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ABSTRACT
Native distributed databases, crucial for scalable applications, of-
fer transactional and analytical prowess but face data intricacies
and network challenges. Under the CAP theorem’s constraints,
latency and replication issues necessitate creative approaches to
maintenance, security, and upgrades. Progress in consistency al-
gorithms, network technology, automation, and machine learning
for optimization presents significant potential. Embracing hybrid
transactional/analytical processing (HTAP), these databases repre-
sent an evolutionary leap in data management, aiming to reconcile
performance with the complexities inherent in distributed envi-
ronments. OceanBase is introduced as a case study, and its strong
TPC-C and TPC-H benchmark performances underscore Ocean-
Base as a top-tier distributed database. We also discuss possible
opportunities for native distributed databases.
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1 INTRODUCTION
Native distributed databases are built to scale across intercon-
nected nodes, ensuring high availability and resilience against fail-
ures [16]. They use advanced replication algorithms (e.g., Raft [20]
and Paxos [13]) for data synchronization while preserving ACID
properties, essential for eliminating single points of failure. Such
databases, e.g., Google Spanner [1] and OceanBase [30], provide
robust solutions for consistency, data partitioning, and manage-
ment. Their capability to handle heavy data demands makes them
vital for businesses operating over distributed networks, offering
scalable, fault-tolerant database systems.

They excel in distributed computing, scaling elastically and en-
suring data durability with sophisticated replication. Designed
around the CAP theorem, they balance consistency, availability, and
partition tolerance, making them ideal for extensive, reliable data
management across vast computing environments. As they evolve,
these databases are incorporating cloud technologies and machine
learning to enhance scalability and reliability, adeptly meeting both
transactional and analytical needs [16]. They mark a new phase in
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data management systems, crucial for modern, scalable infrastruc-
ture demands, embodying resilience and efficiency.

The proliferation of data and an increased reliance on robust
data management systems emphasize the significance of native
distributed databases in modern technological ecosystems. They
are instrumental in revolutionizing data management by optimiz-
ing scalability and availability, benefiting from the agility of cloud
technologies and the predictive power of machine learning. By sup-
porting both transactional and analytical processes, these databases
signify a shift towards more streamlined, cost-effective, and ca-
pable data management solutions, poised to meet the escalating
requirements for scalable and fault-tolerant data infrastructures.

We present a 1.5-hour tutorial, which is divided into seven
sections as follows: 1) Overview of Native Distributed Data-
base (∼5min). It offers scalable, resilient, and efficient large-scale
data management. 2) Data Replication and Synchronization
(∼15min). Distributed databases maintain data integrity through
advanced replication despite failures. 3) Consistency Models
(∼15min). It describes a variety of consistency models, ranging
from strict consistency to eventual consistency. 4) Distributed
Transactions (∼15min). It discusses distributed transactions by
ensuring atomicity, consistency, isolation, and durability (ACID)
across multiple nodes in a distributed environment. 5) Query Pro-
cessing (∼15min). It focuses on query processing by distributing
and executing queries efficiently across various nodes, optimiz-
ing for reduced network latency and strategic data placement. 6)
Case Study: OceanBase (∼10min). It describes that OceanBase
offers a high-performance, scalable, shared-nothing architecture,
excelling in OLTP/OLAP integration. 7) Opportunities (∼15min).
Embracing Serverless architecture [3], AI4DB and DB4AI [17, 35],
multi-model [16], and vector database capabilities [9], it presents
opportunities for unprecedented scalability, autonomous operation,
and versatile data handling in modern computing environments.
Target Audience. The intended audience includes database re-
searchers, developers, and students who aspire to study database
kernel techniques, as well as database administrators (DBAs) who
desire to better tune their database systems. The tutorial is self-
contained and does not require any prerequisite knowledge.

