
Simple (yet Efficient) Function Authoring for Vectorized Engines
Laith Sakka

Meta Platforms Inc.
lsakka@meta.com

Pedro Pedreira
Meta Platforms Inc.
pedroerp@meta.com

Orri Erling
Meta Platforms Inc.
oerling@meta.com

Masha
Basmanova

Meta Platforms Inc.
mbasmanova@meta.com

Kevin Wilfong
Meta Platforms Inc.
kevinwilfong@meta.com

Wei He
Meta Platforms Inc.
weihe@meta.com

Xiaoxuan Meng
Meta Platforms Inc.
xiaoxmeng@meta.com

Krishna Pai
Meta Platforms Inc.
kgpai@meta.com

Bikramjeet Vig
Meta Platforms Inc.
bikramjeet@meta.com

ABSTRACT
Vectorized execution engines process large datasets by decompos-
ing computations into concise (tight) loops, which can be more
efficiently executed by modern hardware. Providing loops that are
optimal for execution usually adds burden to the software develop-
ment process, as developers are required to understand details of
vectorized execution, columnar data layout, data encodings, and the
code compilation process itself, presenting a steep learning curve
and challenges to organizations building and scaling large engineer-
ing teams. Due to their large quantity, scalar function authoring
accentuates this problem. In our experience building the Velox open
source execution engine, we have observed that exposing a large
number of developers to the complexity inherent to vectorization
resulted in a disproportionate amount of bugs and performance
inefficiencies. In this paper, we describe the simple function inter-
face (SFI) created to address this issue. SFI highly simplifies scalar
function authoring by encapsulating the vectorization complexity
required to generate tight loops, and presenting developers with
a simpler, conciser, and more natural row-based interface - with-
out sacrificing performance. SFI also hides columnar layout details,
while providing developers the flexibility to efficiently implement
advanced features such as functions with nested and recursive
parameter types, type variables, variadic parameters, and generic
types. Today, more than a thousand functions have been added to
Velox using the SFI, implementing popular open source SQL dialects
and internal domain-specific use cases at Meta, and are in active
production use. While this paper presents implementation details,
performance pitfalls, experimental results, and our overall expe-
rience developing the state-of-the-art Velox vectorized execution
engine, we believe the concepts and trade-offs to be fundamentally
equivalent and generally applicable to other vectorized engines.

PVLDB Reference Format:
Laith Sakka, Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong,
Wei He, Xiaoxuan Meng, Krishna Pai, and Bikramjeet Vig. Simple (yet
Efficient) Function Authoring for Vectorized Engines. PVLDB, 17(12): 4187 -
4199, 2024.
doi:10.14778/3685800.3685836

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685836

1 INTRODUCTION
There are two predominant strategies for the efficient execution of
relational queries in modern data management systems. Execution
engines can either (a) completely remove the cost of query inter-
pretation by generating executable code at runtime (just-in-time
compilation), or (b) amortize the interpretation overhead by process-
ing batches of data at a time (vectorization). While the best strategy
for a given workload is still a debated topic (including hybrid ap-
proaches) [13], vectorization is generally adopted for processing
large datasets due to its simplicity, lack of compilation overhead,
and generated code efficiency [18] [23] [3] [6]. In a vectorized execu-
tion engine, computation is decomposed into a sequence of simple
and concise operations over a batch of data - tight loops - providing
more predictable memory access patterns and minimizing CPU
pipeline stalls caused by cache misses and branch mispredictions.
Vectorization enables CPUs to fully leverage out-of-order execution
and SIMD instructions [22], while providing a programming para-
digm that is more naturally translatable to highly parallel hardware
accelerators like GPUs.

A vectorized engine is only as efficient as the loops it executes.
If loops are carefully unswitched [28] to minimize CPU stalls, and
batches are large enough to amortize the cost of dispatching to the
next loop, near-optimal CPU usage can be achieved. For example, in
order to sum two columns, a vectorized engine usually provides one
version of the loop to sum a batch of each supported data type, and
a dispatch mechanism (such as a virtual function call) to locate the
correct loop at runtime.Moreover, to avoid nullity checks (branches)
for cases when parameters are known to be not-null, two versions
of each loop may be provided, one with, and one without the nullity
check. In an encoding-aware engine where input batches can be
arbitrarily encoded [8], different versions of each loop may also be
provided to handle cases when parameters have a specific encoding,
such as one loop for constant-encoded columns, one for flat, and
one for dictionaries. Implementing this exponential combination
of loops and taking the right trade-off between runtime efficiency
and binary program size is a challenging task. Beyond coding skills,
it requires developers to have a deep understanding of vectorized
data processing, columnar memory layout, data encodings, and
compilers, presenting a steep learning curve for new developers,
and major challenges to organizations trying to scale teams and
speed up engine development.

Due to the broad surface and sheer variety, scalar function au-
thoring accentuates this problem. Popular engines like Presto [25]
[27] or Spark [26] commonly expose hundreds of built-in scalar

4187

https://doi.org/10.14778/3685800.3685836
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685836

functions, providing functionality such as manipulation of strings,
arrays, maps, dates, timestamps, regular expressions, JSON, URLs,
and many others [10], sometimes encompassing 1/3 to 1/2 of the
entire engine’s codebase [33]. In our experience building the Velox
open source execution engine [18] [17] and adding support for
prominent SQL dialects, we have observed hundreds of engineers
across Meta and the open source community developing vector-
ized functions. While the concepts of encoding-aware execution,
columnar data representation, and vectorized expression evaluation
are well-understood by (a few) data system specialists, we have
found them to be unintuitive and excessively complex for many
developers; it resulted in a disproportionate amount of bugs caused
by leaky vectorized APIs, and numerous performance inefficiencies.

To address this issue, we have developed a novel simple function
interface (SFI) in Velox. SFI encapsulates complexity from vector-
ized scalar function development, hiding details of the columnar
layout, and presenting developers with a simpler, conciser, and
more natural row-based interface. SFI is comprehensive and allows
developers to efficiently leverage advanced features such as nested
and recursive parameter types, type variables, variadic parameters,
and generic types, which are commonly used during scalar function
authoring. By transparently applying performance optimizations
such as loop unswitching, fast-path for common encodings, and
efficient null handling, SFI commonly provides the same level of
performance as their vectorized counterparts, while reducing the
cognitive burden on developers, code verbosity and complexity, and
likelihood of bugs. In fact, we have observed cases where functions
migrated to use SFI present higher efficiency than their vector-
ized counterparts, due to missed optimization opportunities in the
original vectorized implementation. To exemplify the development
experience, Figure 1 contains a vectorized and an SFI-based im-
plementation of the plus() function, where the left side merely
illustrates the amount of code required. Both versions compile to
similar executable programs and provide equivalent performance.

Today, more than a thousand functions have been written using
SFI, implementing popular open source SQL dialects and internal
domain-specific use cases. We have estimated that hundreds of de-
velopers from Meta and the open source community, with different
levels of context in data processing, have used this interface to
extend the behavior of data management systems. Furthermore,
SFI is in active production use: through analysis of internal SQL
batch workloads in Presto, we have found that expression evalua-
tion alone encompasses about 15% of CPU usage across clusters;
migrating them to a state-of-the-art vectorized engine containing
the optimizations (and complexity) discussed throughout this paper
has improved that portion by a factor of 3.5x on an aggregated
level. We have also found that the ideas of SFI similarly apply to
aggregate function development, although the details of that work
will be described in a future paper. Ultimately, while this paper is
presented in the context of the Velox library, we believe that the
concepts of vectorization, columnar layout, and encoding-aware
execution, as well as the trade-offs between code complexity, devel-
oper productivity, reliability, and efficiency, to be fundamentally
equivalent and applicable to most modern vectorized execution
engines.

The remainder of this paper is organized as follows. Section 2
presents the background, discussing main concepts around modern

Figure 1: plus() function implementation using the vectorized
(left) and SFI (right), presenting equivalent performance.

vectorized engines, columnar layout, expression evaluation, and
scalar function support. Section 3 presents an overview of the
SFI discussing the main interfaces, challenges, and performance
considerations of scalar function authoring in vectorized engines.
Section 4 lists and describes details of the features supported in
SFI, discussing how it supports primitive, nested, and generic types.
Section 5 discusses some limitations of SFI. Section 6 points to
related work, and finally Section 7 concludes this paper.

