
A Reproducible Tutorial on Reproducibility in
Database Systems Research

Tim Fischer

tim.fischer@uni-tuebingen.de
Eberhard Karls Universität

Tübingen, Germany

Denis Hirn

denis.hirn@uni-tuebingen.de
Eberhard Karls Universität

Tübingen, Germany

Gökhan Kul

gkul@umassd.edu
University of Massachusetts

Dartmouth, USA

ABSTRACT
Reproducibility is a key aspect of the scientific method, and it is es-

sential for building trust in the results of research. This tutorial aims

to provide concrete guidance on how to leverage containerized
reproducibility using Docker for database systems research.

In this tutorial, we present a step-by-step guide on how to prepare

a Docker-based artifact for an experiment. We will cover topics

such as Dockerfiles, Docker images, Docker Compose, automation

using Python, Bash, and Make, and also artifact documentation

and packaging best practices. The tutorial itself is a reproducible

artifact, and we provide a public GitHub repository with all the code

and examples used in the tutorial. This repository can serve as a

starting point to prepare artifacts for experiments and publications.

PVLDB Reference Format:
Tim Fischer, Denis Hirn, and Gökhan Kul. A Reproducible Tutorial on

Reproducibility in Database Systems Research. PVLDB, 17(12): 4221 - 4224,

2024.

doi:10.14778/3685800.3685840

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/db-reproducibility/template.

1 INTRODUCTION
The credibility crisis [9, 11] in computer science research is emerg-

ing as a major concern. The lack of reproducibility undermines the

credibility of the field as a whole. In database systems research, the

problem of reproducibility is particularly acute due to the complex-

ity of the experimental setups and the wide range of parameters

that can affect results [14]. However, it is a key aspect of the scien-

tific method, and it is essential for building trust in the results of

research [10, 13].

The DB community has recognized the importance of repro-

ducibility and has started to take action [4, 5, 12]. However, the

term reproducibility is often used in a very broad sense, encom-

passing a wide range of practices and techniques. For the purposes

of this tutorial, we define reproducibility as being able to reach to

the same conclusions through experimental repetitions of author’s

original artifacts by independent researchers. Therefore, the key
to reproducible experiments is to design them with repro-
ducibility in mind, not as an afterthought.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view

a copy of this license. For any use beyond those covered by this license, obtain

permission by emailing info@vldb.org. Copyright is held by the owner/author(s).

Publication rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.

doi:10.14778/3685800.3685840

This tutorial aims to provide concrete guidance on how to lever-

age containerized reproducibility using Docker, with a strong

focus on the practical aspects of artifact preparation. We propose a

90-min tutorial in which we will cover the following topics:

• Introduction to repeatability and reproducibility for experimental

setups (5 mins).

• Brief introduction to containerization technologies (5 mins).

• Preparation of a Docker-based artifact for experiments and pub-

lications fit for the submission to the reproducibility efforts of

PVLDB or SIGMOD (30 mins).

• Automation using Python, Bash, and Make (20 mins).

• Multi-container setups using Docker Compose (10 mins).

• Artifact documentation and packaging best practices (10 mins).

Target Audience and Learning Objectives. The tutorial is
designed to be beginner friendly. It is aimed at researchers who

are new to reproducibility efforts and interested in learning how

to prepare artifacts for their experiments. We will provide hands-

on examples and practical advice on how to prepare artifacts for

experiments and publications. Participantswill learn how to prepare

a Docker-based artifact for an experiment. We will provide a step-

by-step guide on how to create a Dockerfile, build a Docker image,

and run an experiment inside a container. The tutorial will be

interactive, and we will encourage participants to ask questions

and share their experiences.

We provide a public GitHub repository with all the code and

examples used in the tutorial. This repository is prepared in the

style of a research artifact that could be submitted to reproducibil-

ity efforts, making this tutorial itself a reproducible artifact. This
repository can also serve as a starting point for authors who want

to prepare artifacts for their own experiments. During the tutorial,

participants will be able to follow along and run the examples on

their own machine.