2 TUTORIAL OUTLINE
2.1 Overview of Native Distributed Database
Native distributed databases offer unified systems with high avail-
ability, fault tolerance, scalability, and performance across multiple
nodes and locations. Key problems of native distributed databases in-
clude: 1)DataReplication and Synchronization: These databases
handle synchronization among nodes to keep replicas up-to-date,
which is crucial for data accuracy and disaster recovery. 2) Consis-
tencyModels: They offer various consistencymodels ranging from
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strong consistency to eventual consistency, allowing the system to
balance between consistency, availability, and partition tolerance
as dictated by the CAP theorem. 3) Distributed Transactions:
Support for transactions across multiple nodes is often provided,
although it may come with trade-offs in terms of performance and
scalability. 4) Query Processing: They can execute queries across
nodes efficiently, often optimizing query execution plans to mini-
mize network traffic and data movement. Table 1 outlines different
mechanisms of popular distributed databases, and Figure 1 illus-
trates three distinct architectures of native distributed databases.

(a) Shared-Nothing (b) Shared-Nothing Disaggr. (c) Shared-Storage

Figure 1: Architectures of Native Distributed Databases

2.2 Data Replication and Synchronization
2.2.1 Data Replication. Replication in distributed databases strikes
a balance between synchronous methods, which ensure immediate
consistency but result in slower writes, and asynchronous methods,
which allow for faster access but may introduce data discrepancies.
The level of replication—be it at the row, block, or file level—is
chosen based on specific needs. Asynchronous replication resolves
conflicts using timestamps or custom logic to ensure data accu-
racy. Techniques like asymmetric-partition replication can reduce
system load [15], whereas solutions like BatchDB [18] improve
OLTP/OLAP workloads by pairing logical replication with a lazy
strategy for enhanced performance.

2.2.2 Data Synchronization. Distributed databases balance consis-
tency and performance using models like eventual consistency [12],
which tolerates short-term discrepancies for assured long-term ac-
curacy. Data sync frequency and network latency [26] are crucial
to this consistency, influencing system design for performance op-
timization. Moreover, to handle simultaneous transactions and data
conflicts, strategies such as version control and timestamp [29] help
maintain orderly data sync and ensure steadfast consistency.

2.2.3 Challenges. In distributed databases, especially those span-
ning wide areas, data synchronization is essential but challenged
by bandwidth limits, network latency and fluctuation, affecting
efficiency and performance [24]. Optimizing bandwidth and main-
taining swift recovery post-failure are crucial for data integrity and
loss prevention. Ensuring transactional consistency amid partitions
and securing data against unauthorized changes during replication
are key hurdles. However, as demands for performance rise, evolv-
ing technologies are progressively tackling these issues, enhancing
the robustness and reliability of distributed database systems.

2.3 Consistency Models
The data consistency models in distributed databases crucially im-
pact performance, reliability, and availability, as depicted in Figure 2.

2.3.1 Strong and Eventual Consistency. Strong consistency in dis-
tributed systems ensures that operations are immediately visible
and executed in sequence, providing a seamless experience but
potentially limiting performance due to the need for node syn-
chronization. Systems such as Calvin [26], PolarDB [28], and Ge-
oGauss [34] have improved transactional efficiency and replication
to deliver this consistent state without significantly affecting speed
or scalability. In contrast, eventual consistency allows for short-
term data anomalies in exchange for better responsiveness, with
systems like Dynamo [5] managing high-performance demands
through application-level conflict resolution. BlockchainDB [8] in-
novatively combines the flexibility of databases with the strength
of blockchain technology to offer a range of consistency levels, thus
optimizing data management for a variety of operational contexts.

2.3.2 Other ConsistencyModels. Causal consistency improves upon
eventual consistency by ensuring causally related operations fol-
low the same order across nodes, while independent operations
are not strictly ordered. Efficiency gains come from minimizing
dependency checks and defining external causal relationships [2].
GentleRain [7] increases throughput with time-based protocols and
uses physical timestamps to save on storage and communication.
Orbe [6] leverages dependency matrices and transitive causality
for effective causal consistency in key-value systems. Achieving
strong consistency in partitioned, replicated systems is challenging.
Google Spanner [1] clusters servers and uses Paxos for log repli-
cation within groups, maintaining a consistent prefix order across
data replicas to uphold its consistency standard.

2.3.3 Challenges. Choosing the right consistency for distributed
databases is crucial for balancing performance, availability, and
precision. Financial systems often require strong consistency, while
CDNsmay opt for eventual consistency, accepting brief data discrep-
ancies. The CAP theorem advises a trade-off between consistency,
availability, and partition tolerance, influenced by application needs.
Databases like OceanBase [32] adapt consistency options for diverse
scenarios. Data replication, key for fault tolerance, faces latency
issues with synchronous methods and potential inconsistency with
asynchronous ones. Developers must navigate these complexities
to ensure optimal system performance and data reliability.