2 BACKGROUND
2.1 Vectorization
Vectorization [5] is the predominant technique for processing large
scale datasets. In a vectorized execution engine, complex opera-
tions are decomposed into smaller (tight) loops, each executing
simple operations over large batches of data. As much as possible,
virtual calls, dynamic dispatching and even branches (if and switch
statements) - or anything that could stall the CPU pipeline - are
pulled outside of the loop (loop unswitching). Tight loops over large
batches of data can be efficiently executed by allowing CPUs to fully
leverage out-of-order execution and SIMD instructions, and reduc-
ing cache misses by relying on prefetching and more predictable
memory access patterns.

Loop unswitching implies that many physical versions of the
same loop must be available in the program. They are either explic-
itly spelled out by the programmer, or more commonly expressed
using techniques like templating in C++ [29]. For example, to im-
plement a vectorized operation that can sum two batches of either
integers or floats, one needs to provide a loop that expects integers
and one that expects floats, and at runtime decide which one to
take (dispatch). Generalizing this idea, vectorization is the process

4188

of decomposing larger logical operations into tight and efficient
loops, and successively executing them. Intuitively, the section be-
tween loops is typically less efficient as it has less instruction-level
parallelism and predictability. As long as the time spent processing
loops is sufficiently larger to amortize the time dispatching across
loops, CPUs can be efficiently used.

2.2 Columnar Layout
Vectorization relies on columnar data layout. In a columnar layout,
data is organized as horizontal partitions (batches or rows), where
each column is vertically represented by a structure commonly
referred to as array [2] or vector [34]. We refer to them as vectors
throughout this paper. Each vector may contain one or more buffers,
and buffers may be shared across multiple vectors. Vectors may
contain a buffer (bitmask) to represent the nullity (or validity) of
each value. Data types that have fixed length, such as integers,
floats, decimals, timestamps, and dates are often simply stored
contiguously in a sequential buffer.

Variable-length types such as strings need additional metadata.
In its simpler form, a string vector is represented by a data buffer
containing the actual string contents, accompanied by an offset
buffer containing where each string starts - the size of a string
at i is the difference between the offset at i+1 and the offset at
i. More sophisticated string representations like StringView [15]
store a string prefix along with the size/offsets to allow for faster
comparisons, in addition to allowing shorter strings (usually up
to 12 bytes) to be stored inline in the metadata/offsets buffer, thus
improving memory locality.

Container types like arrays and maps are commonly represented
in a similar way, having one internal and recursive vector represent-
ing the container elements from every row, and a buffer containing
the offsets where each array starts. Maps are stored in a similar fash-
ion, but instead containing two vectors, one for keys, and one for
values. Modern systems may also use an alternate representation
that keeps two additional buffers, one for offsets, and one for lengths,
called ListView [16]. Despite carrying redundant information in the
simple case, ListViews allow for more flexibility while processing
columnar containers, like enabling non-contiguous ranges, out of
order writes, and overlapping ranges. Rows/structs are commonly
represented by a set of vectors, where each vector can recursively
be of any of the types described above. Rows, arrays, and maps may
also carry an additional nullity bitmask to represent the case when
an entire container is null, as opposed to a particular element of
the container being null.

2.3 Encodings
Columnar representations share the important property of storing
values of the same data type contiguously, offering ample oppor-
tunities for more compact representations. For example, columns
containing many repeated values (low cardinality) can be efficiently
represented by a buffer containing the distinct values (the alpha-
bet) and a buffer of integers mapping each row to the index in
the alphabet; also known as dictionary encoding. Columns with
many contiguous repeated values (common in sorted datasets) can
be efficiently represented by an element, and the number of times
it appears (the run-length); also known as run-length encoding

(RLE). As a particular case of RLE, columns that represent a single
distinct value (commonly used to represent literals and partition
keys) can be represented by a single value and the column size; also
known as constant encoding.

These encodings are often referred to as recursive or cascading, as
they can conceptually be applied to (or wrapped around) columnar
buffers of any data type; including ones that are already encoded
using other schemes. Conversely, leaf encodings can be applied to
specific data types (and hence cannot be applied recursively), such
as frame-of-reference, bit-packing, and varints for integers [12],
ALP [1], Chimp [14], and Gorilla [21], for floats/doubles, FSST for
strings [4], and a myriad of other encodings schemes.

Encoding techniques have traditionally been applied for saving
IO while either storing columnar datasets on disk, or transferring
them through the network. Modern vectorized execution engines,
however, have found that the cascading property of certain encod-
ings (like dictionaries, constant, and RLEs) can also be conducive
to more efficient data processing [18]. For example, operations like
scalar functions can be applied only to distinct values (not to every
logical row). Furthermore, operations that decrease the cardinality
of a dataset, like filtering, can be achieved by wrapping a dictionary
around the data, and only including the indices of records that
survived the filter. Cardinality-increasing operations like unnests
and joins can be executed by wrapping an RLE containing the size
of each output run (or a dictionary) to the input data. This strat-
egy allows datasets to be efficiently processed by only modifying
indirection buffers (their wrappings), but without touching their
internal data, as these can be larger when representing long strings
and recursively defined containers.

To enable these optimizations, an encoding-aware execution
engine needs to be implemented in a way such that (a) each vector-
ized operation is able to receive and produce a batch of arbitrarily-
encoded data, like flat, constant, dictionary, and RLEs, and (b) that
they are designed in a way such that the input data encoding can
be leveraged for more efficient execution. While this enables a
wide range of optimization opportunities, it highly increases the en-
gine complexity, and the likelihood of bugs due to the exponential
combination of possible code paths.

2.4 Expression Evaluation
Expression evaluation in vectorized execution engines works by
decomposing larger expressions into several vectorized operations
(or sub-expressions), one at a time, each of which consuming a batch
of parameters and producing a batch of results that are consumed by
the next sub-expression. For example, the expression “a + func(b)”
is executed by first applying func() to an input batch of b, producing
partial results, then applying the plus() function to a and the partial
result from the previous sub-expression.

Expressions are usually represented by expression trees. Gener-
ally, nodes in this tree represent either (a) input columns, (b) scalar
function calls, or (c) special expression forms that require special
semantics, like conjuncts (AND/OR), try expressions, condition-
als, lambdas, and casts. Literals are usually eliminated by constant
folding subtrees before execution. Furthermore, each node in the
tree often carries semantic metadata that can be used to optimize
execution, such as determinism (does it always return the same result

4189

for the same inputs?), and null propagation behavior (does it always
produce null if any of the inputs are null?). For example, determinis-
tic functions over dictionaries and constants can be applied over the
alphabet only (or the constant value), and sub-expression execution
can be completely skipped if only nulls are found when OR’ing the
nullability bitmask for each input parameter.

The execution process consists of a recursive descent of the
expression tree, passing down a mask identifying the active rows.
Additional rows can be masked out as more sub-expressions return
nulls (depending on their null propagation behavior). Therefore,
at each sub-expression level, one needs to check and only execute
the expression over the active rows from that batch. Allocation
of buffers for partial results may present overhead if executed too
often; as much as possible, vectorized expression evaluation engines
try to recycle existing buffers using local memory arenas, or reuse
buffers from input parameters that are not needed after that point.
However, additional logic must be put in place to ensure that buffers
that are being reused are indeed writable (not shared across other
vectors), and materialized (in many cases vectors can be lazy and
only loaded upon first use).

Lastly, vectorized execution of conditionals poses additional com-
plexity to expression evaluation. The state-of-the-art [18] dictates
that first the expression that decides which branch each row will
take needs to be evaluated (the condition), then executing the rows
that match the condition (the then branch), then rows that do not
(the else branch). This logic can also be generalized to support mul-
tiple branches (switch statements). Since different branches will
independently write to the same output buffer, sub-expressions
need to be able to generate output values which are out of order
(e.g, first writing even rows, then odd rows).

2.5 Scalar Functions
The logic applied by sub-expressions is predominantly composed
of scalar functions. Scalar functions are functions that provide a 1:1
mapping between input and output; they take a set of parameters
from one row, and produce one output result, as opposed to aggre-
gate functions which may take many input rows and produce a
single output. They implement most of the domain-specific logic
made available to engine users, ranging from arithmetic opera-
tions, to string, json, date/time, regex, array and map manipulation,
among many others. Execution engines usually provide APIs that
allow users to add their own application-specific business logic,
which can either be compiled as part of the same process (built-
in/unfenced), or as an external UDF (fenced), depending on isolation
and performance requirements.

Besides the function implementation, developers need to provide
a function name, and a function signature describing the acceptable
input parameter types and the output type a function produces;
this process is referred to as function registration. The metadata
produced by function registration is often stored in a function reg-
istry, which is used at type resolution time to ensure that user-
supplied expressions are valid, that expected types match for each
sub-expression, and to locate the corresponding vectorized code
(tight loop) to dispatch to for each batch. Oftentimes, functions
may be able to receive a large (sometimes unbound) number of
types as parameters, so function signatures in modern execution

engines must support type variables in addition to concrete types,
e.g. array_min(array<T>) -> T, such that the type returned by the
function is dependent on its parameter types.

