
DLRover-RM: Resource Optimization for Deep
Recommendation Models Training in the Cloud

Qinlong Wang∗
Independent Researcher

wangql1201@outlook.com

Tingfeng Lan∗
Yinghao Tang
Sichuan University

tafflan2001@gmail.com
yinghaotang2001@gmail.com

Bo Sang
Independent Researcher

xuanying2019@gmail.com

Ziling Huang
Yiheng Du

Sichuan University
youxingling1@gmail.com
yihengdu42@gmail.com

Haitao Zhang
Jian Sha

Independent Researcher
t12345@gmail.com
nash635@gmail.com

Hui Lu
The University of Texas at Arlington

hui.lu@uta.edu

Yuanchun Zhou
Chinese Academy of Science

zyc@cnic.cn

Ke Zhang
Independent Researcher
wang_ke@126.com

Mingjie Tang
Sichuan University
tangrock@gmail.com

ABSTRACT

Deep learning recommendation models (DLRM) rely on large em-
bedding tables to manage categorical sparse features. Expanding
such embedding tables can significantly enhance model perfor-
mance, but at the cost of increased GPU/CPU/memory usage. Mean-
while, tech companies have built extensive cloud-based services to
accelerate training DLRMmodels at scale. In this paper, we conduct
a deep investigation of the DLRM training platforms at AntGroup
and reveal two critical challenges: low resource utilization due to
suboptimal configurations by users and the tendency to encounter

abnormalities due to an unstable cloud environment. To overcome
them, we introduce DLRover, an elastic training framework for
DLRMs designed to increase resource utilization and handle the
instability of a cloud environment. DLRover develops a resource-
performance model by considering the unique characteristics of
DLRMs and a three-stage heuristic strategy to automatically allo-
cate and dynamically adjust resources for DLRM training jobs for
higher resource utilization. Further, DLRover develops multiple
mechanisms to ensure efficient and reliable execution of DLRM
training jobs. Our extensive evaluation shows that DLRover re-
duces job completion times by 31%, increases the job completion
rate by 6%, enhances CPU usage by 15%, and improves memory
utilization by 20%, compared to state-of-the-art resource scheduling
frameworks. DLRover has been widely deployed at AntGroup
and processes thousands of DLRM training jobs on a daily basis.
DLRover is open-sourced and has been adopted by 10+ companies.

PVLDB Reference Format:

Qinlong Wang, Tingfeng Lan, Yinghao Tang, Bo Sang, Ziling Huang,
Yiheng Du, Haitao Zhang, Jian Sha, Hui Lu, Yuanchun Zhou, Ke Zhang,
Mingjie Tang. DLRover-RM: Resource Optimization for Deep
Recommendation Models Training in the Cloud. PVLDB, 17(12): 4130 -
4144, 2024.

* Qinlong Wang and Tingfeng Lan contributed equally to this work. Jian Sha and
Mingjie Tang are the corresponding authors.

doi:10.14778/3685800.3685832

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/intelligent-machine-learning/dlrover.

1 INTRODUCTION

Deep learning based recommendation models (DLRM) are prevalent
in recommendation scenarios [18, 26, 33, 46, 51, 79]. For example,
Meta uses DLRMs for advertisement recommendation to optimize
ad content for individual users, aiming to maximize click-through
rates and advertising revenue [41]. The training of DLRMs at Meta,
Amazon, Alibaba, and AntGroup can account for over 50% of the
total AI training cycles in cloud data centers [8, 15, 20, 36].

A typical DLRM uses embedding tables to manage sparse cate-
gorical features (e.g., User IDs) and several deep neural networks

(DNNs) to improve the generalization of the models (§2.1). As the
accuracy of a DLRM often improves with larger embeddings, which
incorporate more feature data points, the size of DLRM embeddings
has been steadily expanding, reaching up to terabytes with billions
of embedding vectors [8, 35, 78]. Tech companies build extensive
cloud-based services to accelerate training these models at scale,
e.g., with thousands of computing nodes [48, 61, 66]. Unfortunately,
we observed from our cloud-based cluster that the resource uti-
lization of over 80% DLRM training jobs is under 50%, indicating
a significant underutilization and waste of computation resources.
Moreover, we observed that high instability in cloud environments
leads DLRM training to: 1) experience a high failure rate and 2)
frequently encounter abnormalities (e.g., stragglers) (§2.2).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685832

4130

https://www.acm.org/publications/policies/artifact-review-and-badging-current


(a) CPU time distribution. (b) Memory size over time.

Figure 1: (a) The operator’s time proportion in multiple

DLRM training jobs. (b) The memory demand of one job.

In this paper, we focus on developing a highly resource-efficient
and reliable DLRM training system, especially in a cloud environ-
ment, where failures are common and resource availability varies
dynamically. Such a training system should be capable of training a
multitude of DLRMs (e.g., 1,000s) concurrently with the following
key goals: maximizing resource utilization (e.g., CPU and mem-
ory), achieving rapid training speeds, and ensuring fault tolerance.
Achieving these stringent goals requires the training system to accu-
rately allocate computational resources to individual DLRM training
jobs and schedule these jobs in the cloud elastically and robustly.
However, the unique characteristics of DLRMs, in combination
with the dynamic nature of the cloud, make resource allocation and
scheduling for DLRM training jobs extremely challenging.

Unlike traditional compute-intensive deep learning (DL) models
used in computer vision (CV) and natural language processing
(NLP), DLRM training incurs massive I/O operations in addition
to its compute-intensive operations (e.g., matrix multiplication for
DNNs). These I/Os are largely due to frequent lookups to embedding
tables, consuming 30-48% of the training time (see Fig. 1(a)). Existing
schedulers [45, 57, 58], without considering such a unique blend of
I/O and computation operations in the DLRM training, fall short in
ensuring optimal resource utilization and training efficiency.

Another unique characteristic of DLRMs lies in that their embed-
ding tables are notablymemory-intensive. DLRMs can easily demand
tens of terabytes of memory (§2.1). As user-targeted applications
evolve, the size of embedding tables keeps increasing [40, 68]. For
example, the memory usage of a typical DLRM job can surge to
over 2.3TB within just 15 hours (see Fig. 1(b)). Consequently, there
is a significant risk of hitting out-of-memory (OOM) for a DLRM
job if the allocated resources cannot quickly adjust to its increased
memory demand. We observed that, in the production environment
of AntGroup, thousands of jobs (5% - 8%) had been derailed due
to OOM, leading to compromised user satisfaction and suboptimal
cluster performance.

The high instability of the cloud environment necessitates fre-
quent scaling resources to adapt to the ever-changing cloud [19, 34,
75]. To achieve this, traditional DL schedulers, like [45, 57], require
stopping a job and then restarting it with adjusted resources. This
stop-and-restart process often takes up to tens of minutes (§2.2),

highlighting the need for a more efficient approach. Additionally,
model training with elastic training frameworks may result in in-
consistent model accuracies due to stale gradients being submitted
[16] or disruption of training data (§2.2).

To tackle these challenges, we introduce DLRover-RM, a cloud-
based deep learning training system designed for DLRMs. DLRover-
RM takes the runtime training information into account for ac-
curately allocating and elastically scheduling resources for train-
ing jobs along with a bunch of novel mechanisms, including dy-

namic data sharding, flash-checkpoint, seamless migration, and pre-
adjustment-based, OOM prevention. Together, DLRover-RM attains
exceptional throughput, high resource utilization, and robust fault
tolerance. In summary, we have made the following contributions:

1) We build a resource-performance model by considering I/O
overhead and computation demands during DLRM training. With
this model, we design a three-stage algorithm that can dynamically
allocate resources during the whole cycle of DLRM training and
significantly reduce the job completion time.

2) We invent a dynamic data sharding mechanism to maintain
the model quality when scaling or a job failure happens in the
cloud. We further develop seamless migration and flash-checkpoint

strategies to reduce the overhead of scaling jobs. We also develop
an OOM-prediction mechanism to prevent OOM.

3)We implement DLRover-RM as a cloud-native auto-configuration
service and open-source all technical implementations. Thereby,
end-users can train DLRM jobs in the production environment
without concern for resource configuration and job failures.

4) We thoroughly evaluate DLRover-RM with thousands of jobs
collected from months of various DLRM training workloads in a
production environment equipped with more than 62K CPU and
3.24PB memory. The evaluation shows that DLRover-RM improves
the CPU utilization by 21.0% to 27.6% and memory utilization by
17.3% to 31.6%, and reduces job completion time by 30.9% without
compromising model accuracy.

2 BACKGROUND AND MOTIVATION

In this section, we briefly introduce DLRMs and the DLRM train-
ing platform at AntGroup (§2.1). We then discuss the key issues
when training DLRMs and the challenges to address them through
investigating the unique characteristics of DLRMs and sharing the
observations from our DLRM system deployed at AntGroup (§2.2).