2.4 Distributed Transactions
2.4.1 Distributed Transaction Commit Protocols. Native distributed
databases employ distributed transaction commit protocols to up-
hold the ACID properties across distributed nodes, ensuring data
integrity and consistency. The 2PC protocol is a classic example, op-
erating in two distinct stages. ROCOCO [19] optimizes this process
by treating transactions as collections of atomic blocks, tracking
dependencies before execution to allow for serializable ordering
upon commit. Primo [11] avoids concurrency conflicts by ensuring
transactions are conflict-free after the commit phase. We proposed
OceanBase 2PC [30], a Paxos-enhanced 2PC protocol, to strengthen
fault tolerance and reduce transaction latency in distributed envi-
ronments, streamlining synchronizations for efficiency.

2.4.2 Distributed Version Control. One of the core principles of
SAP HANA is full support for distributed query capabilities and
horizontal expansion [14]. It employs MVCC to provide distributed
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Table 1: Different mechanisms of different distributed databases

Architecture Database
Storage Transaction Query Schedule

ToleranceReplica Global Distributed Concurrency Strong Consistency Elasticity Adaptive Online storage
consistency snapshot ratio control read on replicas computing splitting movement (seconds)

Shared-Nothing

VoltDB [23] K-safety ✓ Sharding relative Partition-based - ✓ ✗ ✓ RPO=0,RTO<300
Citus [4] Master-slave ✗ Sharding relative MVCC+2PL ✗ ✓ ✗ ✓ -

OceanBase [30] Paxos ✓ Sharding relative MVCC+2PL ✗ ✓ ✗ ✓ RPO=0,RTO<8
Dynamo [5] Quorum ✗ No MVCC+Vector Clocks ✗ ✓ ✓ ✓ RPO<1,RTO~0

Cassandra [12] Quorum ✗ No Lock-free ✗ ✓ ✓ ✓ -
Calvin [25] Asynchronous/Paxos ✓ Partition relative Deterministic locking ✓ - - - -

Shared-Nothing-
Disaggregated

Spanner [1] Paxos ✓ High MVCC+2PL ✓ ✓ ✓ ✓ RPO=0,RTO~0
TiDB [10] Raft ✓ High Percolator ✓ ✓ ✓ ✓ RPO=0,RTO<60

CockroachDB [24] Raft ✓ High Percolator ✓ ✓ ✓ ✓ RPO=0,RTO<300
FoundationDB [33] K-Safety ✓ No MVCC+OCC ✓ ✓ ✓ ✓ -

Shared-Storage
Aurora [27] Quorum ✓ No MVCC+2PL ✗ Read-only ✓ ✓ RPO<1,RTO<60
PolarDB [3] Raft ✓ No MVCC+2PL ✓ Read-only ✓ ✓ RPO=0,RTO<30

Google F1 [22] Synchronous replication ✗ Sharding relative - ✓ ✓ ✓ ✓ -

        













 
















   









 



   

Figure 2: Consistency Models

quick search and distributed locking to synchronize multiple writ-
ers. A decentralized scalar timestamp is proposed in [29], without
requiring a centralized global timestamp service. It combinesMVCC
to provide multiple levels of consistency, supports efficient read-
only transactions, and has little impact on read-write transactions.

2.4.3 Challenges. Distributed transaction processing contendswith
network delays, resource locking, deadlocks, and balancing strict
ACID compliance with BASE model efficiency. Challenges include
fault recovery and improving transaction visibility across networks.
Native distributed databases address these issues using distributed
locking [31], conflict detection, multi-version concurrency control,
and robust recovery protocols. Consensus algorithms like Paxos
or Raft are instrumental for node coordination, striking a balance
between reliability, high availability, and fault tolerance, ensuring
transactions are both dependable and scalable.