2 CONTAINERIZED REPRODUCIBILITY
Both VLDB [4] and SIGMOD’s [5] reproducibility efforts claim that

“Ideally, reproducibility should be close to zero effort”. In practice,

however, achieving reproducibility can be challenging due to the

complexity and the wide range of experimental setups. This can

be a problem for authors replicating their own experiments, for

reviewers, and—most importantly—for our fellow colleagues trying

to reproduce and build upon them.

Using containerization technologies such as Docker [1] is one

way to simplify the process of reproducing experiments [7]. In

this section, we will give a brief introduction to containerization

technologies and explain how they help to achieve the goal of

“reproducibility should be close to zero effort”.

4221

https://doi.org/10.14778/3685800.3685840
https://github.com/db-reproducibility/template
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685840
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Docker is a platform to develop, deploy and run applications in

containers. Containers are lightweight, self-contained, executable
packages that contain everything needed to run an application,

including code, runtime, system tools, libraries, and settings. Con-

tainers are isolated from each other and from the host system,

making them a great tool for reproducibility. Wrapping an experi-

ment in a container ensures that an experiment will run the same

on any machine with Docker installed. This eliminates the need

to manually install dependencies and configure the environment,

which can be a major source of error when trying to reproduce an

experiment. Also, containers are portable, which means you can

easily share them with others and run them on different machines.

This makes it easier for reviewers to reproduce experiments and

verify results, as they can simply download the container and run

it on their own machine. No additional environment setup is re-

quired. Note that Docker does not simplify hardware requirements.

If an experiment requires a specific hardware setup, it must still be

provided by the user.

The following sections provide a taste of the concrete and ac-

tionable information attendees will take home.

2.1 Dockerfiles and Docker Images
Docker images are the building blocks of containers and are speci-

fied in a so-called Dockerfile, which contains a series of commands

that build the image. An image is a read-only template for creating

a container. Each Dockerfile specifies a base image, e.g., a Linux
distribution such as Ubuntu or Alpine. But there are also images

for database systems, programming languages, and other software.

One repository that provides pre-built images is Docker Hub [3].
However, the pre-built images on Docker Hub may not always

be suitable for an experiment. In this case, it is necessary to create

a custom Docker image. Figure 1 shows an example Dockerfile for

building and running DuckDB [15]. The Dockerfile specifies an

Ubuntu base image, installs the necessary dependencies, clones the

DuckDB repository, builds the system, and defines the entrypoint

for running DuckDB. The docker build command is used to com-

pile a Dockerfile into an image. The resulting image can then be

run with the docker run command to create a container.

It is also possible to use local files in the Docker image. This can

be useful for including data files, configuration files, or scripts that

are needed for the experiment. The COPY command can be used

to copy files from the host system into the image. However, big

files should not be included in the image, as this would make it

unnecessarily large. Instead, it is better to generate the files during

startup of the container, or download them from a remote location.

The resulting pre-compiled Docker image could be the artifact that

is shared with others to reproduce the experiment.

Note that the Dockerfile in itself already contains a lot of docu-

mentation about a part of the experiment. The layer of abstraction

that a Dockerfile provides makes it easier to change database ver-

sions or experiment parameters later on.

2.2 Docker Compose
For more complex experiments that require multiple containers

to be run together, Docker Compose [2] can be used. This tool

simplifies the definition and execution of multi-container Docker

1 # Use Ubuntu as the base image

2 FROM ubuntu :22.04 AS duckdb

3 # Install the necessary dependencies

4 RUN apt -get update && apt -get install -y \

5 build -essential cmake git

6 # Clone the DuckDB repository

7 RUN git clone --depth 1 --branch v0.10.1 \

8 https :// github.com/duckdb/duckdb.git

9 # Build DuckDB

10 WORKDIR /duckdb

11 RUN make release -j

12 # Add the DuckDB binary to the PATH

13 ENV PATH ="/ duckdb/build/release:${PATH}"

14 # Define the entrypoint

15 ENTRYPOINT [" duckdb "]

Figure 1: Sample Docker file to build and run DuckDB.

applications. It uses a docker-compose.yml file to define the ser-
vices that make up the application, and then starts all the services

with a single command.