2.6 Velox Engine
Velox is an open source unified execution engine created by Meta
[17]. Velox is implemented as a C++ library that can be integrated
with existing data management systems, providing efficiency wins
due to its state-of-the-art vectorized engine. Velox also provides
reusability benefits, as features and optimizations can be imple-
mented once and be (re-)used across multiple engines. As an execu-
tion engine component, Velox does not provide a language or global
query optimization capabilities; rather, it takes a fully optimized
query plan as input and executes it using the local host resources.
As such, Velox implements the execution layer as described in the
composable data management stack [19]. In addition to traditional
SQL analytic query processing, Velox is also currently integrated
into stream processing, low-latency interactive use cases, feature
engineering, data preprocessing for ML, database and dataware-
house ingestion, timeseries processing, log messaging, with a total
of about a dozen data systems at Meta [7], providing efficiency
wins, more consistency across engines, and engineering efficiency
through reusability.

At its core, Velox is a vectorized engine that fully embraces
encoding-aware execution and makes extensive use of dictionaries,
constants, lazily loaded buffers, SIMD execution, and a variety of
other vectorization techniques such as the ones described above
for efficient expression evaluation [20]. Velox provides the core
vectorized operators and frameworks, and exposes extensibility
APIs to allow developers to fully customize its behavior and imple-
ment a specific semantic. The scalar function API, the main focus
of this paper, is the most commonly used extension point. Velox
provides implementations of Presto and Spark functions using the
SFI and vectorized scalar functions interface as part of the library,
allowing developers to achieve compatibility with PrestoSQL [11]
and SparkSQL [26].

3 OVERVIEW
This section presents an overview of scalar function authoring
in vectorized engines, highlighting some of their most common
efficiency optimizations, the complexity they bring, and other devel-
opment pitfalls. It also presents a new simple function interface (SFI)
built with the purpose of encapsulating this complexity, discussing
how SQL and C++ types are mapped, and how SFI automatically
generates vectorized code using C++ templates and metaprogram-
ming.

3.1 Scalar Function Authoring
In order to add a scalar vectorized function to an engine like Velox,
developers have to implement a vector function that receives vec-
tors as input parameters, and produces results as output vectors.
Listing 1 illustrates the usual components of a scalar function API
in a vectorized engine.

• apply(): a virtual function that will be called to dispatch
each batch of columnar data. Note that while this is a virtual

4190

function call that may stall the CPU pipeline, it is only called
once per batch.

• rows: a selectivity vector that represents the current active
rows.

• args: input parameter vectors, which could be encoded in
arbitrary ways.

• outputType: the return type of the function.
• context: additional expression evaluation and query plan

context, metadata, and access to other query-wide struc-
tures.

• output: the output vector. The output vector may be already
allocated or not, and functions are free to produce any type
of encoding.

• register(): in addition to the function implementation, au-
thors also have to register it by associating the function
with a name and a signature. For example, the function
above has the name plus, and a signature (double, double)
-> double.

class PlusDouble: public VectorFunction {

void apply(

const SelectivityVector& rows ,

std::vector <VectorPtr >& args ,

const TypePtr& outputType ,

EvalCtx& context ,

VectorPtr& output) {}

};

Listing 1: A vectorized API for scalar function.
This relatively simple API enables the expression evaluation

engine to generate efficient vectorized code. However, in order to
fully leverage its potential, developers are required to have deep
context on the concepts discussed below.

Encodings. In an encoding-aware engine, operators, expres-
sions, and other processing kernels are allowed to produce data
using any type of encodings, and consequently, may also receive
input vectors which are encoded in arbitrary ways. For example,
to implement the plus() function described above with maximum
efficiency, one needs to consider the input encodings: if one of the
inputs is constant-encoded, a special loop can be provided to hold
one value in a local variable (register) and iterate through the other
vector. Other specialized loops may be provided for cases where one
(or both) of the input vectors are dictionary encoded, in addition to
a base case where both parameters are flat. As described in Section
2, the tighter the loops, the higher the efficiency. CPU pipelines
will less likely be stalled, the CPU will issue cache misses earlier,
predict branches more accurately, and compilers will generally have
a better chance of autoSIMD’izing loops. However, the developer
authoring the function is responsible for providing the unswitched
loops, increasing the development burden and likelihood of bugs
that may only get triggered in very specific situations.

Columnar data layout. Vectors of nested types have complex
columnar layouts, as they can be arbitrarily combined. For exam-
ple, a vector representing a column of the type map(array(integer),
row(integer, double)) will be composed of six vectors: one map, one
array, one row, two integers and one double. Each vector may con-
tain their own null buffer and be encoded in arbitrary ways, such
as dictionaries and constants.

Null handling. Developers are also responsible for respecting
the input selectivity vector and only evaluating active rows. Other
than wasting compute, evaluating functions over inactive rows
may produce inaccurate results; for example, rows may have al-
ready been evaluated by other branches in conditional execution
(if/switch). As an optimization, loops are also usually unswitched
based on whether all rows are active (to avoid the check for every
row), or the base case when there exist both active and inactive
rows. Additionally, developers need to be aware of the function’s
null behavior; if default, then any nulls in the input must result
in null output, so output nulls are often automatically set by the
expression evaluation engine. Conversely, if non-default, then de-
velopers are required to explicitly set the null buffer of the output
result.

Output. Scalar function APIs need to support cases where a
function call needs to write to a vector that is already allocated,
to support vectorized conditional evaluation of IF and SWITCH
statements. Additionally, since expression evaluation APIs are com-
monly used in multiple parts of a relational evaluation engine,
it needs to be flexible to allow operator developers to fully con-
trol vector allocations and reuse. This means that when writing
scalar functions, developers need to be aware that the output vec-
tor may already be pre-allocated, and only allocate a new vector
in case one was not provided. Furthermore, it is possible that the
vector provided to the function may not be writable (not singly-
referenced) or have a different encoding type than the one the
developer intended to return. For example, when evaluating a con-
ditional, the sub-expression that evaluates the first branch (the then
branch) may produce a dictionary - or even a constant. The second
sub-expression (the else branch) will receive the dictionary (or the
constant) as the output buffer, with a different set of active rows.

Exceptions. Scalar function developers also need to be aware
that while it is generally adequate to stop evaluation once an ex-
ception/error is found, at times exceptions may need to be swal-
lowed/ignored, e.g. if the sub-expression being evaluated is within
a try() expression, or during conjunct evaluation. Moreover, as a
rule-of-thumb, throwing exceptions during vectorized evaluation
should be discouraged as exception handling is generally inefficient
in languages like C++. However, this may be hard to enforce as
scalar functions often leverage third-party libraries that can throw
exceptions themselves, e.g. regex and json parsing libraries.

Considering the aspects discussed above, writing a highly effi-
cient vectorized function requires not only deep context on vec-
torized processing, but also a large amount of code. To reduce the
code verbosity of scalar functions, internal abstractions are usually
provided to wrap some of the common logic. For example, (a) se-
lectivity vectors may have helper APIs to help developers apply
logic (lambdas) only to active rows, (b) abstractions can be provided
to encapsulate error handling logic (either capture or throw/can-
cel), (c) helper functions that ensure output vectors are allocated
and writable (via copy-on-write if not singly-referenced), and (d)
decoding abstractions may be provided to expose a logically con-
sistent API over arbitrarily-encoded buffers, at the cost of some
performance - loops that are not as tight. While these abstractions
help reduce the amount of boilerplate code, developers still need to
understand exactly how and when to use them.

4191

3.2 A Simpler Function API
As expected, considering the complexity added by vectorized APIs,
we have found that developers can more easily reason about row-
based APIs, or the ones that take one row in, and produce a single
scalar output value. Therefore, to simplify the authoring experience
in Velox given the large developer base, we have created a simple
function interface (SFI) that allows developers to express their
function logic as a single row-based function. As an example data
point, 8 bugs were found in a single function (map_from_entries())
[30] implemented as a vectorized function in Velox before SFI was
created, but no bugs were found in the similar and arguably more
complex functionmultimap_from_entries() added later on using SFI
[31].