2.5 Query Processing
2.5.1 SQL Executor. In native distributed databases, the SQL ex-
ecutor is pivotal, managing SQL statement parsing, planning, opti-
mization, and execution. It adeptly navigates complex queries to
preserve data consistency and integrity across distributed nodes.
The process starts with parsing SQL into an abstract syntax tree
(AST), followed by syntactic and semantic checks. From the AST,
a logical plan is derived, outlining the query structure without
specifics. The executor then optimizes this plan for efficiency, cre-
ating a physical plan with detailed execution methods. This plan
is further tailored to the actual database environment for optimal
performance. Finally, the refined plan is executed, orchestrating
data operations across the network and delivering results [10].

2.5.2 SQL Optimizer. The SQL optimizer in native distributed
databases is vital for query efficiency, analyzing queries to devise

the best execution path [30]. It constructs logical and physical plans,
estimates costs, and refines these plans considering data distribu-
tion, replica locations, and network latency. Aimed at minimizing
response times and resource use, while ensuring the accuracy of
results, the optimizer is continuously evolving to meet the demands
of new data models and queries, enhancing the performance and
scalability of distributed database systems.

2.5.3 Challenges. The SQL executor in distributed databases plays
a crucial role in processes queries, ensuring node-level execution
and network-wide consistency. As distributed systems increase in
complexity, executors must improve performance, resource man-
agement, and error recovery. Meanwhile, the SQL optimizer takes
into account data placement, replica locations, and latency, aim-
ing to cut response times and conserve resources while preserving
query accuracy. Technological advancements persistently upgrade
the optimizer to handle diverse data models and queries, thereby
boosting the database’s performance and scalability [28].

2.6 Case Study: OceanBase
OceanBase sets a high standard for distributed databases with its
LSM-tree storage architecture and Paxos-based two-phase commit
transactions, complemented by a robust SQL processing engine. It
leverages multitenancy and data compression strategies to scale ef-
fectively and operate efficiently. Demonstrating excellence through
impressive TPC-C and TPC-H benchmark scores, OceanBase so-
lidifies its position as a top-tier choice in the realm of distributed
database solutions, prioritizing performance and scalability.

2.7 Opportunities
2.7.1 Serverless. Integrating cloud elasticity with Serverless archi-
tecture [3] simplifies application maintenance, allowing developers
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to focus on coding. Serverless databases enhance adaptability, scal-
ing automatically to match workloads, which boosts efficiency and
reduces hardware maintenance. However, they face challenges like
fluctuating performance, maintaining data consistency, and com-
plex debugging due to lack of fixed infrastructure. Concerns over
vendor lock-in, security, privacy, and limited features also pose
significant hurdles when implementing Serverless databases in
sophisticated application environments.

2.7.2 AI4DB and DB4AI. The integration of AI with distributed
databases, known as AI4DB and DB4AI [17, 35], enhances both
database functionalities and AI efficiency. AI4DB applies machine
learning to fine-tune query optimization, predictive storagemanage-
ment, and reliability through anomaly detection, reducing human
intervention. Inversely, DB4AI equips AI with strong data support,
streamlining data processing for intricate AI operations and easing
machine learning workflows. This collaboration advances AI data
management and accelerates training and inference, propelling ad-
vancements and driving smarter, more effective solutions in diverse
fields, thus enhancing innovation and decision-making.

2.7.3 Multi-Model Database. Native distributed databases offer
multi-model support, combining key-value, document, and graph
data types within one platform [16], optimizing the selection of
data models for specific tasks. This consolidation streamlines infras-
tructure, improves performance, and boosts query efficiency. Key
challenges include upholding cross-model consistency, distributed
ACID properties, and executing complex multi-type queries while
balancing storage performance and ensuring robust security. As
they mature, these flexible multi-model databases become essential
in enterprises, harnessing the strengths of varied data structures.

2.7.4 Vector Database. Vector databases, specializing in similarity
searches, are pivotal in various fields, improving data storage and
retrieval in distributed systems to meet contemporary application
requirements [21]. These databases, known for fault tolerance and
high availability, enhance vector data services’ reliability. Yet, merg-
ing vector and distributed databases introduces challenges such as
optimizing query speed, managing high-dimensional vector storage,
and allocating resources efficiently for computation-intensive tasks.
These aspects are vital for sustaining a performant and sturdy in-
frastructure, addressing the nuanced demands of integrating vector
database capabilities with the robustness of distributed systems.
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