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ABSTRACT
We design, to the best of our knowledge, the first differentially
private (DP) stream aggregation processing system at scale.
Our system – Differential Privacy SQL Pipelines (DP-SQLP) – is
built using a streaming framework similar to Spark streaming,
and is built on top of the Spanner database and the F1 query
engine from Google.

Towards designing DP-SQLP wemake both algorithmic and
systemic advances, namely, we (i) design a novel (user-level)
DP key selection algorithm that can operate on an unbounded
set of possible keys, and can scale to one billion keys that users
have contributed, (ii) design a preemptive execution scheme
for DP key selection that avoids enumerating all the keys at
each triggering time, and (iii) use algorithmic techniques from
DP continual observation to release a continual DP histogram
of user contributions to different keys over the stream length.
We empirically demonstrate the efficacy by obtaining at least
16× reduction in error over meaningful baselines we consider.
We implemented a streaming differentially private user im-
pressions for Google Shopping with DP-SQLP. The streaming
DP algorithms are further applied to Google Trends.
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1 INTRODUCTION
Analysis of streaming data with differential privacy (DP) [16]
has been studied from the initial days of the field [10, 17],
and this has been followed up in a sequence of works that
include computing simple statistics [41], to machine learning
*The full version of the paper can be found at https://arxiv.org/abs/2303.18086
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applications (a.k.a. online learning) [1, 29, 30, 44, 53]. While
all of these works focus on the abstract algorithmic design
for various artifacts of streaming data processing, to the best
of our knowledge, none of them focus on designing a scal-
able stream processing system. In this work, we primarily
focus on designing a scalable DP stream processing system,
called Differential Privacy SQL Pipelines (DP-SQLP), and make
algorithmic advances along the way to cater to the scalabil-
ity needs of it. DP-SQLP is implemented using a streaming
framework similar to Spark streaming [52], and is built on
top of the Spanner database [12] and F1 query engine [43]
from Google. We also present production applications with
two use cases in Section 6. The first is a real world use case
that deploys DP-SQLP in Google Shopping to generate stream-
ing page-view counts. The second applies the streaming DP
algorithm to Google Trends.

In this paper we consider a data stream to be an unbounded
sequence of tuples of the form (key , value , timestamp ,

user_id ) that gets generated continuously in time. We also
have a discrete set of times (a.k.a. triggering times) Tr =

[𝑡 tr1 , 𝑡
tr
2 , ..., 𝑡

tr
𝑇
]. The objective is to output the sum of all the

values for each of the keys at each time 𝑡 tr
𝑖
, while preserving

(𝜀, 𝛿)-DP [16] over the entire output stream with respect to all
of the contributions with the same user_id . Although most
prior research has extended simple one-shot DP algorithms
to the streaming setting [9, 10, 17], designing a scalable DP-
streaming system using off-the-shelf algorithms is challenging
because of the following reasons1:

(1) Unknown key space: A data stream processing sys-
tem can only process the data that has already arrived.
For example, keys for a GROUP BY operation are not
known in advance; instead we discover new keys as
they arrive. To ensure (𝜀, 𝛿)-DP one has to ensure the
set of keys for which the statistics are computed is sta-
ble to change of an individual user’s data. That is, we
can only report statistics for a particular key when
enough users have contributed to it; to ensure DP the
threshold for reporting a key must be randomized.

1Ourwork ismost closely related to [9].We defer a full comparison to Section 1.2.
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(2) Synchronous execution:The execution of the stream-
ing system is driven by the data stream. That is, we
must process the data as it arrives, and cannot run asyn-
chronously at times when there is nothing to trigger
execution. We refer to the times when our system runs
as triggering times. Furthermore, typically, at each trig-
gering time, only the keys that appeared since the last
triggering time are processed. However, this is prob-
lematic for DP – if we only output a key when it has
appeared in the most recent event time window, then
this potentially leaks information. Naively, to avoid this,
one has to process all the keys at each triggering time,
which is computationally prohibitive.

(3) Large number of observed keys and events: A fun-
damental challenge is scalability. The system should be
able to handle millions of updates per second from a
data stream with billions of distinct keys.

(4) Effective user contribution bounding: In real appli-
cations, each person may contribute multiple records to
the data stream at different times. Providing “event-level
DP” (where a single action by a person/user is protected)
does not provide sufficient privacy protection. In this
work, we provide “user-level DP”, where all the actions
by a person/user is protected simultaneously. To pro-
vide user-level DP, one has to bound the contribution
of each user, and that eventually introduces bias on the
statistics that get computed. But contribution bounding
controls the variance of the noise wemust add to ensure
DP. A natural (and unavoidable [4, 32, 37]) challenge
is to decide on the level of contribution bounding to
balance this bias and variance.

(5) Streaming release of statistics: One has to output
statistics at every triggering time. If we treat each trig-
gering time as an independent DP data release, then the
privacy cost grows rapidly with the number of releases.
Alternatively, to attain a fixed DP guarantee, the noise
we add at each triggering time must grow polynomially
with the number of triggering times. This is impractical
when the number of triggering times is large. Thus the
noise we add to ensure DP is not independent across
triggering times. This helps in drastically reducing the
total noise introduce for a fixed DP guarantee.

In our design of DP-SQLP we address these challenges, ei-
ther by designing new algorithms, or by implementing existing
specialized algorithms. This is our main contribution. To the
best of our knowledge,we provide the first at-scale differentially
private stream aggregation processing system.

Motivation for DP-SQLP: Data streams appear commonly
in settings like Web logs, spatio-temporal GPS traces [5], mo-
bile App usages [34], data generated by sensor networks and
smart devices [36], live traffic in maps [50], cardiovascular
monitoring [47], real-time content recommendation [42], and
pandemic contact tracing [11]. Almost all of these applications
touch sensitive user data on a continual basis. Calandrino et al.
[7] demonstrated that continuous statistic release about in-
dividuals can act as a strong attack vector for detecting the

presence/absence of a single user (in the context of collabo-
rative recommendation systems). Hence, it is imperative to a
streaming system to have rigorous privacy protections. In this
work we adhere to differential privacy. For more discussion on
the type of streams we consider, see a detailed survey in [28].

Our Contributions: As mentioned earlier, our main contri-
bution is overcoming multiple challenges to build a distributed
DP stream processing system that can handle large-scale in-
dustrial workloads.

• Private key selection: A priori, the set of possible
keys is unbounded, so our system must identify a set
of relevant keys to track. To protect privacy, we cannot
identify a particular key based on the contributions of
a single user. The streaming setting adds two additional
complications: (a) The existence of each key is only
known when it is observed in a data record, and (b)
the privacy leakage due to continually releasing infor-
mation about any particular key increases the DP cost
due to composition [19]. To address these challenges,
we design a novel algorithm (Algorithm 1) that couples
“binary tree aggregation” [10, 17, 27] (a standard tool for
continual release of DP statistics that only accumulates
privacy cost that is poly-logarithmic in the number of
aggregate releases from the data stream) with a thresh-
olding scheme that allows one to only operate on keys
that appear in at least 𝜇 > 0 user records. To further
minimize privacy leakage, we employ a variance re-
duced implementation of the binary tree aggregation
protocol [27].