Considering SFI uses C++ metaprogramming and template ex-
pansion techniques, it can maintain the same level of performance
as their vectorized counterpart implementations. In fact, we have
observed that in some cases a vectorized function migrated to SFI,
besides having a more concise and easier to understand codebase,
also provided better performance because the SFI framework auto-
matically enables optimizations that may have been overlooked by
the original author. SFI has the following properties:

(1) Easier to write. SFI hides the complexity inherent to vec-
torization and abstracts details of the columnar layout, low-
ering the cognitive burden on developers and flattening the
learning curve.

(2) Easier to read and review. SFI removes much of the boil-
erplate code, leaving the function implementation to focus
on the expected functionality, thus making it more concise
and easier to reason about.

(3) More reliable. Considering SFI encapsulates complexity
and reduces duplication, the resulting code is easier to test
and less error-prone.

(4) Efficient. SFI leverages C++ template expansion andmetapro-
graming techniques, relying on modern compilers to fully
inline, auto-SIMDize, and generate code that is as efficient
as their vectorized equivalent implementation.

(5) Expressible. SFI allows developers to use advanced fea-
tures commonly needed in scalar function development,
such as nested parameter types, type variables, variadic
parameters, and generic types.

The code sample shown in the right-hand side of Figure 1 illus-
trates the API. In SFI, a struct with a call() function needs to be
provided by the author. The call() function is responsible for per-
forming the operation over a single row, and writing a single scalar
output value through the reference received as the first argument.
The call() function may (a) return void, in which case it signals the
expression evaluation engine that it will never return a null value,
(b) return a boolean dictating whether the return value is null or not,
or (c) return a status object, allowing it to also return errors without
having to explicitly throw and catch exceptions. All these signatures
are transparently supported using C++ metaprogramming.

registerFunction() is responsible for registering the scalar function
into the function registry, but is also responsible for instantiating
the C++ templates (generating the vector function). It receives the
struct that implements the call() function, followed by the output
and input types as template arguments (in this case it returns double

and receives two double arguments). Within the registration func-
tion call, a vector function is automatically instantiated through
a SimpleFunctionAdapter [32] using template expansion. The
pseudocode shown in Listing 2 is used to expand the simple function
into a vector function implementing the apply() method discussed
before.
template <typename Func , typename TReturn ,

typename ... TArgs >

class SimpleFunctionAdapter : public VectorFunction {

void apply (...) override {

for (...) {

Func (). call(out , input1 , input2 , ...)

}

}

};

Listing 2: SimpleFunctionAdapter pseudo-code.
Naturally, modern compilers aggressively inline the call() func-

tion (no runtime dispatch), generating executable code that is sim-
ilar to its vectorized counterpart definition. Section 4 describes
in detail how SFI automatically applies many of the vectorized
optimizations described in Section 3.1.

3.3 Type System
When a simple function is registered, its output and input types
need to be specified as template arguments using C++ types. While
there is a trivial 1:1 mapping between C++ and SQL types for prim-
itive types such as integers with different precision, doubles, floats,
and booleans, other container and string types do not have direct
counterparts in C++ since they have special vectorized represen-
tations (as discussed in Section 2.2). For these cases, custom C++
objects are provided, such as Varchar and Varbinary, in addition to
templated variants to represent nested types, like Array<integer>,
Map<integer, boolean>. To prevent an extra copy while processing
these types (for example, to avoid copying vectorized strings into a
C++ std::string for each row, or an array into an std::vector), custom
C++ proxy types are designed to allow for efficient writes and reads
of the underlying columnar vectors, while presenting a familiar
std-like interface for developers. Proxy types are further discussed
in Section 4.2.

Table 1 shows how SQL types are mapped to C++ types, and what
are the read (argument type) andwrite (output type) associated with
each. For primitives there is a trivial 1:1 mapping; i.e, in the plus()
function above, double& is used to represent the output and double
is also used for the input. However, SQL types like Varchar and
Varbinary need proxy types that can be used as input parameters
(StringView) and output (StringWriter). The convenience macros
arg_type<X> and out_type<X> are provided to map a simple type
into its input and output proxy counterparts.

3.4 Simple Function Adapter
The simple function adapter is the component responsible for con-
verting the simple row-based function provided by the developer
into an efficient vectorized loop. The adapter receives the simple
function struct as template parameter, along with its input and
output types. Internally, the adapter makes use of vector reader
and vector writer APIs, which are abstractions that hide columnar
layout details and are able to create read and write proxy types for

4192

Table 1: SQL, C++, and proxy type mappings.

SQL Type C++ Types Input proxy Output Proxy
TinyInt, ..., BigInt int8_t, ..., int64_t int8_t, ..., int64_t int8_t&, ..., int64_t&
Real, Double float, double float, double float&, double&
Boolean bool bool bool&
Varchar Varchar StringView StringWriter
Array<V> Array<V> ArrayView<V> ArrayWriter<V>
Map<K, V> Map<K, V> MapView<K, V> MapWriter<K, V>
Row<T1, ..., Tn> Row<T1, ..., Tn> RowView<T1, ..., Tn> RowWriter<T1, ..., Tn>
T Generic<X> GenericView GenericWriter
T, ... Variadic<T> VariadicView<T> N/A

a particular record in the vector. Therefore, VectorReader<T> and
VectorWriter<T> create arg_type<T> and out_type<T>, respectively.

On a high-level, the simple function adapter executes the follow-
ing steps:

(1) For each input argument, a vector reader is created. For the
plus() function described above, two readers are created,
one for each of the double inputs.

(2) If the result vector is already allocated, it ensures it is
writable (singly-referenced and flat encoded); if not, a new
result vector is allocated. Then a vector writer is created
for the output type.

(3) For each active row, vector readers and writers are used
to get input values (or proxies) and output writers for that
row, which are passed to the call() function.

(4) The nullity value returned from the call() function is written
to the nulls buffer in the output vector.

In reality, the simple function adapter contains an extensive
set of optimization to improve performance of the generated
loops, in addition to features that allow developers to express a
plurality of usage scenarios (such as nested types, variable types,
variadic parameter list, generic types, and more), increasing their
productivity. These features are discussed in detail in the next
section.

4 IMPLEMENTATION DETAILS
This section describes implementation details of the SFI. It dives
into challenges faced to efficiently support different SQL logical
types, flexible function signatures, and performance optimizations
that are transparently enabled for developers. We start by describ-
ing functions that operate over primitive types. Next, strategies for
efficiently handling nested types are presented (due to their ubiq-
uity in modern workloads), followed by discussions about nullity
handling, and methods to efficiently support variadic and generic
types.

4.1 Primitive Types
As shown in Table 1, when operating over primitive types, the input
and output types passed to the call() function match the native
representations used to store data in vectors. For example, a vector
of doubles is stored in an array of doubles. The call() function
receives direct references to the output array items for outputs,
and copies for input. It is important to avoid any transformation
overhead to the data, especially for functions which have a very
concise body (like simple arithmetic functions).

In order to provide maximum efficiency, it is important to con-
sider the following aspects. First, VectorReaders are wrappers that
abstract the internal data encoding. As such, reading data of a
generic vector may not be a direct memory access, since it involves
checking the encoding type of the vector. Ideally, if the input vectors
have flat encodings, it is faster to switch the encoding check out of
the loop (loop unswitching). Second, setting the output nullity value
involves writing to a bit vector, for each row. In reality, it might also
involve checking if the bit vector is allocated or not; for example, in
Velox the non-existence of a null buffer means all rows are non-null.
We have empirically found that the additional checks and logic
required by the items above usually prevent modern compilers to
automatically apply SIMD to the generated code.

Fast-paths. Successively applying call() for each row function is
the hottest path in scalar function execution. Therefore, to provide
loops which are as tight as possible, optimized custom cases (fast-
paths) can be provided for common scenarios. For example, it is
common for arithmetic functions to have two inputs which are
both flat and null-free, having all input rows active/selected. For
these cases, a fast-path execution loop can be provided. Given the
conciseness and simplicity of these unswitched loops, compilers
can usually inline and automatically apply SIMD to the generated
code. Through experiments, we have found fast-paths for the plus()
function, for example, to provide orders of magnitudes speed up
over the basic adapter loop described above.

Furthermore, there are many other conditions under which fast-
path implementations are beneficial. For instance, it is common to
find cases where one input is flat and one is constant (e.g, plus(a,
5))), or cases where all inputs are flat, but not all rows are active; or
cases where the function might return nulls. The adapter is written
in such a way as to automatically create many of these fast-paths
(hot tight loops) under different conditions, while automatically
handling the following optimizations:

Buffer reuse. When the output type of a function matches
one of the input types, and the input buffer is not needed after
function invocation, the input buffer can be used for results instead
of allocating a new buffer. For example, in the expression plus(a,
b), if a is stored in a flat vector which will not be needed after the
invocation of the plus function, then a’s buffer may be used to store
the computation result.