2.1 DLRM Training at AntGroup

At AntGroup, DLRMs are extensively applied to scenarios such as
service/content search, marketing vouchers, Tab3 video recommen-
dation, and advertising [23, 74]. Within our cloud-based cluster,
DLRM training jobs account for more than 70% of the total training
jobs daily, consuming a significant amount of the cluster resources.
Optimizing DLRM training holds substantial importance for the
effective utilization of the cluster resources.
Overview of DLRM. Fig. 2 illustrates a typical model architecture
of DLRMs: First, it integrates fully connected deep neural networks
(DNNs) to capture continuous dense features like timestamps. Fur-
ther, it uses embedding tables to transform various categorical
sparse features, such as user and video IDs, into low-dimensional
dense representations. These embedding tables represent the sparse

4131



part of DLRMs, while the rest of the models (e.g., DNNs) repre-
sent the dense part. DLRMs take both sparse categorical and dense
features as inputs for model training.

Figure 2: A typical DLRM architecture consists of neural

networks, which make up the dense part, combined with

memory-intensive embedding tables, forming the sparse

part. The portion within the dashed box highlights exam-

ples of embedding table lookup in forward propagation of

DLRM.

As illustrated in Fig. 2, each categorical feature has its own em-
bedding table. A data point, or an instance, for a categorical feature
is mapped to a specific row in this table where its embedding vector
is stored. For instance, consider a user with ID 3, representing an
instance of the "User IDs" feature. The embedding for this user is
located at the index (hash(3) modM) within the "User IDs" embed-
ding table, which consists ofM rows. Embedding vectors that are
being accessed undergo an integration process into a singular dense
vector through element-wise pooling operations. These operations
typically use either the sum or maximum value of the vectors. This
pooled embedding vector is further concatenated with the inter-
mediate output derived from the dense features. This combined
output forms the input for the subsequent DNN layers. In practice,
a DLRMmight comprise thousands of embedding tables, with some
tables having millions of rows [27].

Table 1: DLRM training cost comparison between the

hybrid(GPU-CPU) and CPU-only approach on AWS.

Model Device Time
Unit

Price

Samples/

Price

CPU

Util

GPU

Util

Wide&
Deep

CPU 1.41h 0.53usd/h 3.4m/usd ≈ 33%
Hybrid 0.98h 3.59usd/h 1.9m/usd ≈ 26% ≈ 3%

DeepFM
CPU 1.53h 0.53usd/h 3.1m/usd ≈ 34%
Hybrid 0.95h 3.59usd/h 2.1m/usd ≈ 28% ≈ 4%

At AntGroup, we use the parameter server (PS) architecture [31]
for DLRM training as it serves as a de facto framework for this
purpose [8, 21, 25, 38, 77].
Hardware Selection: CPU-only. In practice, there are two ap-
proaches in training recommendation models: 1) a CPU-only ap-
proach by exclusively using CPUs; 2) a CPU-GPU hybrid approach

by employing CPUs for handling the embedding data while GPUs
for executing data-parallel neural networks [9]. While the CPU-
GPU approach is the preferred choice for companies like Meta
[8, 27], we lean toward the CPU-only approach due to the follow-
ing reasons: First, CPU resources are more readily accessible and
cost-effective compared to GPUs in a production environment – our
clusters have an abundance of CPU resources, e.g., over 200k cores,
whereas housing fewer than 1,000 high-performance GPU cards.
Further, given the scarcity of GPU resources, it is desired to maxi-
mize their utilization. However, DLRM training involves intensive
I/O operations, including 1) transferring embedding data between
CPUs and GPUs (up to 22% [9] of the total training time), and 2)
conducting a myriad of lookup operations to the embedding tables
(over 30% of the total training time). Such massive I/O operations
render GPUs underutilized. As shown in Table 1, when training the
two most common DLRM models at AntGroup [11, 54, 74, 74]: 1)
the average GPU utilization under the CPU-GPU hybrid approach
is lower than 3%, while 2) the CPU-only approach can train more
data at a unit price. Therefore, we use CPU to train DLRMs and
base the remaining discussion on the CPU-only approach.
Cloud Environment: Workload Consolidation. Table 2 shows
that at AntGroup, different types of jobs (i.e., training, serving, and
stream processing jobs) are running in the same cluster and sharing
the resources [52]. For isolation and security reasons, the DLRM
system is unaware of the resource usage by other services, as well
as the overall resource consumption of the cloud. That said, the
DLRM system has no direct control over the cluster resources and
has to request resources from the cluster resource scheduler when
scheduling or scaling out a DLRM training job.

Table 2: Statistic of Jobs at AntGroup

Job Type Count vCPU CPU Util MEM

Training 62K 600K 20% 0.9PB
Stream Processing 43K 450K 15% 0.63PB
Inference Service 3K 300K 10% 0.41PB
Search Service 0.9K 200K 15% 1.2PB
Other 2K 50K 10% 0.1PB

2.2 Challenges of DLRM Training at AntGroup

By collecting significant training task data from the largest ma-
chine learning platform at AntGroup, we identified two primary
issues with DLRM training: low resource utilization and high cloud

instability. In this section, we provide a detailed analysis of these
two problems and highlight the challenges in addressing them.
Low Resource Utilization. As depicted in Fig. 3, over 80% of the
jobs in our cluster had CPU and memory utilization rates below 50%
back in 2021, resulting in a significant waste of cluster resources.
The core factor causing this is suboptimal configurations by users.
Specifically, in a typical cloud environment, cloud users need to
specify a fixed amount of resources before deploying their cloud-
based services [2, 57, 60]. Similarly, our previous training system
running in a cloud-based cluster also needed such inputs, i.e., re-
source configurations, from system users (e.g., ML engineers or data
scientists). Such resource configurations were used to guide the

4132



training system for resource allocation during DLRM training. Users
typically resorted to a time-consuming trial-and-error approach to
determine these configurations – by manually (re-)running their
jobs multiple times with varying resource configurations in search
of the "optimal" one. Oftentimes, these user-provided configura-
tions tended to ask for "more-than-needed" resources to avoid job
failures during training, resulting in inefficient use of resources.

To overcome this, instead of relying on user-provided subopti-
mal resource configurations, we need an approach allowing the
DLRM system to automatically allocate and dynamically adjust
resources for training jobs for high resource utilization. Note that
for distributed training, resource adjustment includes changing the
number of nodes (horizontal scaling) and the resources of each node
(vertical scaling) [60]. This is nontrivial due to two main challenges:

• Timely Meeting Memory Demands. The memory require-
ment for storing embedding tables can surge up to 10s of ter-
abytes [27] in a short period. As shown in Fig. 1(b), the memory
usage of embedding tables in a typical DLRM model can spike to
more than 2.3TB within 15 hours. This renders DLRMs vulnera-
ble to out-of-memory (OOM) issues if memory allocation cannot
timely meet the model’s demands – we observed 5%-8% of jobs
suffering from OOM in our production environment, greatly
affecting the overall cluster resource efficiency.

• Precisely Allocating CPU Resources. In DLRM training, ex-
tensive I/O operations impact both model training efficiency and
job CPU utilization. As shown in Fig. 1(a), the lookup operations
can account for 30%-48% of the training duration in a single itera-
tion. Conventional deep learning resource schedulers [45, 57, 58]
fall short of handling this unique training process, often over-
looking the lookup latency and allocating inappropriate CPU
resources for training jobs.

High Cloud Instability. Unlike a dedicated cluster (for a single-
purpose service), the cloud environment has a much higher job
failure rate [39, 69]. Statistically, we observed that the daily failure
rate for a simple job (e.g., hosted in a single Kubernetes pod) in our
cloud-based cluster is 1.5% due to network errors, node malfunction,
etc. The failure rate increases exponentially for a more complex
distributed job with hundreds of components. For example, the
daily failure rate for a job with 50 pods increases dramatically to
1 − (1 − 0.015)50 = 53.03%. Moreover, in our cloud-based cluster,
different services co-exist, sharing the same cloud resources (§2.1).
Compared to other higher-priority services, e.g., online services,
DLRM training is typically labeled with a lower priority. When
higher-priority services encounter workload spikes, the cluster
scheduler preempts resources allocated to the DLRM system, re-
sulting in the failure of DLRM training jobs or the emergence of
stragglers (e.g., slow workers) due to insufficient resources.

To address this, our system needs the capability to 1) frequently
scale up/down training jobs to adapt to the changing cloud environ-
ment and 2) detect failed nodes and recover them swiftly. However,
this is also not trivial due to the following two main challenges:

• Ensuring Consistent Model Quality. Elastic training frame-
works can enhance training throughput by dynamically scal-
ing training jobs up or down. However, elasticity operations
(e.g., increasing/decreasing the number of worker nodes and/or
adding/shrinking computational resources to a worker) can also

Figure 3: DLRM jobs’ resource utilization and pending time

derived from cluster traces in AntGroup.

lead to inconsistent job configurations (e.g., batch size and the
number of parallel workers) and/or changed data sequences. For
example, some slow workers may submit too many stale gra-
dients to PSes, causing instability in parameter updates; some
workers might miss specific data batches due to failures, or the
training data sequence could be disrupted during scaling opera-
tions (§5.1). These inconsistent configurations and disruptions
could further compromise the consistency of model training
quality [16, 32], especially in asynchronous training [12].