• Preemptive execution: Since we may track a large
number of keys in production systems, it is not scal-
able to scan through all of the state keys each time the
system is invoked. Thus we design a new algorithm
(Algorithm 3) that only runs on the keys that have ap-
peared between the current and previous triggering
times. The idea is to predict when a key will be released
in advance, rather than checking at each triggering
time whether it should be released now. That is, when-
ever we observe a given key , we simulate checking
the release condition for the rest of triggering times
assuming no further updates to key . In the future we
only check for key at any triggering time if either of
the two conditions happen: (i) key appears in a fresh
microbatch in the data stream, or (ii) the earlier simula-
tion predicted a release for that time. By doing so, we
reduce the expensive I/O and memory cost, with little
CPU overhead. This idea is motivated by the caching
of pages in the operating systems literature.

• Empirical evaluation: We provide a thorough empir-
ical evaluation of our system. We consider a few nat-
ural baselines that adopt one-shot DP algorithms to
stream data processing (e.g., repeated differential pri-
vacy query). At (𝜀 = 6, 𝛿 = 10−9)-DP, we observed up
to 93.9% error reduction, and the number of retained
keys is increased by 65 times when comparing DP-SQLP
with baselines. Through our scalability experiments, we
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Figure 1: Event time domain and processing time do-
main

show that DP-SQLP can handle billions of keys without
incurring any significant performance hit.
• Industry application: We present two industry use
cases of streaming differential privacy. The DP-SQLP
is applied to Google Shopping that processes a very
large scale data stream under production environment,
which demonstrates the scalability of our approach. A
differentially private product page-view count is gener-
ated by DP-SQLP that can be used to signal the product
information update. In the second use case, the stream-
ing private key selection is applied to Google Trends
for analyzing popular search queries with differential
privacy guarantee.

In the following, we formally define the problem, and delve
deeper into relevant related works.

1.1 Problem Statement
Let 𝐷 be a data stream defined by an unbounded sequence
of records, i.e., 𝐷 = [𝑑1, 𝑑2, ...), where each record 𝑑𝑖 is a tu-
ple (key , value , timestamp 𝑡𝑖 , user_id ). A common
query pattern in data analytics is the unknown domain his-
togram query. For example, consider a web service that logs
user activities: each record is a URL click that contains (URL,
user_id , timestamp ). An analyst wants to know the
number of clicks on each URL for each day up to today. An
SQL query to generate this histogram is presented in Listing 1.

SELECT URL ,
TO_DATE ( timestamp ) AS date ,
COUNT (*) AS count

FROM web_logs
GROUP BY URL , TO_DATE ( timestamp )

Listing 1: Single histogram query

In Listing 1, the keys are (URL,date) denoted by key 2,
and the count is an aggregation column denoted by𝑚.

2Throughout the paper, key and k are used interchangeably.

When querying a growing database or data stream, the
above-mentioned query only shows a snapshot at certain date.
In stream data processing, we use event-time window to deter-
mine which records in the event time domain to process, and
triggers to define when in the processing time domain the re-
sults of groupings are emitted [2]. Let𝑊 denote the event-time
windows,𝑊 = [𝑤1,𝑤2 ...). Each event-time window is defined
by a starting time and an end time 𝑤𝑖 = (𝑡𝑖,𝑠 , 𝑡𝑖,𝑒 ). 𝐷𝑤𝑖

∈ 𝐷

contains all records that can be assigned to window𝑤𝑖 so that
the timestamp 𝑡 of each record satisfies 𝑡𝑖,𝑠 ≤ 𝑡 < 𝑡𝑖,𝑒 . Let
𝑇𝑟 denote a set of triggering times in the processing domain,
Tr = [𝑡𝑟1, 𝑡𝑟2 ...). We assume triggering time is predefined and
independent to dataset3. The streaming system incrementally
processes 𝐷𝑤𝑖

at triggering time Tr𝑤𝑖
= {𝑡𝑟𝑖,𝑠 , ..., 𝑡𝑟𝑖,𝑒 } ⊂ Tr.

Due to the time domain skew[2], 𝑡𝑖,𝑠 ≤ 𝑡𝑟𝑖,𝑠 and 𝑡𝑖,𝑒 ≤ 𝑡𝑟𝑖,𝑒 ≤
𝑡𝑖,𝑒 + 𝑡 , where 𝑡 is the maximum delay that system allows for
late arriving records. Our goal is to release the histogram for
all sub-stream 𝐷𝑤𝑖

, at every triggering time 𝑡𝑟𝑖 ∈ Tr𝑤𝑖
, in a

differentially private (DP) manner (See Appendix B in the full
paper for a formal DP definition). For a pictorial representa-
tions of various timing concepts, see Figure 1.
Privacy implication of input driven stream: In terms of
privacy, we want to ensure that the stream processing sys-
tem ensures (𝜀, 𝛿)-user level DP [15, 16, 19] over the complete
stream. Since we are operating under the constraint that the
data stream is an input driven stream (Definition A.1), the tim-
ings of the system (e.g., event time (Definition A.2), processing
time (Definition A.3), and triggering time (Definition A.5)) can
only be defined w.r.t. times at which the inputs have appeared.
Thus it forces us to define the DP semantics which considers
the triggering times to be fixed across neighboring data sets
(in the context of traditional DP semantics). For a given user,
what we protect via DP is the actual data that is contributed
to the data stream. We provide a formalism in Appendix B in
the full paper.

1.2 Related Work
Stream processing has been an active research field for more
than 20 years [24]. It is now considered to be a mature tech-
nology with various streaming frameworks deployed at scale
in industry, including Spark Streaming [52], Apache Beam [2]
and Apache Flink [8]. However, none of these systems offer
differentially private streaming queries.

Our work builds on a long line of DP research that focuses
on extending one shot applications of DP mechanisms to the
continual observation (streaming) setting for both analytics
and learning applications [9, 10, 13, 17, 22, 25, 27, 30, 35]. These
mechanisms crucially leverage the tree aggregation protocol
[10, 17, 27] or variants of it based on the matrix factorization
mechanism [13, 25, 35]. All these approaches have the advan-
tage of drastically reducing the error induced by repeated
application of a DP mechanism, making the DP protocol itself
stateful.

Of the above cited, our work is most related to [9], which
investigates the problem of computing DP histograms with

3In practical application, the streaming system may choose trigger adaptively,
with complicated implementation Akidau et al. [2]
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Figure 2: High-level overview for the DP-SQLP system

unknown-domains under continual observations. They lever-
age (extensions of) the tree aggregation protocol to build an
efficient DP protocol for the continual observation setting.
Our key selection algorithm (Algorithm 1) is heavily inspired
by [9], with the main difference being the use of additional
threshold 𝜇 for further privacy protection, and an algorithm
to predict whether to select a key even if it has zero records
(Algorithm 3). Algorithm 3 is crucial to the scalability of our ap-
proach to production workloads. From a system design point,
our work further extend [9] as follows:

(1) We consider user level DP. As outlined in the introduc-
tion, this introduces interesting algorithmic and system
challenges.

(2) We provide a concrete streaming system architecture
for scalable production deployments whereas they fo-
cus on developing algorithms. More precisely, we de-
velop and test an empty key prediction scheme that
allows us to scale to millions of updates per second that
contain billions of distinct keys.

(3) We test our algorithms and architecture on a number
of large-scale synthetic and real-life datasets to demon-
strate the efficacy of our approach relative to meaning-
ful baselines.

(4) Our system is deployed to a extreme large scale produc-
tion use case.

Another prior system that continuously releases streaming
user count at scale is Google FLEDGE k-Anonymity server
[21, 22]. It determines whether a given advertisement has been
shown to at least k users over a sliding window with event-
level differential privacy guarantee. While our algorithms and
systems are more general that can be applied to arbitrary
histogram query at scale, with a user-level guarantee. An
extended list of real-world uses of DP is presented in Des-
fontaines [14].

