the number of
query plan nodes, with each node consuming 184 bytes to store
corresponding history data. Table 2 shows plan sizes and corre-
sponding HBO stats size(for 1 run) for TPCH queries. We see an
average of 13 plan nodes per query, averaging 2.3kB per query.

7 RELATED WORK

Traditional cost based optimization. Cost-based optimization
has been the bread and butter of both database research and com-
mercial systems [6, 15, 22, 30, 31, 37]. The seminal paper on System



R [10] from the 1970s introduces cost defined in terms of CPU in-
structions and disk page accesses, and the majority of commercial
and open-source database systems have followed suit and imple-
mented a cost-based optimizer, including SQLServer, Teradata, Or-
acle, PostgreSQL and others. Some of these also offer the ability
to specify query hints [2, 5] to guide the optimizer in selecting an
optimal plan, thus avoiding mis-calculations in cost estimation. Tra-
ditional cost-based optimizers often rely on histograms for approxi-
mating the data distribution of numeric columns [20]. A histogram
typically divides the range of values into a series of intervals, and
stores the count of the number of values that fall into each interval.
Most systems support single-column histograms, and some have
support for multi-column histograms to better manage correlations
across columns [12, 16, 27]. An alternative to histograms is sam-
pling: the query is run on a sample of the data to approximate
cardinality of the full result [17, 23]. The framework we propose in
this paper - HBO - is an incarnation of the ideas behind cost-based
optimization, where we replace the cardinality estimator with a
more accurate one based on historical query runs.

Views on stats. Perhaps the closest idea to HBO has been prior
work on creating statistical views [14]. In this work, the DBMS
provides a "CREATE STATISTICS ON" command that allows users
to pre-compute statistics for a given subquery. During query opti-
mization, the engine uses the same idea behind view matching to
find whether there are statistical views for the query, and uses the
extracted stats to estimate cost. There are several main differences
between our and this work: [14] requires users and DBAs to pro-
actively create statistical views before those can be used, possibly
with the help with automatic stats view advisors [13], whereas in
our approach statistics are gathered automatically with every query
run. Statistical views also do not support random query expressions,
as they rely on view matching to determine matches. Last but not
least, view matching does not scale as well as our plan node hash-
ing, which means it may not be applicable in situations requiring
more than hundreds of unique query templates (which is easily the
case in large data infra orgs such as Meta and Uber).

Learned optimizers. Recent years have seen an explosion in
work on learned query optimization. One important aspect of these
covers learned cardinality estimation[18, 21, 32, 35, 36]. Learned
cardinality estimation techniques fall into two main categories: (1)
learned data models which treat cardinality estimation as a density
estimation problem and learn a joint data distribution of each data
point, and (2) learned query models, which learn a mapping function
between a SQL query and its cardinality on a database.

A third branch of learned optimization looks at learning the
optimal values for external knobs that the engine provides to guide
the optimizer [9, 24, 25]. While these have shown early promising
results, they also require an initial step to learn parameter values.
Moreover, they are limited to what the engine exposes as query
hints and the scope at which these can be applied: most engines
provide knobs only globally for the full query (as opposed to indi-
vidual operators). And for the engines where hints can be specified
at the level of individual operator, the learning step has a prohibi-
tive overhead due to the exponential number of parameter value
combinations for each node in the query tree.
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Query template extraction and plan hashing. Finally, the
ideas of plan hashing and query template extraction have been used
in other areas such as automated workload analysis [8, 19].

8 CONCLUSIONS AND FUTURE WORK

In this paper we described the history-based query optimization
framework in Presto and our initial findings from running it in pro-
duction in two large data infrastructure organizations. Our results
show that a significant number of queries benefit from historical
stats. The query optimizer can make better optimization decisions
due to the higher accuracy of historical stats vs traditional cardi-
nality estimation, and we show that this helps improve various
aspects of query performance, including CPU, latency and memory
utilization.

In the future we plan to extend HBO in a number of ways, in-
cluding making more optimizations cost-aware, as well as making
the framework more robust. In addition, we are looking to improve
the following areas of HBO:

Learning from failures: Currently HBO only tracks statis-
tics after a query finished successfully. Many failed queries are
from high memory usage due to bad join decisions/skew. HBO can
considerably improve user experience here - make failed queries
magically work after a retry. Based on our experience with users, a
failing query is often retried before considering manual optimiza-
tion. Failed queries often have incomplete statistics - making it
trickier to learn from them. HBO can learn hints from failed execu-
tions - as to which join side is larger, how much the skew is - and
fix them in the next run.

Tracking mispredictions: As HBO stores and reads statistics
from a stats store, it can also track the accuracy of prediction per
plan hash. If our hashing strategy leads to statistics with high
variance, we can mark related estimations as "low confidence". This
also provides a way to monitor accuracy of the framework over
time.

Better predictions on underlying data change: Currently,
HBO only returns an estimation if we find a similar run in the past
which processed roughly an equal amount of data. While keeping
many such runs, makes the coverage high - we can take it further
using statistical models like linear regression for cases where input
data differs too much. For example, its fair to assume output of
Scan+Filter operator will double when underlying data doubles.

Global costing: While today many of the cost-based decisions
of Presto are local, we are also investigating generalizing the query
optimization framework to keep a larger space of possible query
plans along the lines of Cascades [15] and doing global costing of
query plans. The HBO ideas presented in this paper are extensible
to that as well.
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