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ABSTRACT
Machine learning techniques have been verified to be effective in

optimizing data management systems and are widely researched

in recent years. However, traditional small-sized ML models often

struggle to generalize to new scenarios, and have limited context

understanding ability (e.g., inputting discrete features only). The

emergence of LLMs offers a promising solution to these challenges.

LLMs have been trained over a vast number of scenarios and tasks

and acquire human-competitive capabilities like context under-

standing and summarization, which can be highly beneficial for

data management tasks (e.g., natural language based data analytics).

In this tutorial, we present how to utilize LLMs to optimize data

management systems and review new techniques for addressing

these technical challenges, including hallucination of LLMs, high

cost of interacting with LLMs, and low accuracy for processing

complicated tasks. First, we discuss retrieval augmented generation

(RAG) techniques to address the hallucination problem. Second, we

present vector database techniques to improve the latency. Third,

we present LLM agent techniques for processing complicated tasks

by generating multi-round pipelines. We also showcase some real-

world data management scenarios that can be well optimized by

LLMs, including query rewrite, database diagnosis and data analyt-

ics. Finally, we summarize some open research challenges.
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1 INTRODUCTION
Machine learning algorithms have shown promising performance

in many data management tasks, such as data processing [23], data-

base optimization [30] [17], data analytics [3]. However, traditional

machine learning algorithms are hard to adapt to changing envi-

ronments (e.g., systems, query workloads, and hardware), making

them unable to resolve the generalizability and inference problems

in data management tasks. In addition, traditional machine learning

algorithms cannot meet the requirements for context understanding

and multi-step reasoning required in some optimization scenarios

such as database diagnosis and root-cause analysis. Fortunately, the

excellent capabilities for language understanding and generaliza-

tion of large language models enable them to effectively overcome
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Figure 1: An LLM for Data Management Architecture

these limitations [5, 6]. For example, LLMs can analyze abnormal

database metrics and report the root causes and potential solutions

to DBAs. LLMs can also serve as natural language (NL) interface for

data analytic tasks, such as translating NL request into executable

query over their database. In this tutorial, we will present existing

LLM techniques for data management [14, 31, 32].

Tutorial Overview. We plan to provide a 1.5-hour tutorial to thor-

oughly review existing LLM techniques for data management.

Background of LLM for Data Management (10 mins). There
are three limitations of directly using LLMs for data management:

hallucination, high cost, and low accuracy for complicated tasks.

There are several methods have been applied to overcome these

challenges, such as chains of thought [22, 27, 28] and tool-calling

functionalities [21]. Although these works are impressive, they still

reveal several limitations. First, they heavily rely on LLMs and the

knowledge contained within them to support almost every task

(e.g., designing, coding, and testing in LLM-based software devel-

opment [10, 19]), which may lead to instability and a high error
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rate. Second, for complex tasks like tool calling, extensive training

data for specific APIs are required to fine-tune the LLM. This ap-

proach is vulnerable to API changes and can result in significant

cost inefficiencies [20]. Third, LLM agents still lack the capability to

fully utilize knowledge extracted from multiple sources, which are

vital to mitigate hallucination issues in LLMs.Therefore, there are

three main challenges should be considered during the developing

of a LLM-enhanced data management system. First, how to effec-

tively utilize data sources (e.g., tabular data and domain-specified

knowledge) to reduce LLM hallucination problems (e.g., through

knowledge-augmented answering). Second, the execution of com-

plex data management tasks may involve multiple operations. How

to efficiently manage these operations and optimize pipelines to en-

hance both execution effectiveness and efficiency. Third, how to

reduce the LLM overhead? It is rather expensive to call LLMs for ev-

ery request. It is important to accurately interpret the intent behind

user requests and capture the domain knowledge in order to reduce

the iterations with LLMs. There are some techniques that use LLMs

to optimize data management. First, retrieval augmented genera-

tion (RAG) based methods can be used to address the hallucination

problem by LLM fine-tuning and prompt engineering, which em-

beds domain-specific knowledge to vertical domains. Second, LLM

agents are used to provide multiple-round inference and pipeline

executions to process complicated tasks. Third, vector databases

are used to reduce the high cost of LLMs which provide semantic

search and caching abilities.