1.3 Organization
The rest of the paper is organized as follows. In Section 2 we
provide the necessary background on differential privacy and
streaming systems; in Section 3 we describe the main algo-
rithmic components of our DP streaming system; in Section 4
we provide details of the improvements needed to scale up
the algorithms to large workloads; in Section 5 we provide a
thorough experimental evaluation; and finally in Section 7 we
provide some concluding remarks and outline a few interest-
ing open directions. We also provide a glossary of terms from
the streaming literature (used in this paper) in Appendix A in
the full paper.

2 PRELIMINARIES
In this section, we describe the formalism that will be neces-
sary for the rest of the paper: a) DP on Streams (Appendix B in
the full paper), b) DP continual observation (Appendix C in the
full paper), and c) System architecture for the streaming sys-
tem (Section 2.1). For the purpose of brevity, we will defer (a)
and (b) to the appendix in the full paper. For a comprehensive
introduction to DP, please refer to [49].

2.1 Streaming System Architecture
The streaming differential privacy mechanism described in
this paper can be generally applied to various streaming
frameworks, including Spark Streaming[52], Apache Beam[2]
and Apache Flink[8]. The DP-SQLP system we develop is
implemented using a streaming framework similar to Spark
Streaming[52], as shown in Figure 2.

The input data stream contains unordered, unbounded event
records. The streaming scheduler will first assign each record
to the corresponding event-time window𝑤 . Within each win-
dow, at every triggering timestamp 𝑡𝑟 , records are bundled
together to create an immutable, partitioned datasets, called
a micro-batch. After a micro-batch is created, it will be dis-
patched to the DP-SQLP operator for processing.

When processing a micro-batch, the DP-SQLP operator will
interact with the system state store for a state update. Once
the differentially private histogram is generated, it will be
materialized to the data sink4. Similar to Spark Streaming,
our streaming framework provides consistent, "exactly-once"
processing semantic across multiple data centers. In addition,
the streaming framework also provides fault tolerance and
recovery.

There are multiple ways to schedule micro-batches based
on certain rules[2], like processing timer based trigger, data
arrival based trigger and combinations of multiple rules.

Based on the number of micro-batches received by operator
at each time instance, we can also classify scheduling meth-
ods into two categories, sequential scheduling and parallel
scheduling, as shown in the Figure 3. In sequential scheduling,
input data stream is divided into a sequence of micro-batches.
The operator will process one micro-batch at a time. Parallel
scheduling is able to further scale up the pipeline, by allowing
multiple micro-batches to be processed at the same time. The
streaming scheduler will partition records by predefined key
tuples, and create one micro-batch per key range.

4Data sink is the storage system used to store and serve output data, including
file systems and databases.
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Figure 3: Two types of streaming scheduling

In the rest of paper, we will assume the sequential schedul-
ing for the algorithm discussion. Given data stream 𝐷𝑤𝑖

for
window𝑤𝑖 , the sub-stream at triggering timestamp 𝑡𝑟𝑖 ∈ Tr𝑤𝑖

can be denoted as 𝐷𝑡𝑟𝑖 ⊆ 𝐷𝑤𝑖
, and the sub-stream for each

micro-batch can be represented as the incremental data stream
Δ𝐷𝑡𝑟𝑖 = 𝐷𝑡𝑟𝑖 − 𝐷𝑡𝑟𝑖−1 .

As Akidau pointed out in the unified dataflow model [2],
batch, micro-batch, and pure streaming are implementation de-
tails of the underlying execution engine. Although the stream-
ing differential privacy mechanism discussed in this paper is
executed by a streaming system based on micro-batch, the
mechanism and algorithm can be widely applied to batch,
micro-batch, and pure streaming systems.

It is worth noting that different execution modes (batch,
micro-batch and pure streaming) result in different trade-offs
between data utility and pipeline latency. In differential pri-
vacy, the more frequent we repeat the process, the nosier
results tend to be. Therefore, data utility is an additional factor
when choosing execution modes.

3 STREAMING PRIVATE MECHANISM
In this section we will discuss the overall mechanism for
streaming differential privacy. Our target is to perform aggre-
gation and release histogram at every triggering timestamp
in Tr, while maintaining (𝜀, 𝛿)-differential privacy. There are
four main components within streaming differential privacy
mechanism – user contribution bounding, partial aggregation,
streaming private key selection and hierarchical perturbation,
as shown in Figure 4.

To simplify the discussion, we will assume Sum is the aggre-
gation function for GROUP BY . It is also possible to use other
aggregation function within streaming differential privacy
mechanism.

Let’s declare the inputs, parameters and outputs that will
be used in streaming differential privacy.
• Input: Data Stream 𝐷 , event-time windows𝑊 , trigger-
ing timestamp per window Tr𝑤 , privacy parameters
𝜀, 𝛿 > 0, accuracy parameter 𝛽 > 0, per record clamping
limit 𝐿.
• System Parameters: Max. no. of records per user 𝐶 .
• Output: Aggregated DP histogram at every triggering
timestamp.

3.1 Non-Private Streaming Aggregation
The traditional streaming aggregation operator without differ-
ential privacy is shown on the top of Figure 4. Records within
the micro-batch are grouped by key and aggregated by the
reduce function [52]. After that, the partial aggregation result
will be merged with the previous state [48] and the update
histogram is emitted. There is no differential privacy protec-
tion within this process, and user privacy can be leaked from
multiple dimensions, including histogram value, aggregation
key and the differences between two histogram updates.

3.2 User Contribution Bounding
DP algorithms require that the sensitivity of each user con-
tributions be limited, for example that a user can contribute
up to 𝐶 times. However, in reality, each user may contribute
to many records and many keys, especially for heavy users.
Therefore, we need to bound the maximum influence any user
can have on the output in order to achieve a desired overall DP
guarantee. This step is called “user contribution bounding”.

Some one-shotmechanisms perform user contribution bound-
ing by limiting contributed value per key and the number of
contributed keys per user [3, 51]. However, this approach does
not fit the streaming setting, since it requires three shuffle
stages - shuffle by user, shuffle by (key, user) and shuffle by
key.

User contribution bounding in streaming DP is performed
on the user level for the entire data stream 𝐷5:
• Each user can contribute to at most 𝐶 records in the
data stream 𝐷 .
• The value 𝑣 for the aggregation column𝑚 in each record
is clamped to 𝐿𝑚 so that |𝑣 | < 𝐿𝑚 .

The maximum number of records per user𝐶 and per record
clamping limit 𝐿𝑚 together determine the per-user ℓ1 sensitiv-
ity in data stream:

𝐿1 = 𝐶 × 𝐿𝑚 .

Choosing the right contribution bounding parameters𝐶 and
𝐿𝑚 is critical for privacy-utility trade-off. When the bounding
limit is small, the noise is small, but the data loss may be signif-
icant (e.g. if most/all users have a lot of data to contribute). On
the other side, when the bounding limit is large, the data loss
is small, but noise is large. It is possible to find a near optimal
point from a heuristic study, which we discuss in Section 5.
Indeed, one approach to choosing a good contribution bound
is to inspect the data distribution. For example, we can pick
𝐶 at 99𝑡ℎ percentile of per-user records (i.e. < 1% users have
more than C records), which can be chosen in a DP way if
computed on a fraction of the data stream, or in a non-DP way
if it is based on proxy data.