Bulk null setting.Writing each bit to the output null buffer can
be an expensive operation, particularly for cases when the function
body is very concise. Since in most cases functions return not-null
values, SFI optimizes for this case and bulk sets nulls to not-null by
default.

Null setting avoidance. The adapter can also statically infer if
a function never generates null. In the simple function interface, if
the call() function return type is void, it means the output is never
null; if it is bool, then the function returns true for not-null and false
for null. When the function is known to be non-null generating, the
code path that sets the nullity can be completely removed from the
innermost hot loop (note that previous optimizations already set all
nulls to not-null). This is crucial to allow compilers to auto-SIMD.

Constant inputs pre-processing. SFI provides an API for de-
velopers to pre-process constant inputs of functions, hence avoiding
repeated computation. If provided, an initialize() function is called
before the loop starts, allowing developer to pre-process constant

4193

inputs, For example, a regex function with a constant pattern could
use the initialize() function to compile the pattern expression only
once per thread of execution.

Encoding-based fast-path. The generic way of reading a vector
of arbitrary encoding is to use a general-purpose decoding API to
simplify data access (also called a decoded vector). Even though
decoded vectors provide a consistent API and make it easier to
handle arbitrarily encoded input data, they pose overhead; each time
an input value is accessed, the encoding of the vector needs to be
checked, potentially triggering an indirect access (for dictionaries,
for example). For operations where the function body is concise
(like plus() or minus(), for example), this overhead is non-negligible.

To optimize for these cases, encoding-based fast paths are added,
creating inner loops that are tight, free of encoding checks, and
auto-SIMD’izable. A downside of this optimization is that the core
loop is replicated multiple times, increasing the generated program
size and compilation times. In general, the number of times the loop
is replicated is 𝑛3, where n is the number of arguments, and 3 is the
number of encodings. To control the program size increase, we only
apply this optimization when all input arguments are primitives,
and the number of input arguments is <= 3.

To counterbalance the effect of fast-path optimizations on the
program size, we have created a pseudo-specialization mode that
does not affect the program size, but reduces the overhead of decod-
ing to a single multiplication per argument. This mode is enabled
when all the primitive arguments are either flat or constant, reduc-
ing the number of loops required in the program. When the input
vector is constant, the value can always be read from index 0 of
the values buffer (the only index available for a constant-encoded
vector), When the vector is flat, the value can be read from the row
index. This can be achieved by assigning a factor to either 0 or 1
and reducing the decoding operation per row into a multiplication
with that factor, adding a single instruction to the hot path. Note
that such a multiplication does not prevent auto-SIMD. The code
in Listing 3 illustrates the idea.

if (allArgsConstantOrFlat ()) {

auto factor0 = args [0]. isConstant ()? 0 : 1;

auto factor1 = args [1]. isConstant ()? 0 : 1;

...

for (i in selectedRows) {

SimpleFunc (). call(

output[i],

rawData0[factor0*i],

rawData1[factor1*i]);

}

}

Listing 3: Illustration of pseudo-specialization for a function
with two arguments.

To illustrate the effectiveness of these optimizations, we evalu-
ated the expression clamp(0.05*(20+one_hot(c0, 1)), -10, 10), which
is an example of a common pattern in ML preprocessing use cases.
The pseudo-specialization makes the program 2x faster, while the
complete specialization makes the program around 4x times faster.

4.1.1 Boolean Types. Boolean columns are usually represented
by a bit vector, though a boolean variable is used to represent
values in the input and output. Therefore, boolean values need to
be packed/unpacked for each row, limiting potential optimizations
of pure boolean to boolean computations, like AND, OR, or XOR or
other bitwise operations that could be more efficiently performed
using the underlying bit vector. While it is possible to introduce
separate APIs that expose the bit vectors for more efficient simple
implementations, they have not been implemented yet in Velox
because bitwise scalar functions do not exhibit high usage in our
internal workloads.

4.1.2 Varchar and Varbinary. Strings are commonly represented
in vectorized engines using the StringView format described in Sec-
tion 2.2. A StringView vector usually holds shareable ownership
over the buffer containing the actual string data, allowing multiple
vectors to share the same string contents without copying the data.
In SFI, StringViews are passed to simple functions as inputs, while
StringWriters are used for string output. A StringWriter object di-
rectly writes data to the underlying output vectors, without storing
data in intermediate representations (such as std::string).

StringWriter tracks the buffer capacity, exponentially growing
the size of the output string. StringWriters automatically write data
to the output buffer, creating the StringView metadata pointing to
the written string contents once the function invocation is complete.
The code in Listing 7 illustrates an example of a function that con-
catenates input strings. Inputs are represented as StringView and
the output is a StringWriter that directly manipulates the underly-
ing vector. Following are crucial optimizations for string processing,
considering their ubiquity in scalar function authoring.

ASCII fast-path. Functions with string inputs can usually be
further optimized when their inputs are known to be ASCII-only.
For example, length() can be trivially calculated for ASCII strings by
simply returning its physical size in bytes, while for generic strings
potentially containing non-ASCII inputs, a linear computation is
required. To allow for this type of optimizations, SFI enables de-
velopers to define a callAscii() function that is automatically called
when all the string input arguments are known to be ASCII-only.
Through microbenchmarks, we have observed that a substr() ASCII-
only fast-path performs 2.8x faster than a general implementation.

ASCII behavior. Expression evaluation engines need to run
ASCII detection code to decide whether a string buffer is ASCII-only
or not. To avoid this overhead, SFI allows developers to specify the
ASCII behavior of a function, informing the engine about whether a
function is guaranteed to produce ASCII-only output for ASCII-only
input - which is the case in all examples we have encountered.

Zero-copy optimization. In many cases, string functions can
be efficiently implemented by performing a shallow copy of the
StringView objects (the pointers and string sizes) and sharing the
buffer containing string contents. This optimization can be used
in functions such as substr(), trim(), split() and similar. To enable
it, SFI allows developers to specify whether the output string vec-
tor should share the string buffers of the output with any of the
input parameters. The zero-copy optimization provides another
2x speedup over the ASCII-only fast-path version of the substr()
function discussed above.

4194

4.2 Nested types (Maps, Arrays, and Structs)
Similarly to strings, maps, arrays, and structs/rows have a more
complex columnar representation. For example, a map in Velox
consists of two nested vectors (one storing keys and one storing
values) and two buffers (one for the lengths and one for the offsets of
each row). In addition, not only the map’s children can be arbitrarily
encoded, but the map itself might be wrapped in a dictionary or
other encoding. This complexity makes function authoring over
complex types non-trivial and error-prone.

SFI improves authoring by providing efficient proxy types to
read and write columnar vectors representing nested types [24],
encapsulating complexity and without materializing elements into
temporary containers like std::vector and std::unordered_map. The
following subsections discuss strategies to support nested types
while maintaining performance and simplicity.

4.2.1 Nested Input Types. The simplest approach to support nested
types as inputs to scalar functions is, for each row, to copy elements
from the columnar buffers into standard containers, like std::vector ,
std::unordered_map, std::tuple, and std::optional (to represent nul-
lable values). Despite the simplicity and providing APIs which most
developers are familiar with, this approach has two key inefficien-
cies:

(1) Unnecessary copy. All data must be first read from the origi-
nal columnar buffer, decoded, written into the temporary
container, then potentially read again.

(2) Eager materialization. Input vector elements are decoded
and copied into the temporary container before calling the
function - even if they are not needed. For example, the
length() function only needs to access the size of each array;
the subscript() function only needs to access one element;
array_first() only needs to access the first element.

In order to avoid this overhead, proxy type abstractions are
provided for inputs. To maximize efficiency, the view types should
be trivial to construct and lazy (do not materialize the underlying
data unless they are explicitly accessed by the function author).
Velox provides the ArrayView, MapView, and RowView proxy types,
each providing std-like APIs to be developer-friendly.

ArrayViews store the length of the array, its offset within the
elements vector, and a pointer to the elements vector. Only when an
element is accessed in the ArrayView, an OptionalView is created,
containing the decoded index of the accessed element and a pointer
to the vector containing the value. Similarly, only when the devel-
oper calls has_value() on the OptionalView accessor, the nullity of
the value is checked, and only when the developer calls value(), the
value is accessed. This strategy reduces the memory footprint as
less data needs to be read from memory into caches, and minimizes
cache misses. While creating such temporary objects may sound
like potential overhead, compilers are usually capable of inlining
all required functions and generating efficient tight loops. The goal
is keeping the authoring simple, but achieving the same level of
performance of a complex vectorized function implementation.