• Providing Fast Elasticity. Swift scaling operations are essen-
tial for accelerating jobs (e.g., by allocating more resources) and
managing instability (e.g., by addressing slow workers in a job
group). Conventional DL schedulers [29, 45] involve a stop-and-
restart operation to scale up/down a job – by saving the job’s
checkpoint (to hard disks) and restarting the job with adjusted
resources/configurations, e.g., reallocating training data (to scale
workers) or re-partitioning the model (to scale PSes). The stop-
and-restart operation is very costly: First, checkpointing a job to
remote disk storage (RDS) typically takes 5-10 minutes [65]. Fur-
ther, the scheduler takes another 5-10 minutes to complete the
necessary preparation before restarting, including submitting
a new job YAML, requesting resources for the new pods, pulling
images from the registry, and re-establishing the code environ-
ment. Under conditions of resource scarcity (e.g., daytime [19]),
the duration can extend beyond 30 minutes. Last, loading the
checkpoint from RDS and restarting the training takes another
5-10 minutes. Altogether, the whole process could consume tens
of minutes, introducing high overhead for DLRM training (§5.2).

3 OVERVIEW OF DLROVER

In this section, we present the architecture overview of DLRover1

and highlight its key design objectives.
Design Objectives.DLRover focuses on efficiently training a mul-
titude of DLRMs simultaneously in a dynamic, shared cloud en-
vironment. It dynamically schedules computational and memory
resources for DLRM training jobs to optimize training throughput
and resource utilization while mitigating the job failure rate. The
design objectives of DLRover are to answer the two key questions:

• AutomatedResource-PerformanceOptimization:How can
DLRover accurately allocate resources for DLRM training jobs –

1In this work, "DLRover" and "DLRover-RM" are used interchangeably.

4133



Figure 4: Overview of DLRover and Model Training Workflow

without user-handcrafted configurations – to maximize training
throughput and minimize resource cost (§4)

• High Stability Assurance: How does DLRover overcome the
dynamic nature of the cloud environment to achieve robust
execution of DLRM training jobs with low job failure rate and
high fault tolerance (§5)

ArchitectureOverview.DLRover is based on the parameter server
architecture (see §2.1) in our production cloud environment. As
illustrated in Fig. 4, DLRover consists of two main components:
1) a cluster-level central coordinator, called cluster brain; and 2) a
group of job-level distributed training agents, called job master:

• The cluster brain comprises two subcomponents: the optimizer

and config database (config DB). The optimizer receives the run-
time profiles (e.g., CPU and memory utilization) of training jobs
from each profiler periodically. With such information, the opti-
mizer creates resource plans and sends them to the corresponding
executors. Meanwhile, the config DB stores the information as
the historical job traces.

• Each job master also comprises two subcomponents: the pro-
filer and executor. The profiler monitors and collects runtime
information for each job (i.e., from its workers and PSes) in a
fixed interval and reports it to the optimizer of the cluster brain.
The executor feeds data shards (e.g., a slice of training data) to
the job’s workers (e.g., hosted in pods) for training.

Life Cycle of Training. As detailed in Fig. 4, upon submission of
a job by the user, the cluster brain quickly learns the job’s charac-
teristics – by leveraging relevant historical data from the config DB
– and then generates an initialization (warm-starting) resource plan
with the relative configuration (e.g., the number of CPU for each
worker/PS) and similarity information (e.g., time series informa-
tion)( 1 ). Note that, at this moment, we choose a reasonable con-
figuration near the optimal configuration (hence, with fewer scaling
operations and shorter scaling times for auto-scaling) instead of

pursuing an optimal configuration. Subsequently, the cluster brain
sends the warm-starting resource plan to the respective job master

for job initialization.
During job running, the profiler profiles the job’s runtime statis-

tics and reports them back to the optimizer periodically. With such
updated runtime information, the optimizer can generate a refined
resource plan, upon which the executor dynamically adjusts the
number of workers and/or PSes, and their resource configurations
accordingly, i.e., the execution plan ( 2 ).

DLRover further provides a set of reliable instability handling
mechanisms to ensure the robust execution of training jobs ( 3 ).
For failed/slow workers, DLRover implements a dynamic data

sharding mechanism to redistribute missed data and rebalance
workloads between workers (§5.1). For failed/slow PSes, DLRover
devises a seamless migration with in-memory checkpoint, named
flash-checkpoint, to minimize the overhead in failure recovery and
job migration (§5.2). We will look closer at this three-stage job life
cycle of DLRover ( 1 - 3 ) in our three-stage algorithm (§4.3).

4 EXPLORING OPTIMAL CONFIGURATIONS

In this section, we present how DLRover accurately allocates re-
sources for DLRM training. It first builds a resource-performance
model for DLRM training (§4.1). Then it formulates the optimizing
objective (§4.2). Finally, it proposes a novel three-stage algorithm
to guide resource allocation (§4.3).

4.1 Resource-Performance Modeling

Throughput Modeling. The throughput of a DLRM training job
represents the number of samples processed per unit of time. To
model and predict the throughput, we divide one iteration time
Titer into two parts: computation time Tcomp and communication
time Tcomm . Let w denote the number of workers. Each worker

4134



consumes a mini-batch of data with sizem per iteration. Then, we
formally model the throughput, denoted as Ψthp , as follows:

Ψthp =
w ·m

Tcomp +Tcomm
(1)

Note that the batch sizem remains unchanged during training.
Computation Time Modeling. The computation time Tcomp in-
cludes two parts: the workers compute gradients (Tдrad ) and then
the PSes update parameters using corresponding gradients (Tupd ).

In each iteration, the gradient computation workload is pro-
portional to the number of samples processed (m). The gradient
computation rate is proportional to the number of parallel comput-
ing CPU cores in each worker (λw ). Since the gradient update time
(i.e., Tдrad ) can be calculated as the workload divided by the rate,
we formulate Tдrad as:

Tдrad

(
αдrad , βдrad

)
= αдrad · m

λw
+ βдrad (2)

where αдrad and βдrad are learnable parameters representing how
Tдrad scales withm and λw linearly.

The parameter updating workload is proportional to the number
of workers (w) as each worker computes one copy of the gradient
and submits it to the PSes. The workload is also inversely propor-
tional to the number of PSes (p) as all the PSes share these gradients.
The update rate is proportional to the number of parallel computing
CPU cores in each PS (λp ). Therefore, we formulateTupd as follows:

Tupd

(
αupd , βupd

)
= αupd · w

p · λp + βupd (3)

where αupd and βupd are learnable parameters representing how
Tupd scales with p and λp linearly.
Communication Time Modeling. Communication time Tcomm

includes two parts: 1) Workers pull parameters from PSes and push
gradients to PSes to synchronize parameters (i.e.,Tsync ); 2)Workers
lookup embeddings from PSes for gradient computation (i.e.,Temb ).

For parameter synchronization, the network traffic (the amount
of network communication data) between workers and PSes is
twice the size of the model parameters (M) because both pulling
and pushing operations transfer one copy of the data with sizeM .
The network bandwidth B is shared by w workers. The pushing-
and-pulling workload is divided by the number of PSes p as the
model parameters and gradients are distributed across all PSes.
Therefore, we formulate Tsync as:

Tsync (w,p) = αsync · M/p
B/w + βsync (4)

where αsync and βsync are learnable parameters representing how
Tsync scales with w and p linearly. Here, the model size M and
network bandwidth B are considered constants during a short time.

For embedding lookups, the network traffic is proportional to
the samplesm and the dimensions of the embedding table D, and it
is shared by all PSes as the embedding table are distributed across
PSes. Therefore, we formulate Temb as:

Temb (αemb , βemb ) = αemb · m · D
p
+ βemb (5)

where αemb and βemb are learnable parameters representing how
Temb scales withm and p linearly. Here, the embedding table di-
mension D is fixed (hence being a constant) in the initialization of
the embedding table.

Finally, we formally model throughput Ψthp with a function F
represented by the tuple of learnable parameters as follows:

Ψthp = F
(
αдrad , βдrad ,αupd , βupd ,αemb , βemb ,αsync , βsync

)

(6)

4.2 Optimization Formulation

Given the resource-performance model in Eqn. 6, we formulate
our optimization objective based on the "Resource Cost" (i.e., for
additional allocated resources) and the "Throughput Gain" (i.e., from
additional allocated resources) when scaling DLRM training jobs.
The goal of our optimization is to minimize the "Resource Cost"

while maximizing the "Throughput Gain".

Resource Cost Function (RC). The resource scaling set, denoted
as A, represents the additional allocated resources to speed up a
training job (e.g., the number of CPUs). Each type of resource in
the set is denoted as ar (i.e., A = {a0,a1, ...,ar }). Let Money(ar )
denote the expense a user should spend to allocate resource ar .
The "Resource Cost" can be formulated as the sum of all resources’
expenses (e.g., CPU and memory) :

RC(A) =
∑
ar ∈A

ar ×Money(ar ) (7)

Throughput Gain Function (TG).We denote "Throughput Gain"
as the increased throughput that benefits from additional allocated
resources. To illustrate, if we add 2 CPUs to aworker, the throughput
might increase by 10 samples per second, namely the throughput
gain. However, increasing workers’ resources, especially in cloud
environments, practically comes with overheads (e.g., the time
required to start a new worker equipped with 32 CPUs and 128GB
of memory). Therefore, we formulate the Throughput Gain as:

TG(A) = ΔΨthp −Overhead(A) (8)

Here, ΔΨthp represents the ideal increase in throughput if we ne-
glect scaling overheads. Overhead(A) is the wasted training time
caused by scaling the job with A. This is estimated through statis-
tical analysis based on the resource information of historical jobs
within the cluster (e.g., the time required to start a worker/PS).