In the following sections, we will introduce streaming pri-
vate key selection and hierarchical perturbation, which are
two main private operations in streaming differential privacy.
Since the private operations are performed per window, we

5In a production streaming system, the DP guarantee is commonly defined with
the minimum privacy protection unit (e.g., [user, day]). The maximum number
of record per user𝐶 needs to be enforced within each privacy unit.
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Figure 4: Overview of streaming differential privacy mechanism

will focus on 𝐷𝑤𝑖
during algorithm discussion. However, the

same private operations should be applied to all windows.

3.3 Streaming Private Key Selection
The main objective we consider in this section is to select the
set of keys that exceed a certain threshold of user contributions
𝜇 ≥ 0. (These are the keys that are used later for releasing
the aggregation columns in Section 3.4 below.) Recall that our
streaming system is input driven by a growing data stream,
meaning, one only sees the existence of a key if it has at
least one user contribution. This poses a significant privacy
challenge since the detectable set of keys is highly dependent
on the data set. As a result, we design a novel thresholding
scheme coupled with binary tree aggregation [10, 17, 27] that
allows one to only operate with keys that deterministically
have at least 𝜇 user contributions, and still preserve (𝜀, 𝛿)-DP.
In the following, we provide a description of the algorithm,
along with the privacy analysis.
Data preprocessing: After user contribution bounding (dis-
cussed in Section 3.2), we first perform a regular key GROUP
BY and aggregation for all records within the current micro-
batch6. Then we merge the aggregated data on each key with
a data buffer that is stored in a system state7. Beyond that we
execute the key selection algorithm described in Algorithm 1.
Algorithm description: As mentioned earlier, the emitted
key space is not predefined. A key may emerge when there
is at least one user record with the key (due to the nature
of input driven stream). Therefore, the streaming DP system
must determine when and what keys to release or update,
in a private manner. This is different from the non-private
streaming aggregation, where updates will be emitted at every
triggering timestamp after processing each micro-batch.
Remark: In the description of Algorithm 1, we use the follow-
ing primitives implicitly used in Algorithm 4 (Appendix C): i)
InitializeTree (𝑇, 𝜎): Initialize a complete binary tree
T with 2 ⌈𝑇 ⌉ leaf nodes with each node being sampled from
N(0, 𝜎2), ii) AddToTree (T , 𝑖, 𝑐𝑖 ): Add 𝑐𝑖 to all the nodes on
the path from the 𝑖-th leaf node to the root of the tree, and
iii) GetTotalSum (Tkey , 𝑖): Prefix sum of the all the inputs
{𝑐1, . . . , 𝑐𝑖 } to the binary tree computed via Algorithm 4.

Our approach is an extension of thresholding algorithm in
[33] to the streaming setting. In short, we carefully select a

6This is a system level operation without any implication to the privacy
guarantee.
7For every key, we accumulate aggregation column values, as well as the number
of unique users. This process is called data accumulation.

threshold and compute (with DP noise) the number of unique
users that contribute to each encountered key. If this noisy
number is greater than or equal to the chosen threshold, the
key is released. We describe the algorithm in full detail in
Algorithm 1, and provide the formal privacy guarantee in
Theorem 3.1.

A crucial component of the algorithm is the choice of the
threshold 𝜏 in Line 2 of Algorithm 1. One can instantiate 𝜏
with the bound in Theorem C.2. However, in our implementa-
tion (described in Section 4) we actually implement the tree
aggregation via the “bottom-up Honaker” variance reduction
described in Appendix C in the full paper. One can write the ex-
act distribution of the differences between DP-Tree aggregated
count and the true count, which is 𝑞𝑡𝑟𝑖 ,𝑘 − count𝑘 (𝐷𝑡𝑟𝑖 ) in
Line 2 of Algorithm 1, via equation (2). This allows us to get
a tighter bound on 𝜏 based on the inverse CDF of the Gauss-
ian distribution. Also, it should be obvious from equation (2)
that the variance of the Gaussian distribution is dependent
on the time step at which we are evaluating the cumulative
sum. Hence, to obtain a tighter estimation of the threshold,
we actually have a time dependent threshold 𝜏𝑡𝑟𝑖 (based on
equation (2)) instead of an universal threshold in Line 2.
Remark: For brevity, in Theorems 3.1 and 3.2, we provide the
guarantees assuming each user only contributes once, i.e., in
the language of Section 3.2 we assume that that user contri-
bution bound 𝐶 = 1. However, in our implementation we do
allow 𝐶 > 1. The idea is to use a tighter variant of advanced
composition for (𝜀, 𝛿)-DP [19] while ensuring that each user
contributes at most once to each key in any instance of Algo-
rithm 1. In the following we provide the privacy and the utility
guarantees. For brevity, we defer the proofs to Appendix E
and Appendix F in the full paper.

Theorem 3.1 (Privacy guarantee). Algorithm 1 is (𝜀, 𝛿 +
(𝑒𝜀 + 1) · 𝛽)-DP for addition or removal of one element of the
dataset.

Theorem 3.2 (Utility guarantee). For any fixed key 𝑘 ,

there exists a threshold 𝜏 = O
(√

log(𝑇 /𝛽) log2 (𝑇 ) log(1/𝛿)
𝜀

)
such

that w.p. at least 1 − 𝛽 , Algorithm 1 outputs 𝑘 if at any one of
the triggering time (in Tr = [𝑡𝑟1, 𝑡𝑟2, ..., 𝑡𝑟𝑇 ]) the true count is
at least 𝜇 + 𝜏 .

3.4 Hierarchical Perturbation
Once sufficient records of certain key are accumulated (i.e.,

following the notation from the previous section there are at
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Algorithm 1 Streaming Private Key Selection
Require: Data stream 𝐷𝑤𝑖

= {𝑑1, . . . , 𝑑𝑛}, where the event
timestamp 𝑡𝑖 of each 𝑑𝑖 can map to event-time window
𝑤𝑖 = (𝑡𝑠 , 𝑡𝑒 ), 𝑡𝑠 < 𝑡𝑖 < 𝑡𝑒 , triggering timestamps Tr𝑤𝑖

=

[𝑡𝑟1, 𝑡𝑟2, ..., 𝑡𝑟𝑇𝑖 ]. At each triggering time 𝑡𝑟𝑖 ⊆ R, only
a sub-stream 𝐷𝑡𝑟𝑖 ⊆ 𝐷𝑤𝑖

is available. Threshold 𝜇 ≥ 0,
privacy parameters 𝜀, 𝛿 > 0, failure probability 𝛽 > 0.

1: Compute the noise standard deviation 𝜎 for the tree ag-
gregation based on (𝑇𝑖 = |Tr𝑤𝑖

|, 𝜀, 𝛿). (See Appendix D in
the full paper for more details.)

2: Compute the accuracy threshold 𝜏 of the tree aggregation
such that for any fixed key and the corresponding binary
tree Tkey ,

P
Tkey

[
∀𝑡𝑟𝑖 ∈ Tr𝑤 , |𝑞𝑡𝑟𝑖 ,key − countkey (𝐷𝑡𝑟𝑖 ) | ≤ 𝜏

]
≥ 1−𝛽,

which depends on 𝜎 and 𝛽 . (See Appendix D for more
details.) Here, countkey (𝐷𝑡𝑟𝑖 ) denote the unique user
count for key in 𝐷𝑡𝑟𝑖 , and 𝑞𝑡𝑟𝑖 ,key denote the private
estimate of countkey (𝐷𝑡𝑟𝑖 ).

3: for 𝑖 ∈ |Tr𝑤𝑖
| do

4: S (𝑖) ← Set of all keys in the stream 𝐷𝑡𝑟𝑖 with count
> 𝜇.