The example in Figure 2 defines two services, one for PostgreSQL

using the official image from Docker Hub, and one for DuckDB

using the custom image that was built with the Dockerfile from

Figure 1.

1 services:

2 postgres:

3 image: postgres :16

4 duckdb:

5 image: duckdb

6 build:

7 context: .

8 dockerfile: Dockerfile

Figure 2: Example docker-compose.yml file for running
DuckDB and PostgreSQL.

2.3 Automate as Much as Possible
Docker images and Docker Compose provide the environment to

run an experiment. However, starting the containers, running the

experiment, and collecting the results is still a manual process. This

is where automation comes in. We recommend to automate as much

of an experiment as possible.

Automation Script. One way to simplify the process of repro-

ducing an experiment is to provide a single script that automates

the experiment. This script should take care of executing all the

necessary commands, collecting the results in standardized formats

(e.g., CSV files), and finally generating the plots and tables that are

presented in the paper. It is also possible to automatically generate

the paper PDF from the newly measured results. Creating these

figures and tables is crucial because it allows reviewers to verify

the results and compare them to the results presented in the paper.

4222

This script should also be run inside the container. That way, it

can in principle be written in any language. However, we recom-

mend using common languages such as Python or Bash because

these are widely used and easy to understand.

Make. Besides the automation script, it is good practice to have a

Makefile that automates the startup of the containers and the initial

execution of the automation script. This takes out any guesswork

for reviewers. The Makefile should also include targets for cleaning

up the environment after the experiment has been run (see Figure 3

for an example).

1 run: # Run the experiments

2 @echo "Setup environment to run experiments"

3 @docker compose up -d

4 @docker compose exec postgres bash

"run -experiments.sh"

5 clean: # Clean up the environment

6 docker compose down -v --rmi local

Figure 3: Sample Makefile for running SQL experiments.

Auditability. Automation scripts should not be black boxes.
They should be well-documented and easy to understand, so that

reviewers can see how the experiment was conducted. One way to

achieve this is to keep the user interface simple and provide detailed

comments in the script that explain what each step does. But also,

during the execution of the script, it should print out information

about what it is doing, so that the user can follow along and seewhat

is happening. This is important for transparency and auditability.

If the script fails, the user should be able to easily identify the

problem and fix it. Ideally, the script should be designed in such a

way that it can be run incrementally, so that the user can restart

it at any point without having to start from the beginning. This is

especially important for long-running experiments, where it would

be problematic to start from scratch every time the script fails. The

script should also be designed to be idempotent, so that it can be

run multiple times without causing any side effects.

Experimental Separation. Figure 4 shows an example Bash

script that runs a series of SQL experiments and measures the time

it takes to run each experiment. The script writes the results to

a CSV file, which can then be used to generate plots and tables

for the paper. Adding error handling and retry mechanisms to the

script would make it more robust and reliable, but is omitted here

for brevity.

Experiments should ideally be standalone scripts that can run

independently. This makes it easier to run individual experiments,

debug, and troubleshoot. Each experiment should be self-contained

and not dependent on the state of others. In Figure 4, Line 3, the

script assumes that all experiments are stored in a folder called

experiments. This makes it easy to add new experiments by simply

adding a new SQL file.