Multi-Objective Optimization. Given the two functions Eqn. 7
& 8, our goal is to find an optimal resource allocation set A, which
minimizes the "Resource Cost" while maximizing the "Throughput
Gain". We formulate the optimization problem as follows:

Objective: argmin
A

(RC(A) , 1

TG(A) ) (9)

Given that Equ.9 is neither linear nor convex, the problem can-
not be solved using linear programming or convex optimization
techniques and is NP-hard in general. To address this, we develop
a heuristic auto-scaling algorithm (see §4.3).

4135



4.3 3-Stage Auto-Scaling Optimization

Intuition. Given a DLRM training job, we first profile its runtime
information for fitting the resource-performance model (Eqn. 6).
Based on the model, DLRover generates an optimal resource plan
with an auto-scaling algorithm, aiming to achieve the optimization
objective (Eqn. 9) (i.e., Scaling Stage 2 in Fig. 4).

To make the job training more robust in practice, we design a
pre-scaling stage (stage 1 ) to warm-starting the job and a post-
scaling stage (stage 3 ) to handle the cloud instability. Specifically,
compared to scaling the training job from scratch (i.e., cold start),
users hope to see the submitted job performing well upon sub-
mission rather than waiting through a prolonged scaling process.
Thus, we introduce a pre-scaling stage to allocate suitable start-up
configurations. On the other hand, even provided with optimal re-
sources, training jobs still encounter performance degradation (e.g.,
stragglers) due to cloud instability. Consequently, we introduce a
post-scaling stage to ensure smooth training in the cloud.

Algorithm 1: Warm-Starting

Input: Historical Configurations D, Incoming Job J,
Exponential Smoothing Function E ,
Smoothing Factor μ (0 < μ < 1)

Output:Warm-Starting Resource Allocation Āk−1

Identify Top-K Similar Jobs of J With MetaData:

1 {A0,A1, ...,Ak−1} ← top-k similar job configuration in D;

Initialize Smoothing for Configuration:

2 Rank {A0,A1, ...,Ak−1} with similarity;

3 Initialize smoothed configuration: Ā0 = A0;

4 for i = 1 to k − 1 do
5 Apply E to get the smoothed configuration Āi :

6 Āi ← μ ×Ai + (1 − μ) × Āi−1;
7 end

8 return Āk−1;

1 Pre-scaling Stage: Warm-Starting.

As shown in Algorithm 1, we adopt a warm-starting algorithm
to identify a suitable start-up resource configuration. We first use
the job’s features (e.g., model metadata) to collect top-k similar jobs.
Specifically, given historical job configurations stored in the Con-
figuration Database D, the algorithm first calculates the similarity
in each type of feature and then gets the top-k similar job config-
urations where the configuration of i-th similar job is denoted as
Ai (Ak−1 is the job configuration with highest similarity). We first
initialize the target configuration set as Ā0 = A0. Subsequently, we
use the Exponential Smoothing Function E to generate the smoothed
configuration Āi in an iterative manner. Formally, for each Ai , we
calculate Āi as follows:

E : Āi = μ ×Ai + (1 − μ) × Āi−1 (10)

where the smoothing factor μ balances the influence of historical
configurations, determining the weight between the job’s config-
uration Ai and the result of last iteration Āi−1. Lastly, we use the
final iteration result Āk−1 as the start-up job configuration.
2 Scaling Stage: Auto-Scaling.

We aim to auto-scale training jobs in this stage according to our
resource-performance model (Eqn. 6). Auto-scaling includes three
steps: 1) online model fitting, 2) job-level resource plan candidate
generation, and 3) cluster-level weighted greedy selection.
OnlineModel Fitting.As detailed in §4.1, we represent the through-
put of a training job by a group of α and β parameters (e.g., αдrad ,
βдrad ). To build our resource-performance model, these parame-
ters can be fitted based on runtime profiles. DLRover continuously
monitors the time taken for each iteration Titer to measure the
throughput Ψthp as in Eqn.1. At a fixed interval, DLRover refines
the groups of α and β using the accumulated data, minimizing the
root mean squared logarithmic error (RMSLE) between the theoret-
ical model and the actual data (by employing Non-Negative Least
Squares (NNLS)[4]). Note that all parameters (α , β) are bound to
remain non-negative.
Job-Level Resource Plan Candidates Generation. After model
fitting, we learn the function F as Eqn. 6 representing the relation
between resource allocation A and throughput Ψthp . We utilize
NSGA-II [3] to generate resource allocation plans that meet the
Pareto Frontier. The Pareto Frontier represents the set of all optimal
allocations that cannot be improved on one dimension without
worsening another. For example, we can not increase "Throughput
Gain" without increasing the "Resource Cost". NSGA-II is an evolu-
tionary algorithm known for its rapid convergence to the Pareto
Frontier in low-dimensional multi-objective problems.
Cluster-Level Weighted Greedy Selection. With all the opti-
mization plan candidates for each job, we employ weighted greedy

selection to determine the final execution plan for each job. We
denote the "Resource Efficiency" for allocating resources Aj to a spe-
cific job j as RE(Aj ). RE(Aj ) is a function of the "Throughput Gain"
we get from the allocation, normalized by its associated "Resource

Cost", mathematically represented as:

RE(Aj ) = TG(Aj )
RC(Aj ) (11)

To determine a set of efficient cluster-wide resource allocations,
we maximize the weighted benefit sum of each job:

Weighted Greedy: argmax
AJ

∑
j ∈J

RE(Aj ) ·WG(Aj ) (12)

subject to:
∑
j ∈J

Aj ≤ S (13)

Here, J represents the jobs needing reallocation; S denotes the
total resources;WG(Aj ) denotes the priority value determined by
a range of priority algorithms tailored to the cluster’s preference.
In our cluster, we use the remaining time for each training job
(represented by the remaining samples divided by the throughput)
to calculate the weightWG(Aj ) as follows:

WG(Aj ) = 1(
Φ
j
sp/ΨAj

thp
+ ϵ

)ρ (14)

Here, Φjsp represents the number of the remaining samples to

be trained in the job j. As ρ → 0,WG(Aj ) smoothly approaches 1
for every job j, which means we consider the weights of all jobs

4136



to be equal. When ρ → ∞, WG(Aj ) can prioritize jobs with a
shorter completion time. In contrast, as ρ → −∞,WG(Aj ) prioritize
jobs with longer completion time. A cluster operator may select a
suitable value for ρ, based on practical priorities. At AntGroup,
we choose ρ = 2.5 as a reasonable value to complete shorter jobs
quicker and release the resources. Additionally, ϵ denotes a very
small value used to prevent division by zero.
3 Post-scaling Stage: Instability Handling.

During the auto-scaling phase (stage 2 ), we assume that the
job is interference-free. Yet, in practical cloud environments, this
assumptionmight not hold as discussed in §2.2. Therefore, DLRover
involes many techniques to handle various cloud instabilities in the
post-scaling stage (stage 3 ). We highlight some key instability
issues and the techniques adopted by DLRover to address them in
the following (with more details in §5).
Worker Stragglers. In heterogeneous clusters, certain worker
pods may be assigned to physical machines with slow hardware
(i.e., low-frequency CPU and/or low-speed memory) or be hindered
by high-priority pods due to resource contention. These worker
stragglers can result in submitting stale model gradients to the
parameter servers, leading to decreased model accuracy and longer
training time [16]. To address this, DLRover implements a dynamic

data sharding mechanism to minimize the discrepancy in iteration
rounds among workers (see §5.1).
PS Stragglers. Our DLRM jobs run on the TensorFlow framework,
which determines parameter allocation based on tensors or multi-
dimensional arrays. The size of tensor-based parameters assigned
to PSes can differ substantially, resulting in unbalanced workloads
[7]. Consequently, PSes performing large matrix multiplications
with more allocated parameters experience significantly higher
CPU loads, resulting in the PS stragglers. To address this, we adopt
DeepRec [6] to ensure that the embedding parameters are evenly
distributed across the new set of PS nodes.
ScalingOverhead.As formulated in Eqn. 8, scaling overhead plays
an important role in workload migration. To speed up the migration
process, DLRover introduces a seamless migration mechanism to
mitigate the scaling overhead (see §5.2).
Out of Memory Problem. Uneven allocation and high memory
consumption from large embedding tables can lead to out-of-memory
problems in PSes. To address this, DLRover invents aOOMpredition

mechanism (see §5.3).

5 HANDLING INSTABILITY

DLRover’s design draws upon the collective insights and practices
from the realm of distributed/training systems. In this section, we
focus on the key mechanisms developed by DLRover to enhance
the performance and reliability of the DLRM training system.