5: For all key ∈ S (𝑖)\S (𝑖−1) , create a new tree Tkey
using InitializeTree (𝑇𝑖 , 𝜎), and execute Algo-
rithm 4 till (𝑖 − 1)-th step with all zeros as input.

6: for key ∈ S (𝑖) do
7: Tkey ← AddToTree (Tkey , 𝑖,countkey (𝐷𝑡𝑟𝑖 )−

countkey (𝐷𝑡𝑟𝑖−1 )), i.e., Add the count at time
stamp 𝑡𝑟𝑖 to Tkey .

8: 𝑞𝑡𝑟𝑖 ,key ← GetTotalSum (Tkey , 𝑖).
9: if 𝑞𝑡𝑟𝑖 ,key > 𝜇 + 𝜏 , then output (key , 𝑞𝑡𝑟𝑖 ,key ).
10: end for
11: end for

least 𝜇 unique user contributions), the objective is to select the
key for statistic release. Statistic release corresponds to adding
the value from user contributions to a main histogram that
estimates the distribution of records across all the keys. Notice
that in this histogram, a single user can contribute multiple
times to the same key. In this section we discuss how to create
this histogram while preserving DP.

The crux of the algorithm is that for all the set of keys
detected during the key selection phase via Algorithm 1, we
maintain a DP-tree (an instantiation of Algorithm 4) for every
key detected. We provide a 𝜌-zCDP guarantee for each of the
trees for each of the keys. Since each user can contribute 𝐶
records in this phase, and in the worst case all these contri-
butions can go to the same node of a single binary tree, we
scale up the sensitivity corresponding to any single node in
the tree to 𝐿1 = 𝐶 · 𝐿 (analogous to that in Section 3.2), and
ensure that each tree still ensures 𝜌-zCDP. We provide the
details of the algorithm in Algorithm 2. The privacy guarantee
follows immediately from Theorem C.1, and the translation
from 𝜌-zCDP to (𝜀, 𝛿)-DP guarantee. In Algorithm 2, we will
use a lot of the binary tree aggregation primitives we used in
Section 3.3.

Algorithm 2 Hierarchical Perturbation with DP-Tree
Require: Data stream: 𝐷𝑤𝑖

= {𝑑1, . . . , 𝑑𝑛}, where each 𝑑𝑖 ar-
rive at time 𝑡𝑖 within event-timewindow𝑤𝑖 = (𝑡𝑠 , 𝑡𝑒 ), 𝑡𝑠 <

𝑡𝑖 < 𝑡𝑒 . Triggering timestamps Tr𝑤𝑖
= [𝑡𝑟1, 𝑡𝑟2, ..., 𝑡𝑟𝑇𝑖 ].

At each triggering timestamp 𝑡𝑟𝑖 ⊆ R, only a sub-stream
𝐷𝑡 ∈ 𝐷𝑤𝑖

is available. Privacy parameters 𝜀, 𝛿 > 0, num-
ber of DP-Tree leaf nodes 𝑛.

1: Compute the noise standard deviation 𝜎 for the tree ag-
gregation based on (𝑛, 𝜀, 𝛿). (See Appendix D in the full
paper for more details.)

2: for 𝑖 ∈ |Tr𝑤𝑖
| do

3: S𝑖 ← Set of keys output by the key selection algorithm
(Algorithm 1) at 𝑡𝑟𝑖 .

4: for key ∈ S𝑖 do
5: Let 𝐷𝑡𝑟𝑖 ← data stream available at time stamp 𝑡𝑟𝑖 .
6: Last Release Time LRTkey ← triggering timestamp

of the previous statistic release.
7: Δ𝑉key ← Aggregated value for key in the sub-

stream 𝐷𝑡𝑟𝑖 − 𝐷LRTkey .
8: Tkey ← AddToTree (Tkey , 𝑖,Δ𝑉key ).
9: Output GetTotalSum (Tkey , 𝑖).
10: end for
11: end for

4 SYSTEM IMPLEMENTATION AND
OPTIMIZATION

When implementing the streaming differential privacy algo-
rithms described in Section 3, one must take the system con-
straints into practical considerations. There are three main
challenges:
• The streaming framework described in Section 2.1 dis-
cretizes the data stream into micro-batches. Therefore,
streaming key selection and hierarchical perturbation,
whose algorithms are defined based on data stream
𝐷𝑡Tr

𝑖
, must be implemented using micro-batch Δ𝐷𝑡Tr

𝑖

(defined in Section 2.1) and the system state. In Sec-
tion 4.1 we detail the complete state management of
DP-SQLP.
• DP-SQLP is input data stream driven. The state loading
and updating require the existence of a key in the cur-
rent micro-batch. However, Algorithm 1 requires to test
all keys that have appeared at least once. In Section 4.3
we discuss a new algorithm that avoids testing all the
keys that have appeared at least once.
• There are multiple components to the DP-SQLP system
which are individually (𝜀, 𝛿)-DP. It is necessary to use
appropriate forms of composition to account for the
total privacy cost. In Section 4.4, we detail the complete
privacy accounting for DP-SQLP.

4.1 State Management
As mentioned above, both streaming key selection and hier-
archical perturbation are defined based on data stream 𝐷𝑡Tr

𝑖
.

Therefore, they both require stateful operations. Furthermore,
the global user contribution bounding that tracks the number
of records per-user in data stream 𝐷 is also stateful.
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Figure 5: Execution of streaming differential privacy mechanism

In DP-SQLP, the system state store is a persistent storage
system, backed by Spanner database [12] that provides high
availability and fault tolerance. The system state store is co-
managed by the DP-SQLP operator and the streaming frame-
work for state update and maintenance. All the state informa-
tion required by streaming differential privacy is stored in the
system state store. For a pictorial depiction, see Figure 2.
State Store Structure: There are two main state tables in the
system state stores, which are managed by the same streaming
framework. Each state table is a key value storage contain-
ing state key and state object.

The first state table is keyed by user id to track per-user
contribution within the data stream. The state object simply
stores the count value.

The second state table is keyed by GROUP BY keys. The
state object contains data buffer, DP-Trees for key selection
and DP-Trees for aggregation columns. Data buffer is a data
structure that temporarily stores the unreleased, aggregated
data from new records, due to the failure in thresholding test
(line 9, Algorithm 1). One DP-Tree is used by each round of
Algorithm 1 execution, and one DP-Tree is used for hierar-
chical perturbation per aggregation column.
Execution Procedures: The execution of streaming differen-
tial privacy mechanism is shown in Figure 5. Different shapes
represent different users and different colors represent differ-
ent keys. Each step is described as following.

(1) User contribution bounding: Records in one micro-
batch are grouped by user id. A map in system state
store is maintained to track the number of records each
user contributes. Once the number of contributions for
a user reaches𝐶 , all the remaining records for that user
in the data stream will be discarded. Furthermore, we
clamp the value 𝑣 of each aggregation column𝑚, so that
|𝑣 | ≤ 𝐿𝑚 .

(2) Cross-user aggregation: Records in one micro-batch
are grouped by key and aggregated, which form a delta
result [23]. After that, the delta result will be merged
into the data buffer that is loaded from the system state
store.

(3) Streaming key selection: The DP-Trees for stream-
ing key selection are loaded from the system state store.
Then we will perform Algorithm 1, which adds the in-
cremental user count from the current micro-batch into
DP-Tree , as a leaf node.

(4) Hierarchical perturbation: Once a key is selected,
the DP-Tree for hierarchical perturbation is loaded
from the system state store. After that, we will use

Algorithm 2 to get DP aggregation results, and output
the results.