Performance. While developing view types, we implemented a
baseline version based on std containers for performance compar-
ison. Figure 2 shows the results. The average speedup for arrays
was around 2x; we have also found the speed up for maps to be

Figure 2: Performance of view types compared to eager ma-
terialized for different functions.

higher (+10x), because materializing the intermediate representa-
tion involves hashing all elements while constructing hashmaps.
The overhead of materialization for deeply nested types was also
high, as illustrated by row_arrays_sum().

4.2.2 Nested Output Types. Similar challenges exist with functions
that return nested types. The trivial way to support nested types
is to write the single row results into a temporary std container,
then copy the results into the columnar buffer at the end of the
function call. This approach has the overhead of double-writing;
data is written twice, once in the temporary container, and then
again when copied to the columnar buffer. To avoid this overhead,
efficient modern vectorized engines must provide writer proxy
types, which directly manipulate the underlying output columnar
buffers. Map writers also avoid unnecessary sorting and hashing of
map keys. Velox provides ArrayWriter, MapWriter and RowWriter
as output proxy types. For better user experience, writer types are
designed to have an API close to standard C++ containers.

To illustrate the API and behavior, consider the example of a
function that constructs and creates an array [0, 𝑛 − 1) for each
input n, shown in Listing 4. outerArray is an ArrayWriter object,
and the push_back() method directly writes data to the underlying
vector.

Incremental resize. In a vector function implementation, the
output buffer size can usually be computed by a first pass on the
data, followed by a single large allocation. While this is not possible
in row-based APIs like SFI, writer objects keep track of the out-
put buffer capacity and re-allocate it (increasing exponentially) as
needed, resulting in resize overhead amortized across batches. APIs
to calculate the exact output buffer size upfront can be added if the
resize overhead is not amortized, leveraging the lazymaterialization
capability of read proxy types.

Moving elements. Moving elements between input and out-
put containers is a common pattern, used in functions such as
array_concat(), flatten(), array_normalize() and many others. To
make these operations more convenient and performant, a special-
ized API may be provided by the engine. For example, in Velox we
provide the add_items() and copy_from() APIs to allow developers
to efficiently move elements across containers.

4195

struct MakeArray {

void call(ArrayWriter <int64_t >& writer , int64_t size) {

for (int i = 0; i < n; i++) {

arrayWriter.push_back(n);

}

}

};

struct MakeArrayOfMaps {

void call(ArrayWriter <Map <int64_t ,int64_t >>& writer) {

auto& mapWriter1 = writer.add_items ();

mapWriter1.emplace(1, 2);

mapWriter1.emplace(2, 4);

// Not allowed to add to mapWriter1 after this point.

mapWriter2.emplace(-1, -2);

}

};

Listing 4: MakeArray and MakeArrayOfMaps functions writ-
ten in SFI.

Further, we automatically improve the performance of copying
large amounts of elements by providing fast-paths for flat and null-
free buffers and implementing some of the optimizations discussed
in Section 4.1. Through microbenchmarks, we have observed these
optimizations to provide a 20-30% performance improvement while
executing functions like array_concat(), which combines several
arrays into a single one. In addition, when elements are strings, SFI
can automatically detect and capture the underneath string content
buffers in the output, preventing deep string copies. We found this
optimization to provide another 30-40% speed in the array_concat()
function with Array<Varchar> inputs.

In-order elements writing. Because writer types modify the
underlying vector directly, it is not always possible to allow out-
of-order element writes, or provide std-like APIs, particularly for
cases of deeply nested types. For example, for a function returning
an Array<Map<. . . >>, it is not possible to add three maps then write
to them concurrently, as writing to a previous map would require
subsequent elements to be rearranged. Furthermore, the standard
push_back() API cannot be respected as it requires pre-creating an
intermediate map first, invalidating the in-place mutation require-
ment for efficiency.

The function MakeArrayOfMaps in Listing 4 exemplifies the
provided API. Calling add_item() on the ArrayWriter returns a
MapWriter and, since the elements of the maps are primitives, the
emplace() API can be used to add elements.

Figure 3 shows the performance effect of using writer types in
contrast to using temporary std containers. Mutating the underlying
vector directly enhances the performance significantly, by almost
4x for arrays, and more for maps due to the hashing cost of the
intermediate container used.

4.3 Generic Types
In many cases, due to the recursive nature of nested types, scalar
functions may need to be able to operate over an infinite number of
type sets. For example, the cardinality() function has the signature
array(T) -> integer, where T can represent any type, including nested
types defined recursively. Similarly, functions such as equal(T, T) ->
bool, may accept any two inputs of the same type as long as they are
comparable. Functions with generic inputs may also need to return
generic output types. A trivial example is the subscript() function,
which has the following signature: array(T), int -> T.

Figure 3: Performance of writer types compared to an imple-
mentation that stores data in temporary containers.

To support these features in a generic manner, type resolution
needs to happen in two layers. First, function signatures need to
provide support for type variables to allow scalar functions that
are valid for an infinite number of parameter types to be registered.
Beyond allowing arbitrary parameters, type variables enable de-
velopers to place restrictions on the relationship between types.
For example, equal(T, T) -> bool accepts any type as T, but places a
restriction that the first and second parameters need to be of the
same type; i.e, equal(integer, float) fails type resolution. Similarly,
array(T) -> T adds a restriction that the output type is the same as
the elements of the input array.

Secondly, once type resolution resolves type variables into con-
crete types, the vectorized engine needs to find the function imple-
mentation to dispatch to at execution time. For common functions,
this means locating the tight unswitched loop instantiated for that
particular set of parameters, for instance, equal(double, double). The
remainder of this section discusses strategies to efficiently support
generic types while still providing a simple and intuitive row-based
API for function authors.

4.3.1 Generic Inputs. In Velox, support for generic types is enabled
using the Any and Generic<T> types. While Any allows developers
to express generic types without restrictions, Generic<Tx> allows
developers to express relationships with other parameter types.
For instance, equal(Generic<T1>, Generic<T1>) expresses that the
function expects two inputs of the same type. Using this API, a
cardinality() function that supports generic arrays and maps as
parameters can be trivially defined as shown in Listing 5
struct Cardinality {

void call(int64_t& out , ArrayView <Any >& arrayView) {

out = arrayView.size ();

}

void call(int64_t& out , MapView <Any , Any >& mapView) {

out = mapView.size ();

}

}

Listing 5: Cardinality function written in SFI.

GenericViews are small and efficient objects that only lazily in-
stantiate its internal elements, similar to the complex type view
objects discussed in Section 4.2.1. In most cases, they are fully in-
lined in the body of the caller function by the compiler without

4196

adding any overhead. In the example above, the GenericView ob-
ject is not even constructed since ArrayViews elements are lazily
instantiated, and the function never accesses its elements - only
its size. Therefore, through microbenchmarks we have observed
that the runtime of the simple cardinality() function above is the
same as the runtime of the vectorized cardinality function, while
the number lines of code required to express the function is more
than an order of magnitude lower, highly reducing its authoring
complexity.

To support a larger extent of functions, Generic objects should
also be comparable, orderable, hash-able, and cast-able. Comparable
property is needed to implement equal(T, T) functions in a general
manner; hash-able property types are needed for functions such
as array_duplicates(), array_intersection(), array_frequency(), and
many others that require a small temporary hash table; orderable
property is needed to implement functions like array_sort(); cast-
able property is needed to implement functions like to_json() and
to_string() which may need to cast nested types recursively, in
addition to being used to efficiently implement the copy_from()
operation is discussed in subsection 4.3.2.

Primitives fast-path. The generic comparison, hashing, order-
ing, and casting APIs provide a simple and convenient interface
that recursively works for any types, but may add overhead due to
a dynamic dispatch (or a large switch statement) per row. Although
this overhead can be amortized for nested types across the cost of
processing each container element, this cost is particularly visible
for primitive types, when the cost of the operation itself is very
low. For example, since comparing two primitive types can be done
in single instruction, a dynamic dispatch per row is prohibitively
expensive.

To avoid this overhead, developers are able to register primitive
fast-path implementations of functions that use generic types. The
idea is simple: a generic base implementation is provided, which
is slower (for primitives) but that works for any type, in addition
to specialized functions (loops) for primitive types, since these are
more performance-sensitive. For example, for a complete imple-
mentation of the equal function, a general implementation based on
a generic (but comparable) type can be provided as a catch-all that
works for any nested type, in addition to fast-path implementation
for every primitive type, such as integers and floats or different
precisions. In our experiments, a primitive type fast-path implemen-
tation for the eq() function provided a 2x speedup by eliminating
the type check per row inherent to the generic type support.