5.1 Dynamic Data Sharding

DLRover introduces a dynamic data sharding mechanism that
enables fine-grained data serving by partitioning training data
into numerous small shards of various sizes. These data shards can
be on-demand, dynamically assigned/reassigned to 1) slow work-
ers (i.e., stragglers) to balance their paces of data processing and
model updates with their peers for consistent model quality; and 2)
new/healthy workers for fast elasticity or fault tolerance.

Figure 5: Dynamic data sharding.

Data Sharding of DLRover. Traditionally, training data are (stati-
cally) partitioned and distributed among workers at the beginning
of job training. In contrast, DLRover splits the dataset into numer-

ous, much smaller, and variably-sized shards (e.g., 64, 128, or 256 data
batches), each labeled with a unique index; DLRover then manages
the data serving by delivering such fine-grained data shards to the
corresponding worker on-demand during a worker’s life cycle.

Specifically, as illustrated in Fig. 5, data shards are organized
within a shards queue. Upon initiating job training, a worker fetches
the required data shard (by its index) from this queue. Note that
workers are initially assigned comparable workloads, as determined
by the quantity of data shards and the number of data samples
within them over a fixed time interval. Throughout the training
process, workers dispatch heartbeat packets at regular intervals to
the job master (Fig. 4), which include the number of data samples
they have processed, named progress offset. These heartbeat pack-
ets and the progress offsets serve three critical functions: 1) They
signal that the worker is operational and active. Conversely, this
mechanism is employed to identify workers that have failed. 2) The
job master uses the progress offset to gauge the worker’s training
progress and determine if it is falling behind – i.e., identifying any
straggler if the offset is noticeably lesser than its peers. 3) Upon
completion of the designated data shard, the worker sends its final
progress offset to the job master, indicating the completion of that
shard’s processing. Subsequently, the worker acquires a new shard
from the shards queue to proceed with the training.
Failure Recovery. Once the job master does not receive the heart-
beat package from a worker for a reasonably long time, it is identi-
fied as a failure event. In the event of a worker failure (highlighted
in red in Fig. 5), the job master re-joins the unfinished data shard(s)
of the failed worker to the shards queue, awaiting redistribution to
another healthy worker. This mechanism simply ensures that the
training job consumes the training data without any data omission
or duplication, guaranteeing the model’s consistent quality.
Handling Stragglers. Throughout job training, the job master
also keeps track of the progress offsets each worker provides. A
worker is labeled a straggler if it lags significantly behind its peers
(highlighted in orange in Fig. 5). In such cases, the system mitigates
the issue by reassigning the slower worker a smaller workload,
such as providing a data shard with fewer batches (e.g., scaling

4137



down from a shard with 256 batches to one with 128). This way,
the system can dynamically tailor the volume of data samples a
slower worker has to process before it submits its gradients to the
PSes. Consequently, it enables the straggling worker to align its
gradient submission rate with others, preventing the submission of
stale gradients and maintaining consistent model quality.
Fast Elasticity. Partitioning data into smaller data shards and
adopting the shards queue ultimately gives rise to the benefit of
enabling fast elasticity because any new worker – i.e., after a stop-
and-restart with adjusted CPU/memory resources – can simply
retrieve a data shard from the shards queue without the process of
data re-partitioning and redistribution among all workers.

5.2 Seamless Migration

DLRover develops a seamless migrationmechanism to minimize re-
source scaling overhead during training by strategically overlapping
the scaling progress with ongoing training activities. This approach
effectively reduces training downtime associated with worker/PS
initialization and delays in allocating new resources. To further
reduce the scaling overhead, DLRover invents a flash-checkpoint
mechanism, which accelerates checkpointing through the use of
shared memory and asynchronous data persistence.

Figure 6: Seamless Migration.

Seamless Migration. Scaling resources up/down conventionally
involves a stop-and-restart operation: As shown in Fig. 6, the migra-
tion progress (w/o DLRover) � stops the workers/PSes and check-
points the model parameters in (remote) persistent storage (e.g., the
RDS at AntGroup); � deploys and initializes new PSes and work-
ers based on the updated resource plans – including adjusting the
number of worker/PS pods and/or their allocated resources, pulling
images of worker/PS pods, and launching the new worker/PS pods;
and � finally loads the checkpoints from the persistent storage
and resumes the training job. While being straightforward, the
stop-and-restart operation results in nontrivial pending time (e.g.,
up to tens of minutes), especially in the cloud environment (§2.2).

We observe that such a synchronous stop-and-restart operation
can be decoupled into two parallel ones. Initially, rather than begin-
ning with step �, DLRover starts initializing and deploying new
workers and PSes (i.e., �) while allowing the "old" workers/PSes

to proceed with the ongoing training job. Once all the new work-
ers/PSes are ready to use, DLRover performs steps � and �, during
which training jobs must be paused. To further speed up the critical
path (� and �), DLRover invents the flash-checkpoint approach.
Flash-checkpoint. In the production environment of AntGroup,
the RDS services are commonly shared among various internal
services, each allocated a limited bandwidth. This, unfortunately,
prolongs the critical path of DLRover’s migration (� and �). Unlike
checkpointing for fault tolerance, which focuses on data persis-
tence, checkpointing during the migration (of workers and PSes in
DLRover) should emphasize speed over strong persistence. This in-
sight motivates DLRover to leverage a distributed caching service
(at AntGroup [5]) to enhance migration efficiency, called flash-

checkpoint. During migration, DLRover checkpoints (�) or loads
(�) model parameters via the caching service. As the bandwidth
and access speed of the caching service is much faster than the RDS,
the checkpointing process takes much less time (e.g., less than 1 sec-
ond for a 20GB model). Further, the caching service facilitates data
sharing between new and old workers/PSes when they are located
on the same physical node, eliminating network transmission.

Note that DLRover has a separate RDS-based checkpointing
mechanism for job-level and system-level fault tolerance (i.e., to
recover a job or the system from failures). The flash-checkpoint

mechanism, though separately, enhances the RDS-based check-
pointing by flushing model parameters from the caching system to
the RDS asynchronously (i.e., more update-to-date checkpoints).

5.3 OOM Prevention

DLRover employs a prediction mechanism for preventing out-of-
memory (OOM) via modeling the dynamics of memory usage. After
modeling the memory usage, DLRover can use it to predict memory
usage and check if PSes would exceed the memory capacity before
the job completion (e.g., 10,000 steps to complete). If an OOM error
is estimated to occur within the job completion step, DLRover
scales the PSes with larger memory capacity. We omit the thorough
analysis due to space limitations, please refer to our technical report
[62] for more details.

6 EVALUATION

Evaluation Environments.We thoroughly evaluated DLRover
using both a small-scale (and more controlled) cluster and produc-
tion environment at AntGroup. 1) The small-scale cloud-based
cluster has 20 CPU servers, each equipped with two 16-core Intel
Xeon E5-2682 @2.5GHz CPU and 192GB RAM. All experiments
were conducted on a Kubernetes-managed cluster. 2) We further
evaluated DLRover by deploying it in our production environment.
The cloud-based cluster provides ∼1.6 million CPU cores, 3.24 PB
of memory, and 344 PB of disk storage. Different types of jobs
(e.g., training, serving, and stream processing) are sharing these
cloud-based resources.
Workloads.We employed three representative DLRM models at
AntGroup [11, 54, 74, 74]: 1) Model-X: Wide & Deep [13]; 2)
Model-Y: xDeepFM[33], and 3) Model-Z: DCN[63]. We measured
the performance of DLRover on Criteo dataset [1]. All models were
implemented in TensorFlow 1.13, and each job had the same batch
size of 512 with 200,000 training steps.

4138



Comparison Baselines. The evaluation covers two primary base-
lines: 1) w/o DLRover: the general distributed framework (e.g.,
Kubeflow) used in the cloud [2] without DLRover support. In this
baseline, each jobâĂŹs resources needed to be manually config-
ured. To show the effectiveness of DLRover, we first well-tuned
the resource configuration of this baseline and compared it with
the support of DLRover (i.e., w/ DLRover). 2) The state-of-the-art
deep learning training job schedulers for CPU-only scenarios (i.e.,
as discussed in §2, DLRover is designed for CPU-only hardware),
including Elastic Scheduler (short as ES) [43] and Optimus [45].
These schedulers are well-designed for traditional deep learning
models in NLP and CV. Note that, both ES and Optimus add or re-
move a fixed number of nodes each time, while ES only modulates
workers and Optimus adjusts PS or workers.
Metrics.We focus on four kinds of metrics. 1) Job Completion Time

(JCT): the end-to-end model training time (the shorter is better); 2)
Job Completion Rate (JCR): the proportion of successfully completed
jobs to the total jobs submitted within a defined timeframe. A higher
JCR indicates efficient job processing and a lower fault ratio; 3) CPU
Utilization Rate (CUR): the workload processed by the CPU within
a specified time period; and 4) Memory Utilization Rate (MUR): the
volume of system memory consumed during operations.