Retrieval Augmented Generation (20 mins). In this part, we

introduce the RAG techniques. To capture vertical domain data

and knowledge preparation, RAG is used to provide the knowledge

and APIs required to each data management system, which will

be used to generate prompts to augment the query. The data and

knowledge preparation first collects relevant knowledge and APIs.

Then for the knowledge (and text explanations for APIs), RAG splits

the knowledge into text chunks based on their semantics. Then for

each text chunk, RAG selects an embedding model, generates an

embedding, and inserts the embedding into vector databases. Later,

for online query processing, RAG generates embedding for the

query, uses the vector databases to search relevant knowledge and

APIs in order to generate effective prompts and input the prompt

to the LLMs in order to improve the inference quality.

LLM Prompt and LLM Agent (20 mins). Given an online query,

an embedding model is used to transform queries into correspond-

ing vectors. Furthermore, LLM analyzes the query intent and de-

cides whether to use a single-round processing or a multiple-round

processing based on the task difficulty. If it can be answered in

a single round, LLM prompts are generated by searching the do-

main knowledge and APIs using the vector databases and inputting

these prompts to LLMs. If the query has to be answered by multiple

rounds, LLM agents are used to generate a multiple-round pipeline.

Moreover, to reduce the overhead of frequently interacting with

LLMs, a cache layer is used to improve the performance.

Domain-Specific LLM Fine-tuning (10 mins). General LLMs

may lack the domain knowledge (e.g., complex query optimization

skills) required to understand user intent or retrieve data accurately.

Therefore, we need to fine-tune either the general LLM or an LLM

designed based on task requirements, using user-provided data

sources. The fine-tuned LLM can provide more accurate answers

for specific domain questions (e.g., offering query rewriting advice).

Vector Database (10 mins). To facilitate the domain knowledge

retrieval, the vector databases are used to accelerate the efficiency.

Given a query embedding, the vector database can efficiently find

the most similar data embeddings based on embedding similarity

functions. Moreover, the vector databases also need to support both

predicate filter and vector search to improve the recall. We discuss

effective vector indexes and search algorithms.

LLM for Data Management Applications (10 mins). We in-

troduce three typical LLM based data management applications,

including database optimization (e.g., system diagnosis), data pro-

cessing (e.g., data standardization), and data analysis (e.g., nl2vis).

Open Challenges (10 mins).We present the open research chal-

lenges in LLM for data management.

Target Audience. The intended audience include all VLDB atten-

dees from research and industry communities that are interested in

data management, machine learning and LLM. Our tutorial will be

self-contained and not require any prior background knowledge.

Difference with Existing Audience. There are tutorials on ma-

chine learning and databases [4, 13, 25, 29, 33]. However, there is

no tutorial on LLM for data management. Thus different from them,

we focus on fundamental techniques of LLM for data management.

2 TUTORIAL OUTLINE
2.1 LLM for Data Management Overview
As shown in Figure 1, there are five important components in

an LLM-based data management system, including RAG, domain-

specific fine-tuning, LLM prompt management, LLM agent, and vec-

tor databases. Specifically, RAG incorporates domain knowledge

like concept explanation and tool API description, retrieves rele-

vant knowledge based on the context, and improves the accuracy

of LLM outputs with the retrieved knowledge (e.g., as the input

prompt). Vector databases can be utilized to speed up the knowledge

retrieval procedure in RAG, especially when there are numerous

textual knowledge chunks. Domain-specific fine-tuning utilizes user-

supplied data sources to update the pre-trained LLM, such that

achieving better performance in one or multiple specific data man-

agement tasks. LLM promptmanagement maintains a set of carefully

crafted prompts, which are fed into the LLM to better understand

the user intent and enhance the result quality. Furthermore, for

complex tasks, an LLM agent (e.g., a fine-tuned LLM equipped with

tools, memory, and prompts) decomposes a user request into multi-

ple sub-tasks (e.g., split/transform/validation operations for data

standardization) and generates an optimized pipeline to effectively

execute these sub-tasks.