Conflicting function resolution. To enable the behavior de-
scribed above, a vectorized engine needs to allow multiple versions
of the same function to be registered, and define the resolution
order between them. For example, with generic and variadic type
support (discussed in Section 4.4), all functions below are valid and
able to handle a single input argument of type integer:

void call(bool& out , int32_t input);

void call(bool& out , VariadicView <int32_t > input);

void call(bool& out , GenericView input);

void call(bool& out , VariadicView <GenericView >input);

For performance, during function resolution the engine needs
to ensure that the least generic version of the function is selected

- the tighter loop. For example, int32_t is less generic than Vari-
adic<int32_t>, which is less generic than Any, which is less generic
Variadic<Any>.

In addition to Generic andAny, SFI providesComparable<Tx> and
Orderable<Tx> which are similar to Generic except that they limit
the types that can be represented by variables to those satisfying
the properties.

4.3.2 Generic Output. It is common for functions that operate
over generic types to also return generic types, e.g, array_flatten(),
subscript(), array_trim(), and similar functions. In Velox, generic out-
puts are represented byGenericWriter objects. By analyzing existing
scalar function implementation, we have observed that the most
commonly used APIs in GenericWriter are copy_from(GenericView),
to copy an element from the input, or simply assigning an input
GenericView to a GenericWriter. The code in Figure 6 shows how
the function array_flatten() can be written using SFI.
struct ArrayFlatten {

void call(out_type <Array <Generic <T1 >>>& out ,

arg_type <Array <Array <Generic <T1 >>>>& arrays) {

for (auto& array : arrays) {

if (array.has_value ()) {

// The loop below can be replaced with out.add_items(array.value ());

// In that case there is no need for primitive fast -path since

// add_items is already optimized for that.

for (auto& item:array){

if (item.has_value ()){

auto& genericWriter = out.add_item ();

genericWriter.copy_from(item);

} else{

out.add_null ();

}

}

}

}

}

};

Listing 6: ArrayFlatten function written in SFI.

A key inefficiency in the function above is the type checking
required for each element of the inner-most loop. As previously
discussed, this problem can be solved for primitive types by regis-
tering a fast-path implementation for cases when T1 is a primitive
type. Alternatively, one can call the add_items() API on the outer
array to copy all of its elements as mentioned in the comment in
code in Listing 6. While add_items() on an array with generic el-
ements requires a dynamic dispatch on the element type, it gets
amortized by the cost of moving the elements since it can be done
only once for all the elements, similarly to copy_from() when per-
formed on complex types as explained earlier. Using add_items()
has additional performance advantages also since it implements
other optimizations described in section 4.2.2, such as avoiding
deep copying strings, and providing fast-paths for flat encoding.

4.4 Variadic Inputs
Finally, it is also common for SQL functions to allow users to specify
an arbitrary number of parameters of the same type, like concat(str1,
str2,. . . , strN). These variadic arguments are represented in the call()
function using a VariadicView which that have APIs similar to
the ArrayView type presented in subsection 4.2.1. For example,
the concat function described above can be trivially expressed as
illustrated in Listing 7.

4197

4.5 Null Behavior
In addition to the call() function used through out the paper and
explained earilier, SFI provides two other ways variants; callNul-
lable() can be used if the function may return anything other than
null in the presence of null input. This function receives pointers
to the input types specific in Table 1, where a nullptr represents a
null input. If a function has even stricter null handling semantics
and returns null if any input is null, including nested container
elements (e.g, if any element in an input array is null), callNullFree()
can be used. In that case, nested types are recursively represented
using a corresponding view type from Table 1 that returns child
values directly, i.e, not wrapped in the OptionalAccessor interface
described in Section 4.2.1.
struct Concat {

void call(StringWriter& out , StringView& first ,

StringView& second , VariadicView <Varchar >& rest) {

out.append(first);

out.append(second);

for (auto& input: rest){

out.append(input);

}

}

};

Listing 7: Concat function written in SFI.

5 LIMITATIONS
While SFI covers a variety of features related to scalar function
authoring, it has limitations. First, functions that can be imple-
mented zero-copy as vectorized cannot be expressed using SFI. For
example, map_keys() can be implemented zero-copy by moving the
keys vector from the map; is_null() can be implemented by simply
returning the nullity buffer. Second, in SFI authors do not have
access to the encodings of the input vectors, nor control over the
encoding of the result vector. Hence, it is not possible to leverage a
specific encodings to optimize functions, e.g, array_sort() does not
need to re-order elements and copy them during sorting; instead, it
can wrap the input using a dictionary and sort the indices. Lastly,
today SFI does not support lambda functions. However, we estimate
that in practice these limitations are only encountered by a limited
number of functions (<5%).

6 RELATEDWORK
DuckDB [23] is a vectorized DBMS that leverages the concepts
presented about columnar layout and encoding-aware execution,
providing a vectorized scalar function API similar to the one de-
scribed in this paper. DuckDB also provides template-based execu-
tors that extend single row operations into optimized vectorized
loops (kernels), implementing some of the ideas discussed. For ex-
ample, UnaryExecutor and BinaryExecutor are helper methods that
can be used to implement binary and unary functions over primitive
types, and ArrayGenericBinaryExecutor can be used for functions
with two input arrays that have primitive inputs. While they could
potentially be consolidated into a single API that automatically dis-
patches to one of the executors, they do not provide a unified and
seamless authoring experience today. DuckDB also does not have
support for arbitrarily nested types, variadic parameters, generic
types, and other advanced authoring features.

Photon [3] is a proprietary vectorized engine developed by
Databricks, implementing similar ideas about specializing kernels
for different input types and properties, such as null-only and no-
nulls. Although some of these optimizations are mentioned in [3],
only limited information about the engine internals is available.
DataFusion [9] is an open source query engine written in Rust,
which operates on Apache Arrow [2] in-memory format. DataFu-
sion provides a columnar function authoring interface (vectorized)
but does not provide a simple row-based authoring interface.

Beyond vectorization, codegen (JIT) based engines such as Spark
[26] use a row-based representation to express data during expres-
sion evaluation, computing expressions one row at a time in a
data-centric manner. For these cases, a row-based API is already a
natural fit, and many of the challenges discussed in this paper that
come from the need to handle encodings and columnar representa-
tions do not apply. Presto [25], besides being a vectorized engine,
implements a similar JVM codegen-based approach for expression
evaluation.

7 CONCLUSION
While vectorization is a commonly used data processing technique
in modern execution engines, writing efficient vectorized code is
difficult. It requires a deep understanding of vectorized processing,
columnar data layout, and encodings, presenting a steep learning
curve for developers and challenges to organizations building large
scale engineering teams. Particularly when developing scalar func-
tions, due to their large variety, having a large number of developers
exposed to such complexity resulted in a disproportionate amount
of bugs and performance inefficiencies.

In this paper we discussed our experience building a simple func-
tion interface (SFI) in the Velox open source execution engine. SFI
simplifies scalar function authoring by encapsulating the complex-
ity required to generate efficient tight loops, presenting developers
with a simpler, conciser, and more natural row-based interface -
without sacrificing vectorized performance. Today, more than a
thousand functions have been added to Velox using the SFI, imple-
menting popular open source SQL dialects and internal domain-
specific use cases at Meta. These scalar functions are currently
powering many production workloads within Meta and across the
industry.

Outside of scalar function, we have built a similar simple function
API for aggregate functions, which is left to be described in detail
in a future paper. Although the goals of complexity encapsulation
and API simplicity are similar, the motivation is less compelling
since there are fewer aggregate and window functions (dozens), if
compared to scalar functions (thousands). Ultimately, we believe
SFI provides the best trade-off between efficiency and engineering
efficiency, and that while the concepts are described in the context
of Velox, they are applicable to any modern vectorized engine.

ACKNOWLEDGMENTS
The work presented in this paper was only possible due to the
numerous contributions from the Velox community. The authors
would like to extend a special thank you to Jack Langman, Zhenyuan
Zhao, and Jake Jung for their work on an initial version of SFI.

4198

REFERENCES
[1] Azim Afroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive

Lossless floating-Point Compression. Proc. ACM Manag. Data 1, 4, Article 230
(dec 2023), 26 pages.

[2] Apache Arrow. [n.d.]. A cross-language development platform for in-memory
analytics. https://arrow.apache.org/. Accessed: 2024-03-21.