6.1 End-to-End System Performance

In this section, we demonstrate the end-to-end performance of DL-
Rover within the small-scale cluster, which eliminates the impact
of cloud instability and ensures a more fair comparison.
DLRover Nears Well-Tuned Configurations. To show the ef-
fectiveness of DLRover, we manually tuned the resource configu-
rations for jobs without the support of DLRover until they almost
reached the best throughput. Fig. 7 shows that DLRover yields
comparable JCTs to well-tuned settings. For instance, the JCT for
model-Xwith DLRover is 27.74minutes – 1.4% higher than thewell-
tuned counterpart. Note that manual tuning is a time-consuming
trial-and-error approach. For example, for Model-X, we re-run the
job for more than 10 times to achieve its optimal configuration. The
results demonstrate that DLRover’s three-stage algorithm (§4.3)
can accurately capture/allocate the resource demands for different
types of DLRM training jobs.
DLRover Beats Traditional Schedulers. Fig. 7 depicts that jobs
under DLRover consistently achieve shorter JCT than ES and Opti-
mus. On average, there is a 17.7% or 28.5% improvement compared
with ES or Optimus. The results show that by considering the
unique lookup operations and memory demands in DLRMs, DL-
Rover can effectively schedule DLRM training jobs to improve the
training efficiency with shorter JCT.
DLRover PreservesModel Convergence. In this experiment, we
used 90% of the Criteo dataset as the training set and the remaining
as the test set. As shown in Fig. 8, DLRover does not compromise
the model performance (i.e., convergence and accuracy) compared
to jobs whose resource configurations are well-tuned. This veri-
fies that the proposed dynamic data sharding mechanism prevents
inconsistent model quality caused by elastic operations (§5.1).

In summary, DLRover enhances the training efficiency of vari-
ous DLRM models by reducing JCT while maintaining model con-
vergence. In the following section, we conduct an in-depth analysis
of the separate effectiveness of the main components in DLRover.

Figure 7: DLRover achieves comparable JCT to well-tuned

configurations and reduces JCT comparedwith competitors.

Figure 8: DLRover preserves the model performance (i.e., ac-

curacy and loss) on different DLRM training jobs.

6.2 Ablation Study

Warm-starting. To demonstrate the effectiveness of the warm-

starting algorithm (algorithm 1), we collected one month’s job
training data from a user within the production cluster. Fig. 9 shows
that DLRover, with the warm-starting algorithm, provided initial
resource allocation very close to the final configuration. On aver-
age, the accuracy of DLRover’s initial and final configurations for
workers and PSes are respectively 92% and 85%. It is because, based
on similarity analysis, DLRover’s warm-starting algorithm extracts
the most matching jobs from the users’ historical task data to serve
as guidance; With a good initial resource configuration, DLRover
reduces the number of scaling. Thus, we reduce the time of scaling
jobs from initial resource allocation to optimal resource allocation.
Based on the statistics from the production cluster logs, compared
to a cold-start approach (adjusting resources from zero), the scaling
time was reduced by an average of 26%.
Auto-Scaling. To evaluate the effectiveness of auto-scaling strate-
gies, we trained DLRMs from scratch (i.e., cold-started, thus remov-
ing the effect of DLRover’s warm-starting) with different sched-
ulers. Every three minutes, schedulers adjusted the resources of
PSes or workers based on the runtime information. Fig. 10 shows
that, compared to ES and Optimus, DLRover can achieve higher
throughput within the same time period. For instance, for model-X,

4139



DLRover achieves a throughput of 250 steps/second after running
for 12 minutes, while others still stay at the throughput of 100-150
steps/second. This is because DLRover considers unique lookup
operations of DLRM training (in Eqn. 5).

(a) Worker (b) PS

Figure 9: DLRover’s warm-starting strategy provides a re-

source allocation close to the final configuration.

Figure 10: DLRover’s scheduling algorithm achieves higher

throughput in less time.

To further verify this, we validate the proposed throughput pre-
diction model (Eqn. 1). We sampled a set of training data points
under different resource setups (different (p,w,Cw ,Cp )). Then, we
use NNLS [4] to find αs and βs that best fit the collected data points.
As shown in Fig. 11, our model can closely describe the relation-
ship between the training throughput and resource configurations.
We report coefficients in Eqn. 1 as: αдrad = 3.48, αupd = 2.36,
αlookup = 2.45, αsync = 0.68, and 2.45 for the sum of β .
Instability Handling. In this study, we verify the capability of
DLRover to handle instability in the cloud (e.g., straggler and hot
PSes). To simulate the worker/PS straggler cases, we randomly
selected a worker or PS and set the CPU cores to 3% of that in the
well-tuned resource configuration.

As shown in Fig. 12, for the hot PS case, we observe that: 1)
DLRover can reduce the JCT by 36.4% and 27.6% compared to the
"no intervention" and "traditional migration" methods, respectively.
2) Unlike "traditional migration", when stragglers are detected, DL-
Rover enables continuous training (i.e., seamless migration), as
DLRover restarts the job using an asynchronous approach that
does not interrupt the job’s training (§5.2) – saving about 5 min-
utes of the training time. 3) With the flash-checkpoint mechanism,
DLRover saves 3 minutes in saving and loading checkpoints due
to DLRover using shared memory to store checkpoints instead of

(a) validation onw/p (b) validation on λw (c) validation on λp

Figure 11: Sampled data points and the fitted curves of the

throughput prediction model. Under the setups with vary-

ing numbers of workers and PS, DLRover accurately pre-

dicts the throughput when adjusting resource variables.

communicating with RDS – significantly reducing the communica-
tion overhead (§5.2). As shown in Fig. 13, for the worker straggler
case, we observe that 1) DLRover can shorten the JCT by 48.5% and
37% compared to the "no intervention" and "traditional handing"
approaches, respectively. 2) Compared to "traditional handling",
DLRover can also rapidly handle the straggler (within 1 minute)
and recover the healthy training instead of restarting the job. This
is achieved by redistributing less data shard(s) to the straggler pod,
with the support of dynamic data sharding mechanism (§5).

Figure 12: When a hot PS occurs, three distinct strategies re-

sult in different JCT: The "no intervention" approach contin-

ues training under an unhealthy state. The "traditional mi-

gration" method employs a stop-and-restart strategy, while

DLRover utilizes the mechanism of seamless migration and

flash-checkpoint, significantly reducing overhead (§5.2).

6.3 Production Adoption and Evaluation

DLRover has been deployed in the cloud-based production clus-
ter at AntGroup since June 2022. We conduct a comprehensive

4140



production evaluation to reveal the benefits of production adop-
tion of DLRover at AntGroup. We omit this study due to space
limitations, please refer to our technical report [62] for more details.

7 RELATEDWORK

Training of Deep Learning Recommendation. Existing DLRM
training systems focus on accelerating training speed and address-
ing memory pressure. For example, AIBox [77] and HierPS [76]
overlap training execution on CPUs and GPUs, while using SSDs
to store massive parameters of the model. Ekko [56] accelerates
DLRM training over wide-area networks. Adnan et al. [9] place
highly accessed embeddings on GPU memory to reduce communi-
cation time. Gupta et al. [21] compresses parameter gradients dur-
ing model synchronization and squeezes activations and gradients
across subnetworks during the forward and backward propagations.
TTRec [70] adopts tensor train decomposition to mitigate mem-
ory consumption. AdaEmbed [27] identifies the embedding rows
with larger importance to improve model accuracy. AutoShard [72],
DreamShard [73] and [14] seek the optimal embedding table shard-
ing strategy to mitigate the lookup imbalances across devices. In
contrast, the data sharding mechanism (§5.1) in DLRover focuses
on training data serving. FSDP[44] provides an industry-grade so-
lution for large model data parallel training. Borg[60], Twine[57],
and especially Akkio[10] apply similar sharding implementations
to achieve good latency on data serving by leveraging data locality.
In contrast, DLRover focuses on scheduling resources and provides
robust fault tolerance for model training in a cloud environment,
where failures are common and resource availability varies.
Automatic Resource Configuration. Automatic resource man-
agement is widely used in distributed data processing jobs on
Hadoop [55] and Spark [71], and machine learning jobs on Spark
MLlib [37]. For example, Huang et al. [24] introduce an approach
to configure the memory of large-scale ML on Spark automatically.
Angel-PTM [42] focuses on memory management optimization for
large-scale transformer models. Eigen and fastflow [30, 59] explores
resource efficiency optimization in large-scale public-cloud produc-
tion environments. Additionally, numerous endeavors have been
dedicated to the automated configuration of the number of work-
ers and parameter servers, such as Optimus, Pollux, and Tiresias
[17, 45, 49]. Pollux [49] dynamically adjusts the number of work-
ers and learning rate to improve the throughput for synchronous
SGD. Both Pollux and Tiresias must re-deploy all workers when
adjusting resources, resulting in a long transition time. To minimize
it, [43] starts new all-reduce operations only when new workers
are ready and proposes a heuristic scaling to search the optimal
number of workers. For asynchronous training with the parameter
server architecture, Optimus [45] dynamically adds one worker or
parameter server each time to maximize the cluster’s performance
without considering the transition time of elasticity. Regarding
a large-scaling training job, the transition cost is not trivial be-
cause the number of workers and parameters is huge. DLRover is
designed to conduct elasticity in a more effective way with little
overhead. Furthermore, we plan to identify better configurations
for training jobs using LLM-based optimization techniques[28].
Elastic Deep Learning Training. There are deep learning frame-
works that support elastic training. For instance, for asynchronous