General Workflow. Given a data management task, we prepare

the LLM agent to collect RAG knowledge into vector database,

tool suite, and general or fine-tuned LLMs (according to the task

difficulty and available domain data). Next, for a user request, the

agent utilizes LLM to (1) understand user intent, (2) synthesize an

execution pipeline (where some operations may call RAG or tool

APIs), and (3) carry out, evaluate, refine the pipeline until generating

the final output (e.g., well-verified result or “fail to answer”).
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RAG. This module uses RAG to enhance the query with determinis-

tic external knowledge [8]. Given a user request, RAG retrieves the

top-k relevant knowledge chunks and augments LLM with the in-

formation of the retrieved chunks. It uses vector databases to speed

up the process and then generates prompts based on the informa-

tion. In scenarios such as translating natural language (NL) to SQL,

traditional LLMs might not capture the specific local data schema

and data values. RAG addresses this by searching for and retrieving

the relevant schemas and values, which are then used to generate

prompts for the LLM. Additionally, RAG identifies the query intent

using LLMs. Based on the detected intent, RAG searches for rele-

vant APIs, such as pandas API for data analytics, and instructs the

LLM to call the appropriate APIs to handle the query request. We

thoroughly summarize existing RAG techniques.

Vector Databases. This module aims to improve the execution ef-

fectiveness and efficiency frommultiple aspects.When a knowledge

query is issued by LLM worker, the vector database (𝑖) integrates
context and intent analysis to enrich the query; and (𝑖𝑖) utilizes
advanced similarity search algorithms (e.g., graph-network-based

embedding for relational knowledge patterns) to ensure high rele-

vance in search results by understanding the semantic difference

of queries. It can cache hot user requests and their answers, and

when a similar request is posted, vector database directly answers

the request, without involving LLMs.

LLM Fine-tuning. This module prepares LLMs by updating some

LLM parameters with the domain data. There are multiple typ-

ical techniques in this module, including multi-task fine-tuning,

partial update of the LLM parameter, and reinforcement learning

from human feedback (RLHF). First, multi-task fine-tuning trains

an LLM on several related tasks simultaneously, utilizing shared

knowledge to boost performance, improve generalization, and mit-

igate data scarcity issues [15]. Second, partial update of the LLM

parameter utilizes techniques like low-rank adapter (LoRA [11])

to efficiently fine-tune the model by adjusting only a small sub-

set of parameters, reducing computational costs and preventing

overfitting. That is extremely important for lightweight update in

online database scenarios. Third, RLHF aims to refine the model’s

responses based on human feedback, improving the relevance and

accuracy of outputs [18]. For instance, in an NL2SQL application,

RLHF can help the model better understand and respond to user

queries by learning from human feedback (e.g., correct errors, and

highlight bottlenecks).

LLM Prompt. This module interprets the user’s request into in-

structions that LLMs can easily follow. It first extracts the request

intent, generates the prompt by inserting the query intent into the

prepared prompt template, and inputs the prompt to LLM to han-

dle the request. In addition to basic techniques like Tokenization,

the input prompt can be split into meaningful segments. These

segments are converted into functional operations (using tool or

model APIs) and data access operations (using knowledge or data

sources). These operations form a basic execution pipeline that the

LLM can follow to execute. Moreover, there are various prompt

techniques for accurate LLM inference. Zero-shot and few-shot

learning approaches help the model understand the task and re-

spond to queries with minimal examples. Reflection techniques

allow the model to review and refine its responses, ensuring higher

accuracy. Chain/Tree/Graph of thought strategies enable the model

to break down complex queries into logical steps, improving the

clarity and coherence of the responses. Additionally, memory mech-

anisms are employed to retain context from previous interactions,

ensuring consistency and continuity in the responses.