The execution engine used to implement user contribution
bounding and hierarchical perturbation will be discussed in
section 4.2.

As mentioned in section 3.3, the DP-Tree estimator is im-
plemented with the “bottom-up Honaker” variance reduction
to get the DP sum. The estimated sum for DP-Tree root at
node𝑖∗ equals

ˆSum(node𝑖 ) =
𝜇−1∑
𝑗=0

𝑐 𝑗 · sum(level𝑗 ) .

In case more than one DP-Trees are used in key selection or
hierarchical perturbation, we need to further sum the Honaker
estimations from each tree together.

4.2 Parallel Execution

Figure 6: Parallel execution within DP-SQLP operator

When building the DP-SQLP operator, we leverage the F1
query engine [43] for its wide range of data sources and dis-
tributed query execution (Figure 6). The user contribution
bounding step is executed by the user contribution bounding
server. The privacy key selection and hierarchical perturbation
are executed by the data perturbation server. Both servers con-
tain thousands of workers that are horizontally scalable. Input
data is first read by F1 query engine, partitioned, then sent to
the user contribution bounding server through Remote Pro-
cedure Calls (RPCs). After that, the bounded data will stream
back to F1, re-partitioned, then being sent to data perturbation
server for key selection and hierarchical perturbation.

4.3 Empty Key Release Prediction
Since the data stream is unordered and unbounded, the exis-
tence of user contributions within each micro-batch can be
arbitrary, as shown in Figure 7. It is possible that some keys do
not have any user records in a micro-batch. In the traditional
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streaming systems, states are not updated unless new records
appear in the micro-batch[48]. Therefore, the system only
needs to load states with keys from the current micro-batch.

However, the streaming key selection algorithm (Algo-
rithm 1) requires us to perform the thresholding test for the
entire key space, and it is possible for a key to be selected
without new records. An naive approach is to load all the keys
with their associated states from the system state store, and
run Algorithm 1 directly. Unfortunately, when the key space is
large, the I/O cost and memory cost of loading the entire state
table is too high. Here, we propose the empty key release pre-
diction algorithm, together with other operational strategies,
to solve the scalability challenge.

Algorithm 3 Empty Key Release Prediction
Require: Data stream: 𝐷𝑤 = {𝑑1, . . . , 𝑑𝑛}, where each 𝑑𝑖 ar-

rive at time 𝑡𝑖 within event-time window𝑤 = (𝑡𝑠 , 𝑡𝑒 ), 𝑡𝑠 <

𝑡𝑖 < 𝑡𝑒 . Triggering timestamps Tr𝑤 = [𝑡𝑟1, 𝑡𝑟2, ..., 𝑡𝑟𝑇 ].
At each triggering timestamp 𝑡𝑟𝑖 ⊆ R, only a sub-stream
𝐷𝑡 ∈ 𝐷𝑤 is available. privacy parameters 𝜀, 𝛿 > 0. Let j be
the current round of key selection.

1: Δ𝐷𝑡𝑟 𝑗 ← 𝐷𝑡𝑟 𝑗 − 𝐷𝑡𝑟 𝑗−1 (which is the data stream for the
micro-batch at 𝑡𝑟 𝑗 .

2: S𝑡𝑟 𝑗 ← All key ∈ Δ𝐷𝑡𝑟 𝑗 selected via Algorithm 1 at time
𝑡𝑟 𝑗 .

3: for key ∈ S𝑡𝑟 𝑗 do
4: for 𝑡𝑟𝑝 from 𝑡𝑟 𝑗+1 to 𝑡𝑟 |Tr𝑤 | do
5: 𝐷𝑡𝑟𝑝 ← 𝐷𝑡𝑟 𝑗 , which mimic the data stream at the

next triggering timestamp 𝑡𝑟𝑝 , without any new
record.

6: Perform streaming private key selection on 𝐷𝑡𝑟𝑝 for
key via Algorithm 1 at time 𝑡𝑟𝑝 .

7: if key is selected, then write
(
key , 𝑡𝑟𝑝

)
to state

store and break.
8: end for
9: end for

Algorithmdescription for empty key release prediction:
There are two scenarios that may trigger a key being selected:
key is selected due to additional user contributions, or key
is selected due to noise addition without user contributions.
The first scenario is naturally handled by the streaming sys-
tem, when processing micro-batch with new records. The
secondary scenario is handled by Algorithm 3.

When a micro-batch Δ𝐷𝑡𝑟 𝑗 contains key 𝑘 , the streaming
private key selection algorithm for key 𝑘 is applied to the
sub-stream 𝐷𝑡𝑟 𝑗 . In case 𝑘 is not selected, we will simulate
streaming private key selection algorithm executions from
𝑡𝑟 𝑗+1 to 𝑡𝑟 |Tr | , using sub-stream𝐷𝑡𝑟 𝑗 , and predict if any future
release is possible by adding leaf node with zero count. The
predicted releasing time is 𝑡𝑟𝑝 , and it is written to the system
state store.

After making a release prediction, the DP-SQLP will con-
tinue to process the next micro-batch. For key 𝑘 with predicted
releasing time 𝑡𝑟𝑝 , there are two cases:

(1) 𝑘 appears in another micro-batch Δ𝐷𝑡𝑟𝑛 before the pre-
dicted triggering timestamp ( 𝑗 < 𝑛 < 𝑝). In this case,

Figure 7: Some keymay not have records within certain
micro-batch

the prior prediction result is discarded. We will perform
key selection algorithm for the micro-batch Δ𝐷𝑡𝑟𝑛 . All
the thresholding test for micro-batches that do not have
𝑘 between 𝑡𝑟 𝑗+1 and 𝑡𝑟𝑛−1 have been performed during
the prediction phase in the prior micro-batch 𝐷𝑡𝑟 𝑗 . In
addition, we will make a new prediction for Δ𝐷𝑡𝑟𝑛 .

(2) 𝑘 appears in another micro-batch Δ𝐷𝑡𝑟𝑛 after the pre-
dicted triggering timestamp (𝑝 < 𝑛). In this case, DP-
SQLP loaded system states for 𝑘 at the predicted time
𝑡𝑟𝑝 and released data from the data buffer. We will start
a new round of streaming key selection from micro-
batch Δ𝐷𝑡𝑟𝑛 .

Within these operations, some computations might be wasted
(e.g., Case 1). However, when the key space is large, the reduc-
tions in I/O cost and memory cost bring in more benefits than
the CPU overhead.

The prediction result is stored in the system state. The step
to load predicted results is shown in Figure 5. We also add a
secondary index on the predicted timestamp to improve the
state loading speed.

4.4 Privacy Accounting for DP-SQLP
In DP-SQLP, the privacy costs occur in streaming key selection
(Algorithm 1) and hierarchical perturbation (Algorithm 2).
Because each user is allowed to contribute at most 𝐶 records,
we use the combination of composition and sensitivity in
privacy accounting.
• Privacy accounting for streaming key selection: When
executing Algorithm 1 in DP-SQLP, the value added to
each leaf node is the unique user count. Therefore, the
per-user sensitivity for each DP-Tree is one. In addi-
tion, we restart the Algorithm 1 once a key is selected,
and data accumulated in the data buffer is released im-
mediately. As a result, each user may participate in at
most 𝐶 rounds of key selection. Given the (𝜀, 𝛿) pri-
vacy budget for each round of Algorithm 1, the total
privacy cost for streaming key selection is calculated
using the empirically tighter variant of advanced com-
position [19] with 𝐶-fold.
• Privacy accounting for hierarchical perturbation: For
each user, in the worst case, all 𝐶 contributions can
go to the same node of a single DP-Tree , we scale up
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the sensitivity corresponding to any single node in the
tree to 𝐿1 = 𝐶 ·𝐿, and ensure that each tree still ensures
𝜌-zCDP. After that, we use the conversion from [40,
Proposition 3] to translate privacy cost from 𝜌-zCDP
to (𝜀, 𝛿)-DP guarantee 8.