Figure 13: When a straggler occurs, three distinct strate-

gies result in different JCT: The No Intervention approach

persists in training under an unhealthy state. The Tradi-

tional Handling method employs a ‘stop-and-restart‘ strat-

egy, whileDLRover redistributes the data shard for the strag-

gler with the support of dynamic data sharding mechanism

(§5.1), avoiding the restart of the job.

training, the PS training of TensorFlow [7] supports scaling work-
ers at runtime. Using checkpoint, TensorFlow enables the elasticity
for parameter servers. For synchronous training, there are Elas-
tic DL [67], PyTorch-Elastic [47], and elastic Horovod [53]. These
systems typically restart the job by relaunching all pods [45, 49].
Users need to implement their dynamic data partition policy. The
re-partitioning may result in inconsistency of sample iterations
if the dataset is huge. In contrast, DLRover has a dynamic data

sharding service and does not need to re-partition during elastic-
ity. DLRover also ensures consistency when adjusting parameter
servers by checkpointing unused data shards and model parameters
leveraging memory storage like Gemini[64].
StragglerMitigation. For a distributed asynchronous DLRM train-
ing job using parameter servers, the straggler could be a PS or
worker because of hardware heterogeneity [50] or unbalanced
data/parameter distribution [7]. Existing works simply replace the
slowest node with a new node to mitigate stragglers [22, 43, 45].
However, this introduces additional overhead. Existing frameworks
like Kubeflow [2] can only set the same CPU and memory for the
workers or PSes. In contrast, DLRover can adjust the workload
and resources for various types of components on the fly based on
updated elasticity decisions.

8 CONCLUSION

We have presented DLRover, a cloud-based DLRM training system.
In designing DLRover, we have considered the unique character-
istics of DLRMs and the practical challenges in a cloud environ-
ment. DLRover builds an accurate resource-performance model
incorporating various runtime training information and develops
a three-stage scheduling algorithm for elastic resource allocation
and adjustment for DLRM training jobs. Moreover, DLRover offers
a bunch of novel mechanisms to handle high cloud instability. Our
evaluation demonstrates the effectiveness of DLRover in reduced
job completion time and increased resource utilization.

4141



REFERENCES
[1] 2014. Criteo. http://labs.criteo.com/downloads/2014-kaggle-display-advertising-

challenge-dataset/
[2] 2023. Kubeflow: The Machine Learning Toolkit for Kubernetes. https://www.

kubeflow.org/
[3] 2023. Pymoo NSGA-II. https://pymoo.org/algorithms/moo/nsga2.html
[4] 2023. SciPy NNLS. https://docs.scipy.org/doc/scipy/reference/generated/scipy.

optimize.nnls.html
[5] 2024. Accelerate Enterprise AI Path to Production. https://www.alluxio.io/
[6] 2024. DeepRec. https://github.com/DeepRec-AI/DeepRec
[7] Martín Abadi and Ashish Agarwal et al. 2015. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[8] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and
Kim Hazelwood. 2021. Understanding training efficiency of deep learning rec-
ommendation models at scale. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 802–814.

[9] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and
Prashant J Nair. 2021. Accelerating recommendation system training by leverag-
ing popular choices. arXiv preprint arXiv:2103.00686 (2021).

[10] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor
Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael Stumm. 2018.
Sharding the Shards: Managing Datastore Locality at Scale with Akkio. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). USENIX Association, Carlsbad, CA, 445–460. https://www.usenix.org/
conference/osdi18/presentation/annamalai

[11] Chaochao Chen, Jun Zhou, Bingzhe Wu, Wenjing Fang, Li Wang, Yuan Qi, and
Xiaolin Zheng. 2020. Practical privacy preserving POI recommendation. ACM
Transactions on Intelligent Systems and Technology (TIST) 11, 5 (2020), 1–20.

[12] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2017. Revisiting Distributed Synchronous SGD. arXiv:1604.00981 [cs.LG]

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016, Boston,
MA, USA, September 15, 2016, Alexandros Karatzoglou, Balázs Hidasi, Domonkos
Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach (Eds.).
ACM, 7–10. https://doi.org/10.1145/2988450.2988454

[14] Runxiang Cheng, Chris Cai, Selman Yilmaz, Rahul Mitra, Malay Bag, Mrinmoy
Ghosh, and Tianyin Xu. 2023. Towards GPU Memory Efficiency for Distributed
Training at Scale. In Proceedings of the 2023 ACM Symposium on Cloud Com-
puting (SoCC ’23). Association for Computing Machinery, New York, NY, USA,
281âĂŞ297. https://doi.org/10.1145/3620678.3624661

[15] Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung,
Pieter Nel, and Sankalp Malhotra. 2018. Notes from the AI frontier: Insights from
hundreds of use cases. McKinsey Global Institute 2 (2018).

[16] Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric P Xing. 2018. Toward
understanding the impact of staleness in distributed machine learning. arXiv
preprint arXiv:1810.03264 (2018).

[17] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Clus-
ter Manager for Distributed Deep Learning. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation (Boston, MA, USA)
(NSDI’19). USENIX Association, USA, 485âĂŞ500.

[18] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra
(Ed.). ijcai.org, 1725–1731. https://doi.org/10.24963/ijcai.2017/239

[19] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and
Yungang Bao. 2019. Who limits the resource efficiency of my datacenter: An
analysis of alibaba datacenter traces. In Proceedings of the International Symposium
on Quality of Service. 1–10.

[20] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized recom-
mendation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 488–501.

[21] Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan Wei, Xing Wang, Yuzhen
Huang, Arun Kejariwal, Kannan Ramchandran, and Michael W Mahoney. 2021.
Training recommender systems at scale: Communication-efficient model and
data parallelism. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2928–2936.

[22] Aaron Harlap, Henggang Cui, Wei Dai, JinliangWei, Gregory R. Ganger, Phillip B.
Gibbons, Garth A. Gibson, and Eric P. Xing. 2016. Addressing the strag-
gler problem for iterative convergent parallel ML. In Proceedings of the Sev-
enth ACM Symposium on Cloud Computing, Santa Clara, CA, USA, October 5-7,
2016, Marcos K. Aguilera, Brian Cooper, and Yanlei Diao (Eds.). ACM, 98–111.
https://doi.org/10.1145/2987550.2987554

[23] Zhaoxin Huan, Ke Ding, Ang Li, Xiaolu Zhang, Xu Min, Yong He, Liang Zhang,
Jun Zhou, Linjian Mo, Jinjie Gu, et al. 2023. AntM2C: A Large Scale Dataset
For Multi-Scenario Multi-Modal CTR Prediction. arXiv preprint arXiv:2308.16437
(2023).

[24] Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish
Tatikonda, and Frederick R. Reiss. 2015. Resource Elasticity for Large-Scale Ma-
chine Learning. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 137–152.
https://doi.org/10.1145/2723372.2749432

[25] Yuzhen Huang, Xiaohan Wei, Xing Wang, Jiyan Yang, Bor-Yiing Su, Shivam
Bharuka, Dhruv Choudhary, Zewei Jiang, Hai Zheng, and Jack Langman. 2021.
Hierarchical training: Scaling deep recommendation models on large cpu clusters.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 3050–3058.

[26] Shristi Shakya Khanal, PWC Prasad, Abeer Alsadoon, and Angelika Maag. 2020.
A systematic review: machine learning based recommendation systems for e-
learning. Education and Information Technologies 25 (2020), 2635–2664.

[27] Fan Lai, Wei Zhang, Rui Liu, William Tsai, Xiaohan Wei, Yuxi Hu, Sabin Devkota,
Jianyu Huang, Jongsoo Park, Xing Liu, et al. 2023. {AdaEmbed}: Adaptive Em-
bedding for {Large-Scale} Recommendation Models. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23). 817–831.

[28] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2024. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. Proc.
VLDB Endow. 17, 8 (may 2024), 1939âĂŞ1952. https://doi.org/10.14778/3659437.
3659449

[29] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanxiong Guo, and Cong Wang.
2023. Lyra: Elastic Scheduling for Deep Learning Clusters. In Proceedings of
the Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys
’23). Association for Computing Machinery, New York, NY, USA, 835âĂŞ850.
https://doi.org/10.1145/3552326.3587445

[30] Ji You Li, Jiachi Zhang, Wenchao Zhou, Yuhang Liu, Shuai Zhang, Zhuoming
Xue, Ding Xu, Hua Fan, Fangyuan Zhou, and Feifei Li. 2023. Eigen: End-to-end
Resource Optimization for Large-Scale Databases on the Cloud. Proceedings of
the VLDB Endowment 16, 12 (2023), 3795–3807.

[31] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scal-
ing Distributed Machine Learning with the Parameter Server. In 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’14, Broom-
field, CO, USA, October 6-8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX
Association, 583–598. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li_mu

[32] Mingzhen Li, Wencong Xiao, Hailong Yang, Biao Sun, Hanyu Zhao, Shiru Ren,
Zhongzhi Luan, Xianyan Jia, Yi Liu, Yong Li, Wei Lin, and Depei Qian. 2023.
EasyScale: Elastic Training with Consistent Accuracy and Improved Utilization
on GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (<conf-loc>, <city>Denver</city>,
<state>CO</state>, <country>USA</country>, </conf-loc>) (SC ’23). Association
for Computing Machinery, New York, NY, USA, Article 55, 14 pages. https:
//doi.org/10.1145/3581784.3607054

[33] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018, Lon-
don, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 1754–1763.
https://doi.org/10.1145/3219819.3220023

[34] Qixiao Liu and Zhibin Yu. 2018. The elasticity and plasticity in semi-containerized
co-locating cloud workload: a view from alibaba trace. In Proceedings of the ACM
Symposium on Cloud Computing. 347–360.