LLM Agent. This module is responsible for solving complex tasks

that the origin LLMs cannot handle in one-step processing. There

are three main relevant techniques, including task decomposition,

pipeline orchestration, and tool management. Task Decomposition

is responsible for decompose a complex problem into several sub-

tasks, which could increase the ability of understanding and reduce

the risk of hallucination. Pipeline Orchestration designs and op-

timizes the execution pipelines. To avoid generating sub-optimal

or infeasible execution pipelines, pipeline orchestration could gen-

erate several plans and select the optimal one. Tool management

involves selecting and integrating the appropriate tools or models

required for each operator in the pipeline. In addition to generating

pipelines, Pipeline Orchestration could also optimize the execution

pipeline with the help of external information provided by tool

management.

Data & Model Management. This module owns a variety of

data sources to (𝑖) align the system’s internal understanding with

external knowledge and (𝑖𝑖) mitigate over-reliance on LLMs, which

serves as the intermediary between LLM agent and vertical domain

knowledge base, databases, tools and AI models.

2.2 LLM for Data Management Tasks
In configuration tuning, components such as knob tuning require

adjustments to a wide range of system settings. However, traditional

methods often experience unstable performance and exhibit limited

generalizability, even when employing transfer techniques. Thus,

we present how to utilize LLMs to extract tuning experience or

directly recommend setting values [12, 24].

In query optimization, query rewrite [9] aims to transfer a SQL

query to an equivalent but more efficient SQL query. For example,

works like [2, 26], aim to identify new rewrite rules from SQL

pairs [26] or to develop new domain-specific languages (DSLs)

to make it easier to implement these rules [2]. However, these

methods are limited because they can only handle simple rules (e.g.,

with up to three operators); but they don’t make use of valuable

rewrite experiences in textual documents and DBA experiences.

Besides, works like [30] judiciously adjust the order or apply rules

to enhance the overall rewrite performance. We present how to

utilize LLM for query rewrite, including rewrite rule generation

and rewrite order exploration [16].

Database system diagnosis aims to identify the root cause based

on various query/database/system statistics and provide solutions

which could fix these root causes. Traditional machine learning

methods define this problem as a classification task, which require

a large number of high-quality training data and lack the ability

to generate human-like analysis reports. In this tutorial, we intro-

duce how to automate the development of LLM-enhanced database

system diagnosis [31].

In data processing tasks, we aim to transform raw data into mean-

ingful information by conducting a series of systematic operations,

including error detection, data imputation, schema matching, etc.
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However, traditional methods generally rely on empirical rules to

filter or update data, which requires significant human effort and is

typically difficult to generalize across different datasets. Thus, we

present how to effectively process data with LLMs [1, 7].

In many data analytical scenarios, users do not have the ability

to write SQL queries or data analyzing code. Users prefer to use

natural language (NL) to interact with the data directly. Therefore,

translating users’ natural language queries into SQL queries or code

can greatly lower the threshold for data analysis. In this tutorial,

we present how to accurately conduct data analysis with LLMs.

2.3 Open Research Challenges
There are still some open research challenges in this paradigm. We

will summarize some important open problems in LLM for data

management. (1) Database Domain LLM. How to train a database

domain LLM that supports all the typical data management tasks,

rather than addressing them on a case-by-case basis. (2) Standard-

izing Model Interfaces. How to reduce the development costs of

LLM4DB applications. This includes creating standardized APIs

and interfaces that can be easily integrated into existing database

systems. (3) Model Lightweighting. How to deploy distilled large

models into database kernels. For instance, developing methods to

compress and optimize LLMs so they can be efficiently run within

the limited computational resources of database environments with-

out sacrificing performance. (4) Generalization capability Im-

provement. How to enhance the representativeness of training

data to further lower the usage threshold of LLM4DB. This could

involve curating diverse and comprehensive datasets that cover a

wide range of database scenarios.
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