Finally, the privacy costs of key selection and hierarchical
perturbation are combined via advanced composition.

5 EXPERIMENTS
The experiments are performed using both synthetic and real-
world data to demonstrate the data utility and scalability. The
streaming DP mechanism is implemented in the DP-SQLP
operator, as described in section 4.
Baselines:We compareDP-SQLPwith two baseline approaches
for data utility.
• Baseline 1 - Repeated differential privacy query. Most
of the existing DP mechanisms does not have capac-
ity to track user contributions across multiple queries.
Therefore, when handling data streams, one common
workaround is to repeatedly apply the one-shot DP
query to the growing data set in order to get the his-
togram update. Thus, the overall privacy budget usage
is the composition of all queries.
• Baseline 2 - Incremental differential privacy processing.
The one-shot differential privacy algorithm is applied
separately to each micro-batch, and we can get the
final result by aggregating the outputs from each micro-
batch. Compared with baseline 1, baseline 2 requires
a similar global user contribution bounding system as
DP-SQLP.

For both baseline 1 and baseline 2, the one-shot differential
privacy mechanism is executed by Plume [3] with the Gauss-
ian mechanism. Each one-shot differential privacy execution
guarantees (𝜀, 𝛿)-differential privacy. We also adopt the opti-
mal composition theorem for DP [31] to maximize the baseline
performance.
Metrics: The data utility is evaluated based on 4 metrics cal-
culated between the ground truth histogram and the differen-
tially private histogram. 1) Number of retained keys, which re-
flects how many keys are discovered during key selection pro-
cess. It is also known as the ℓ0 norm, 2) ℓ∞-norm, which reflects
the worst case error: max

𝑘∈key space
( |𝑀̂𝑘 − 𝑀𝑘 |), 3) ℓ1-norm,

which reflects the worst case error:
∑

𝑘∈ key space
( |𝑀̂𝑘 −𝑀𝑘 |),

and 4) ℓ2-norm:
√ ∑

𝑘∈key space
( |𝑀̂𝑘 −𝑀𝑘 |2).

We choose 𝜀 = 6 and 𝛿 = 10−9 as the overall privacy budget
for all experiments. Within DP-SQLP, the privacy budget used
by the aggregation column is 𝜀𝑚 = 𝜀/2, 𝛿𝑚 = 𝛿/3, and the ones
used by key selection is 𝜀𝑘 = 𝜀/2, 𝛿𝑘 = 𝛿 × 2/3. The parameter
C is chosen based on the dataset property. In this experiment,
we sampled 10% of one day’s data and set 𝐶 according to the
99 percentile of per user number of records. There are more
discussions on choosing 𝐶 in Section 5.4.
8The exact computation is from https://github.com/IBM/discrete-gaussian-
differential-privacy/blob/master/cdp2adp.py#L123

For both synthetic data and real-world data, We assume
the dataset represents a data stream within one day. We also
shuffle users’ records so that they are randomly distributed
within the day. In experiments, the event-time window is also
fixed to one day.

In addition to data utility, we also report the performance
latency under various micro-batch sizes and number of work-
ers.

5.1 Synthetic Data
We used the similar approach as [3] to generate the synthetic
data to capture the long-tailed nature of real-world data. There
are 10 millions unique users in the synthetic dataset. Each
user draws a number of contributed records from a distri-
bution with range [1, 105] and mean 10 according to a Zipf-
Mandelbrot distribution. The parameters9 are chosen so that
roughly 15% users contribute to more than 10 records. The key
in each record is also sampled from a set of size 106, following
a Zipf-Mandelbrot distribution10. This implies that roughly
1/3 of records have the first 103 keys.

The histogram query task we perform is a simple count
query.

SELECT key , COUNT (*)
FROM SyntheticDataset
GROUP BY key

Listing 2: Histogram query for synthetic data

The per-record clamping limit 𝐿 = 1 since the aggregation
function is COUNT. We set 𝐶 = 32.

All measurements are averaged across 3 runs. The experi-
ments are performed with 100 micro-batches and 1000 micro-
batches. Within one day, 100 micro-batches correspond to
roughly 15minute triggering intervals, and 1000micro-batches
correspond to roughly 1.5 min triggering intervals.

Table 1: Data utility measure with synthetic data (𝜀 =

6, 𝛿 = 10−9)

Metrics 100 Micro-batches
DP-SQLP Baseline 1 Baseline 2

Keys 28,338 435 191
ℓ∞ Norm 1,391 18,077 21,913
ℓ1 Norm 17,741,225 50,835,203 58,551,587
ℓ2 Norm 50,039 430,547 576,425

Metrics 1000 Micro-batches
DP-SQLP Baseline 1 Baseline 2

Keys 22,280 0 0
ℓ∞ Norm 1,563 25,497 25,497
ℓ1 Norm 19,395,721 59,052,062 59,052,062
ℓ2 Norm 58,237 594,382 594,382

The results are shown in Table 1. There are significant data
utility improvements comparing DP-SQLP with two baselines.
9In Zipf-Mandelbrot, the sampling probability is proportional to (𝑥 + 𝑞)−𝑠 ,
where 𝑞 = 26, 𝑠 = 6.738.
10𝑞 = 1000, 𝑠 = 1.4.
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With 100 micro-batches, the number of retained keys is in-
creased by 65 times; the worst case error is reduced by 92%;
the ℓ1 norm is reduced by 65.1% and the ℓ2 norm is reduced by
88.4%. The utility improvement is even more significant with
1000 micro-batches. The number of retained keys is increased
from 0 to 22,280; the worst case error is reduced by 93.9%; the
ℓ1 norm is reduced by 67.2% and the ℓ2 norm is reduced by
90.2%.

Another observation we have for DP-SQLP is its stability
when the number of micro-batches increases. The utility of
one-shot differential privacy mechanisms in baseline 1 and
baseline 2 degrade quickly, due to the privacy budget split
(baseline 1) and data stream split (baseline 2). This degrada-
tion sometimes is not linear. The number of retained keys in
baseline 1 and 2 is reduced to 0 when the number of micro-
batches grows from 100 to 1000. On the contrary, the utility
degradation for DP-SQLP is not as significant. Indeed, when
the number of micro-batches increases from 100 to 1000, for
DP-SQLP, the number of retained keys is reduced by 21%, the
worst case error is increased by 12%, the ℓ1 norm is increased
by 9%, and the ℓ2 norm is increased by 16%.

In summary, DP-SQLP shows a significant utility improve-
ment over one-shot differential privacy mechanisms when
continuously generating DP histograms.

5.2 Reddit Data
In the next step, we apply the same experiment to real-world
data. Webis-tldr-17-corpus [46] is a popular dataset consist-
ing of 3.8 million posts associated with 1.4 million users on
the discussion website Reddit. Our task is to count the user
participation per subreddit (specific interest group on Reddit).

We set 𝐶 = 17 and the rest of the experiment settings are
the same as the synthetic data. All measurements are averaged
across 3 runs.