[35] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-
Jean Wu, and Mark Hempstead. 2021. Understanding capacity-driven scale-out
neural recommendation inference. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 162–171.

[36] JP Mangalindan. 2012. AmazonâĂŹs recommendation secret. CNN Money
http://tech. fortune. cnn. com/2012/07/30/amazon-5 (2012).

[37] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean
Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia,
and Ameet Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. J. Mach.
Learn. Res. 17 (2016), 34:1–34:7. http://jmlr.org/papers/v17/15-237.html

4142



[38] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. 2022.
Software-hardware co-design for fast and scalable training of deep learning rec-
ommendation models. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 993–1011.

[39] Mukosi Abraham Mukwevho and Turgay Celik. 2018. Toward a smart cloud: A
review of fault-tolerance methods in cloud systems. IEEE Transactions on Services
Computing 14, 2 (2018), 589–605.

[40] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, et al. 2020. Deep learning training in facebook data centers: Design of
scale-up and scale-out systems. arXiv preprint arXiv:2003.09518 (2020).

[41] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[42] Xiaonan Nie, Yi Liu, Fangcheng Fu, Jinbao Xue, Dian Jiao, Xupeng Miao, Yangyu
Tao, and Bin Cui. 2023. Angel-PTM: A Scalable and Economical Large-scale
Pre-training System in Tencent. arXiv:2303.02868 [cs.LG]

[43] Andrew Or, Haoyu Zhang, and Michael J. Freedman. 2020. Resource Elasticity
in Distributed Deep Learning. In Proceedings of Machine Learning and Systems
2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020, Inderjit S. Dhillon, Dimitris S.
Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org. https://proceedings.mlsys.
org/book/314.pdf

[44] Adam Paszke and Gross et al. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. InAdvances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.). Curran Associates, Inc., 8024–8035.

[45] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.
In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18).
Association for Computing Machinery, New York, NY, USA, Article 3, 14 pages.
https://doi.org/10.1145/3190508.3190517

[46] Ivens Portugal, Paulo Alencar, and Donald Cowan. 2018. The use of machine
learning algorithms in recommender systems: A systematic review. Expert Sys-
tems with Applications 97 (2018), 205–227.

[47] PyTorch. 2020. Pytorch with Elastic. https://pytorch.org/elastic/0.1.0rc2/overview.
html.

[48] Ling Qian, Zhiguo Luo, Yujian Du, and Leitao Guo. 2009. Cloud computing: An
overview. In Cloud Computing: First International Conference, CloudCom 2009,
Beijing, China, December 1-4, 2009. Proceedings 1. Springer, 626–631.

[49] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P. Xing. 2021. Pollux:
Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning. In 15th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021,
July 14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.). USENIX Associa-
tion. https://www.usenix.org/conference/osdi21/presentation/qiao

[50] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA,
October 14-17, 2012, Michael J. Carey and Steven Hand (Eds.). ACM, 7. https:
//doi.org/10.1145/2391229.2391236

[51] Pradeep Kumar Roy, Sarabjeet Singh Chowdhary, and Rocky Bhatia. 2020. A
Machine Learning approach for automation of Resume Recommendation system.
Procedia Computer Science 167 (2020), 2318–2327.

[52] Bo Sang, Shuwei Gu, Xiaojun Zhan, Mingjie Tang, Jian Liu, Xuan Chen, Jie Tan,
Haoyuan Ge, Ke Zhang, Ruoyi Ruan, et al. 2023. Cougar: A General Framework
for Jobs Optimization In Cloud. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 3417–3429.

[53] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[54] Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. 2020.
Safe: Scalable automatic feature engineering framework for industrial tasks.
In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1645–1656.

[55] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010,
Mohammed G. Khatib, Xubin He, and Michael Factor (Eds.). IEEE Computer
Society, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[56] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu,
Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, et al. 2022. Ekko: A {Large-
Scale} deep learning recommender system with {Low-Latency} model update.
In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22). 821–839.

[57] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia,
Long Cheng, et al. 2020. Twine: A unified cluster management system for shared
infrastructure. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 787–803.

[58] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. 2016. TetriSched: Global Rescheduling with
Adaptive Plan-Ahead in Dynamic Heterogeneous Clusters. In Proceedings of the
Eleventh European Conference on Computer Systems (London, United Kingdom)
(EuroSys ’16). Association for Computing Machinery, New York, NY, USA, Article
35, 16 pages. https://doi.org/10.1145/2901318.2901355

[59] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun Kim,
and Woo-Yeon Lee. 2023. Fastflow: Accelerating deep learning model training
with smart offloading of input data pipeline. Proceedings of the VLDB Endowment
16, 5 (2023), 1086–1099.

[60] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the European Conference on Computer Systems (EuroSys).
Bordeaux, France.

[61] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian
He, and Liping Zhang. 2021. Morphling: Fast, Near-Optimal Auto-Configuration
for Cloud-Native Model Serving. Association for Computing Machinery, New
York, NY, USA, 639âĂŞ653. https://doi.org/10.1145/3472883.3486987

[62] Qinlong Wang, Tingfeng Lan, Yinghao Tang, Ziling Huang, Yiheng Du, Haitao
Zhang, Jian Sha, Hui Lu, Yuanchun Zhou, Ke Zhang, and Mingjie Tang. 2024.
DLRover-RM: Resource Optimization for Deep RecommendationModels Training
in the Cloud. arXiv:2304.01468 [cs.DC] https://arxiv.org/abs/2304.01468

[63] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[64] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng,
and YidaWang. 2023. Gemini: Fast failure recovery in distributed training with in-
memory checkpoints. In Proceedings of the 29th Symposium on Operating Systems
Principles. 364–381.

[65] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng,
and Yida Wang. 2023. GEMINI: Fast Failure Recovery in Distributed Training
with In-Memory Checkpoints. In Proceedings of the 29th Symposium on Operating
Systems Principles. ACM, Koblenz Germany, 364–381. https://doi.org/10.1145/
3600006.3613145

[66] QizhenWeng,Wencong Xiao, Yinghao Yu,WeiWang, ChengWang, Jian He, Yong
Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. {MLaaS} in the wild: Workload
analysis and scheduling in {Large-Scale} heterogeneous {GPU} clusters. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
945–960.

[67] Yidi Wu, Kaihao Ma, Xiao Yan, Zhi Liu, Zhenkun Cai, Yuzhen Huang, James
Cheng, Han Yuan, and Fan Yu. 2022. Elastic Deep Learning in Multi-Tenant
GPU Clusters. IEEE Transactions on Parallel and Distributed Systems 33, 1 (2022),
144–158. https://doi.org/10.1109/TPDS.2021.3064966

[68] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and An-
drew Tulloch. 2020. Mixed-precision embedding using a cache. arXiv preprint
arXiv:2010.11305 (2020).

[69] Guangshun Yao, Xiaoping Li, Qian Ren, and Rubén Ruiz. 2022. Failure-aware
Elastic Cloud Workflow Scheduling. IEEE Transactions on Services Computing
(2022).

[70] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. 2021. Tt-rec: Tensor
train compression for deep learning recommendation models. Proceedings of
Machine Learning and Systems 3 (2021), 448–462.

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX Association, San Jose, CA, 15–28.

[72] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie,
Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. 2022. Au-
toshard: Automated embedding table sharding for recommender systems. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4461–4471.

[73] Daochen Zha, Louis Feng, Qiaoyu Tan, Zirui Liu, Kwei-Herng Lai, Bhargav
Bhushanam, Yuandong Tian, Arun Kejariwal, and Xia Hu. 2022. Dreamshard:
Generalizable embedding table placement for recommender systems. Advances
in Neural Information Processing Systems 35 (2022), 15190–15203.

[74] Kai Zhang, Hao Qian, Qing Cui, Qi Liu, Longfei Li, Jun Zhou, Jianhui Ma, and
Enhong Chen. 2021. Multi-interactive attention network for fine-grained feature
learning in ctr prediction. In Proceedings of the 14th ACM international conference
on web search and data mining. 984–992.

[75] Yongkang Zhang, Yinghao Yu, Wei Wang, Qiukai Chen, Jie Wu, Zuowei Zhang,
Jiang Zhong, Tianchen Ding, Qizhen Weng, Lingyun Yang, et al. 2022. Workload
consolidation in alibaba clusters: the good, the bad, and the ugly. In Proceedings

4143



of the 13th Symposium on Cloud Computing. 210–225.
[76] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,

and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive
scale deep learning ads systems. Proceedings of Machine Learning and Systems 2
(2020), 412–428.

[77] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. AIBox: CTR prediction model training on a single node. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
319–328.

[78] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
5941–5948.

[79] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. 1059–1068.

4144