[3] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David
Cashman, AnkurDave, ToddGreenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar,
Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Her-
man van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022. Photon:
A Fast Query Engine for Lakehouse Systems. In Proceedings of the 2022 Interna-
tional Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22).
Association for Computing Machinery, New York, NY, USA, 2326–2339.

[4] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proc. VLDB Endow. 13, 12 (jul 2020), 2649–2661.

[5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Conference on Innovative Data Systems Research
(CIDR).

[6] Biswapesh Chattopadhyay, Priyam Dutta, Weiran Liu, Ott Tinn, Andrew Mc-
cormick, Aniket Mokashi, Paul Harvey, Hector Gonzalez, David Lomax, Sagar
Mittal, Roee Ebenstein, Nikita Mikhaylin, Hung-ching Lee, Xiaoyan Zhao, Tony
Xu, Luis Perez, Farhad Shahmohammadi, Tran Bui, Neil McKay, Selcuk Aya, Vera
Lychagina, and Brett Elliott. 2019. Procella: unifying serving and analytical data
at YouTube. Proc. VLDB Endow. 12, 12 (aug 2019), 2022–2034.

[7] Biswapesh Chattopadhyay, Pedro Pedreira, Sameer Agarwal, Suketu Vakharia,
Peng Li, Weiran Liu, and Sundaram Narayanan. 2023. Shared Foundations:
Modernizing Meta’s Data Lakehouse. In Conference on Innovative Data Systems
Research - CIDR.

[8] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. 2001. Query optimization in
compressed database systems. SIGMOD Rec. 30, 2 (may 2001), 271–282.

[9] Apache DataFusion. [n.d.]. Apache Arrow DataFusion Documentation. https:
//arrow.apache.org/datafusion/. Accessed: 2024-03-21.

[10] The Presto Foundation. [n.d.]. Presto Documentation: Functions and Operators.
https://prestodb.io/docs/current/functions.html. Accessed: 2024-03-21.

[11] The Presto Foundation. [n.d.]. Presto: Free, Open-Source SQL Query Engine for
any Data. https://prestodb.io/. Accessed: 2024-03-21.

[12] J. Goldstein, R. Ramakrishnan, and U. Shaft. 1998. Compressing relations and
indexes. In Proceedings 14th International Conference on Data Engineering. 370–
379.

[13] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything you always wanted to know about compiled
and vectorized queries but were afraid to ask. Proc. VLDB Endow. 11, 13 (sep
2018), 2209–2222.

[14] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: efficient lossless floating point compression for time series databases.
Proc. VLDB Endow. 15, 11 (jul 2022), 3058–3070.

[15] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org.

[16] Pedro Pedreira. [n.d.]. Aligning Velox and Apache Arrow: Towards composable
data management. https://engineering.fb.com/2024/02/20/developer-tools/velox-
apache-arrow-15-composable-data-management/. Accessed: 2024-03-21.

[17] Pedro Pedreira, Masha Basmanova, and Orri Erling. [n.d.]. Introducing Velox:
An Open Source Unified Execution Engine. https://engineering.fb.com/2023/03/

09/open-source/velox-open-source-execution-engine/. Accessed: 2024-03-21.
[18] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong, Laith Sakka,

Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox: Meta’s Unified
Execution Engine. Proc. VLDB Endow. 15, 12 (aug 2022), 3372–3384.

[19] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider,WesMcKin-
ney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The Composable
Data Management System Manifesto. Proc. VLDB Endow. 16, 10 (jun 2023),
2679–2685.

[20] Pedro Pedreira, Deepak Majeti, and Orri Erling. 2024. Composable Data Man-
agement: An Execution Overview. Proc. VLDB Endow. 14, 1 (aug 2024).

[21] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: a fast, scalable, in-memory
time series database. Proc. VLDB Endow. 8, 12 (aug 2015), 1816–1827.

[22] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 1493–1508.

[23] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984.

[24] Laith Sakka. [n.d.]. Velox Blog: Simple Functions: Efficient Complex Types.
https://velox-lib.io/blog/simple-functions-2/. Accessed: 2024-07-17.

[25] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Interna-
tional Conference on Data Engineering (ICDE). 1802–1813.

[26] Apache Spark. [n.d.]. Apache Spark - Unified Engine for large-scale data analytics.
https://spark.apache.org/. Accessed: 2024-03-21.

[27] Yutian Sun, Tim Meehan, Rebecca Schlussel, Wenlei Xie, Masha Basmanova, Orri
Erling, Andrii Rosa, Shixuan Fan, Rongrong Zhong, Arun Thirupathi, Nikhil
Collooru, Ke Wang, Sameer Agarwal, Arjun Gupta, Dionysios Logothetis, Kostas
Xirogiannopoulos, Amit Dutta, Varun Gajjala, Rohit Jain, Ajay Palakuzhy, Prithvi
Pandian, Sergey Pershin, Abhisek Saikia, Pranjal Shankhdhar, Neerad Somanchi,
Swapnil Tailor, Jialiang Tan, Sreeni Viswanadha, Zac Wen, Biswapesh Chattopad-
hyay, Bin Fan, Deepak Majeti, and Aditi Pandit. 2023. Presto: A Decade of SQL
Analytics at Meta. Proc. ACM Manag. Data 1, 2, Article 189 (jun 2023), 25 pages.

[28] Linda Torczon and Keith Cooper. 2007. Engineering A Compiler (2nd ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[29] David Vandevoorde, NicolaiM. Josuttis, andDouglas Gregor. 2017. C++ Templates:
The Complete Guide (2nd Edition) (2nd ed.). Addison-Wesley Professional.

[30] Velox. [n.d.]. Bugs fixed in mapFromEntries function. https://github.com/
facebookincubator/velox/issues?q=label:map_from_entries_bugs. Accessed:
2024-03-21.

[31] Velox. [n.d.]. MultiMapFromEntries function source code. https:
//github.com/facebookincubator/velox/blob/main/velox/functions/prestosql/
MultimapFromEntries.h. Accessed: 2024-03-21.

[32] Velox. [n.d.]. SimpleFunctionAdapter source code. https://github.com/
facebookincubator/velox/blob/main/velox/expression/SimpleFunctionAdapter.
h. Accessed: 2024-03-21.

[33] Velox. [n.d.]. Velox: A C++ vectorized database acceleration library. https:
//github.com/facebookincubator/velox. Accessed: 2024-03-21.

[34] Velox. [n.d.]. Velox Documentation. https://facebookincubator.github.io/velox/.
Accessed: 2024-03-21.

4199

https://arrow.apache.org/
https://arrow.apache.org/datafusion/
https://arrow.apache.org/datafusion/
https://prestodb.io/docs/current/functions.html
https://prestodb.io/
https://engineering.fb.com/2024/02/20/developer-tools/velox-apache-arrow-15-composable-data-management/
https://engineering.fb.com/2024/02/20/developer-tools/velox-apache-arrow-15-composable-data-management/
https://engineering.fb.com/2023/03/09/open-source/velox-open-source-execution-engine/
https://engineering.fb.com/2023/03/09/open-source/velox-open-source-execution-engine/
https://velox-lib.io/blog/simple-functions-2/
https://spark.apache.org/
https://github.com/facebookincubator/velox/issues?q=label:map_from_entries_bugs
https://github.com/facebookincubator/velox/issues?q=label:map_from_entries_bugs
https://github.com/facebookincubator/velox/blob/main/velox/functions/prestosql/MultimapFromEntries.h
https://github.com/facebookincubator/velox/blob/main/velox/functions/prestosql/MultimapFromEntries.h
https://github.com/facebookincubator/velox/blob/main/velox/functions/prestosql/MultimapFromEntries.h
https://github.com/facebookincubator/velox/blob/main/velox/expression/SimpleFunctionAdapter.h
https://github.com/facebookincubator/velox/blob/main/velox/expression/SimpleFunctionAdapter.h
https://github.com/facebookincubator/velox/blob/main/velox/expression/SimpleFunctionAdapter.h
https://github.com/facebookincubator/velox
https://github.com/facebookincubator/velox
https://facebookincubator.github.io/velox/

	Abstract
	1 Introduction
	2 Background
	2.1 Vectorization
	2.2 Columnar Layout
	2.3 Encodings
	2.4 Expression Evaluation
	2.5 Scalar Functions
	2.6 Velox Engine

	3 Overview
	3.1 Scalar Function Authoring
	3.2 A Simpler Function API
	3.3 Type System
	3.4 Simple Function Adapter

	4 Implementation Details
	4.1 Primitive Types
	4.2 Nested types (Maps, Arrays, and Structs)
	4.3 Generic Types
	4.4 Variadic Inputs
	4.5 Null Behavior

	5 Limitations
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