Table 2: Data utility measure with the Reddit data (𝜀 =

6, 𝛿 = 10−9)

Metrics 100 Micro-batches
DP-SQLP Baseline 1 Baseline 2

Keys 1,473 32 63
ℓ∞ Norm 102,250 267,147 103,546
ℓ1 Norm 989,249 2,721,349 2,376,937
ℓ2 Norm 127,721 322,739 156,472

Metrics 1000 Micro-batches
DP-SQLP Baseline 1 Baseline 2

Keys 1,181 9 3
ℓ∞ Norm 102,218 266,391 108,124
ℓ1 Norm 1,074,724 3,081,542 3,074,655
ℓ2 Norm 127,830 341,557 242,482

The results are summarized in Table 2, and we have similar
observations as in the synthetic data experiments. DP-SQLP
demonstrates significant utility improvements in the number
of retained keys, ℓ1 norm and ℓ2 norm, as well as the perfor-
mance stability when the number of micro-batches grows from
100 to 1000.

Figure 8: Micro-batch execution time (𝜀 = 6, 𝛿 = 10−9)

5.3 Execution Performance
The end-to-end latency of a record consists of framework
latency and micro-batch execution latency. The former is de-
termined by the streaming framework. The latter is a critical
indicator for the system scalability. In this section, we report
the execution latency for each micro-batch, under different
micro-batch sizes and number of workers.

The results are shown in Figure 8. All measurements are
averaged across 2 runs, with shaded regions representing stan-
dard error. The execution latency grows sub-linearly as the
micro-batch size increases. For example, with 150 workers, the
execution latency grows 1.7 times while the data size increases
5 times from 1 GB to 5 GB.

Figure 8 also demonstrates horizontal scalability by trading
machine resources with latency. When the total number of
workers increases from 150 to 600, the execution latency is
reduced by 41%, 40%, and 39% respectively for 1, 2, and 5 GB
micro-batches.

To further test the scalability in terms of the size of key
space, we generate another large synthetic dataset with 1 bil-
lion users. Each user draws the number of contributed records
following Zipf-Mandelbrot distribution11, generating 6 billion
records in total. The key in each record is sampled from 1
billion keys following uniform distribution. When setting the
micro-batch size equals 1GB and using 5500 workers, the aver-
age execution latency is 306 seconds. DP-SQLP easily handles
the large load without incurring any significant performance
hit.

5.4 Parameter Tuning
Tuning user contribution bounding is critical to achieve good
data utility. If 𝐶 is too small, lots of user records may be
dropped due to user contribution bounding, which will lead to
large histogram error. However, if𝐶 is very large, the noise and
key selection threshold are scaled up accordingly. Choosing
the right 𝐶 is an optimization task.

In this section, we run the DP-SQLP with synthetic data
using variable 𝐶 from 1 to 50. Figure 9 shows how the change
of 𝐶 affects the number of retained keys, ℓ1 norm, ℓ2 norm
and ℓ∞ norm. The optimal value for𝐶 (naturally) varies under
different metrics. For example, the optimal 𝐶 for ℓ1 norm is
11𝑞 = 26, 𝑠 = 6.738.

4155



around 25 whereas the optimal 𝐶 for ℓ2 norm is around 30. In
comparison, the optimal 𝐶 for the number of retained key is
around 5. Therefore, the optimal value of 𝐶 should be chosen
according to the metric we care most about (e.g., ℓ2 norm). In
real applications, we could use the 𝑃99 percentile value or DP
𝑃99 percentile value from a data sample as the starting point
and perform a few rounds of tests to search for the optimal
point.

Figure 9: Metrics under different contribution limit (𝜀 =
6, 𝛿 = 10−9)

6 INDUSTRY APPLICATIONS
6.1 Apply DP-SQLP to Google Shopping
We implemented a streaming differentially private user impres-
sions for Google Shopping. A DP-SQLP pipeline was deployed
that outputs differentially private product page-view counts.
The page-view was used by some shopping systems as a sig-
nal for prioritizing the crawling of pages to update product
price and availability information. When it comes to use cases
such as price and availability, data freshness is critical for a
good user experience. Long pipeline latency in case of using
batch process, may incur obsolete search results. Therefore,
a streaming pipeline with low latency is required by Google
Shopping.

To maintain a low latency stream of page-view counts,
while addressing the privacy risks, Google Shopping set up
a DP-SQLP pipeline that outputs a histogram of view count
per merchant product page. The DP-SQLP pipeline processes
around 20GB/s data stream, and maintains a 20 mins end-to-
end latency.

In terms of data utility after adopting DP-SQLP, we were
able to retain 59% of the page-view. When focusing on the
head pages, utility increases to 75% for pages with an aver-
age view rate of 1 view/hour, and to 99.9% for pages with an
average view rate of 60 views/hour. When comparing noised
impression counts with the raw counts, the relative error is
around 11%. Each user is bound to contribute one event per
day to ensure user level DP guarantee, per day. We use 𝜀 = 1
for streaming aggregation. For streaming key selection, when
choosing 𝜀 = 1, the equivalent threshold is around 120; when
choosing 𝜀 = 3, the equivalent threshold is around 43; and
when choosing 𝜀 = 10, the equivalent threshold is around 16.
The overall 𝛿 = 10−9. The max triggering window size is 150.

6.2 Streaming DP in Google Trends
Google Trends allows users to analyze the interest of search
queries. The streaming private key selection (algorithm 1) is
applied to it for selecting common Google Search queries with
differential privacy in a streaming manner. Only queries cho-
sen with differential privacy guarantee are shown on Google
Trends website (e.g. as trending queries or related queries).
The streaming pipeline ensures the 15 min end to end latency
for highly searched queries to be selected with DP. Each user
is bounded to contribute one event per query. We use 𝜀 = 2
and 𝛿 = 10−10 for a user-query level DP guarantee, i.e. each
query has a budget 𝜀 = 2 and 𝛿 = 10−10. In addition, a de-
terministic pre-threshold 𝜇 = 50 is used, to yield a stronger
privacy protection. That means that DP streaming selection is
applied only for queries with at least 50 unique users.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented a streaming differentially private
system (DP-SQLP) that is designed to continuously release DP
histograms. We provide a formal (𝜀, 𝛿)-user level DP guaran-
tee for arbitrary data streams. In addition to the algorithmic
design, we implemented our system using a streaming frame-
work similar to Spark streaming, Spanner database, and F1
query engine from Google. The experiments were conducted
using both synthetic data and Reddit data. We compared DP-
SQLP with two baselines, and the results demonstrated a sig-
nificant performance improvement in terms of data utility.
In the end, we present two industry applications that apply
DP-SQLP and the streaming private key selection algorithm
to the production use cases.

There are three main ways in which our system can be
further extended. First, in the design of the system we have
used DP-tree aggregation [10, 17, 27] as the baseline DP al-
gorithm. In recent research [13, 26], it has been shown that
DP-tree aggregation is (significantly) sub-optimal in terms
of privacy/utility trade-off, compared to general matrix fac-
torization based mechanisms (DP-MF) [38]. However, DP-MF
algorithms are not in general compatible with systems oper-
ating on data streams. Recently, following to our work, [39]
provided a streaming variant of DP-MF. In future incarnations
of our system, we plan to incorporate this.

Second, our algorithms are primarily designed to provide a
centralized DP guarantee, where the final outcome of the sys-
tem is guaranteed to be DP. It is worth exploring DP streaming
system designs that allow stronger privacy guarantees like
pan-privacy [18].

Third, we bound the contribution of each user globally
by 𝐶 . However, for higher fidelity, it is important to explore
approaches to perform per-key contribution bounding. Naive
approaches that address this issue can get complicated due to
the fact that we are dealing with an input driven stream.
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