3 ARTIFACT DOCUMENTATION
The final step in preparing the artifact is to document it properly.

This can be done in several ways, depending on the guidelines of

the venue where the artifact will be submitted. In general, it is

1 #!/bin/bash

2 echo "experiment , time" > results.csv

3 for EXPERIMENT in experiments /*.sql; do

4 echo "Running experiment $EXPERIMENT"

5 # Run the experiment and measure the time

6 OUTPUT=`psql -c "\timing on" -f "$EXPERIMENT"`
7 # Extract the time from the output

8 TIME=`echo "$OUTPUT" | grep -o -E "Time: \S+"

9 | tail -n1 | sed 's/Time: //'`
10 # Print the time and write it to the results file

11 echo "Time: $TIME"

12 echo "$EXPERIMENT , $TIME" >> results.csv

13 done

Figure 4: Sample Bash script for running a series of SQL
experiments.

a good idea to provide a README file that explains the steps to

reproduce the experiment in a tutorial-style format (see Figure 5

for an example). This README file should contain the following

information:

Overview. A brief description of the experiment and the purpose

of the artifact.

Software Reqirements. Explicitly list the software that is re-

quired to run the artifact. This should include the operating

system, programming languages, libraries, and any other soft-

ware that is needed.

Hardware Reqirements. Information about the approximate

hardware that is required to run the experiment. This should

include the amount of memory and CPU that is needed, as well

as any specialized hardware that is required.

Time Reqirements. An estimate of the time it takes to run the

experiment. This is important for reviewers to plan their time

accordingly. If the experiment is very time-consuming, it may

be necessary to provide a simplified version that can be run in

a reasonable amount of time.

Cleanup. Instructions on how to cleanup any resources that were

created during the experiment.

An example of our README file and the GitHub repository can

be found in the link given below
1
.

4 CHALLENGES AND OPEN QUESTIONS
Containerization is a powerful tool for reproducibility, but it is not

a silver bullet. There are cases where containerization may not

be viable or may not be the best solution. For example, if your

experiment requires access to specialized hardware, or software

that is not available in a container, then containerization may not be

a good fit. Also, if your experiment is very resource-intensive and

requires a lot of memory or CPU, then providing a container that

can run the experiment may not suffice to reproduce the results.

In these cases, it may be necessary to coordinate with the chairs

of the reproducibility committee to find an alternative solution. For

example, you may be able to provide remote access to the hardware

or software that is required for the experiment. Alternatively, a

1https://github.com/db-reproducibility/template

4223

https://github.com/db-reproducibility/template

1 # Overview

2 This repository contains the artifacts for [...]

3

4 # Software Requirements

5 The artifact requires Docker and Docker Compose.

6

7 # Hardware Requirements

8 At least 4GB of memory and 2 CPU cores are required.

9

10 # Time Requirements

11 * Getting Started: 5 minutes

12 * Running the experiments: 15 minutes

13 [...]

14

15 # Reproducibility

16 To reproduce the experiments , follow these steps:

17 [...]

18

19 # Cleanup

20 To cleanup , run the following commands:

21 [...]

Figure 5: Example README file for an experiment.

simplified version of the experiment that can be run even on com-
modity hardware may be sufficient to verify the claims from the

publication. If applicable, we believe that the latter one should be

the preferred solution, because reproducibility is not a one-time

event. It is a continuous process that allows others to build on your

work and extend it.

These outliers should be the exception rather than the rule. In

the community, there is currently no clear guideline on how to

handle these cases. We believe that there should be discussions

to establish guidelines on how to handle such cases. However, for

the vast majority of experiments, containerization is a great tool

for reproducibility, and we encourage authors to use it along with

appropriate documentation whenever possible.

5 PRESENTERS
We will be able to shed a light on reproducibility from a variety of

angles: as co-chairs of the reproducibility effort of a major database

conference (PVLDB), as reviewers in these reproducibility efforts,

and as authors and submitters of research items that were reviewed.

Tim Fischer and Denis Hirn are PhD students at the University

of Tübingen working on database systems research under the super-

vision of Torsten Grust. They have experience with containerized

reproducibility and have used Docker extensively in their own re-

search to prepare artifacts for experiments that were successfully

tested for reproducibility. Their research group has won the ACM

SIGMOD 2021 Reproducibility Award. Denis Hirn has also been

involved in the SIGMOD reproducibility committee since 2022 as a

reviewer. Also, his own research has been published with artifacts

that were prepared using Docker.

Gökhan Kul serves as the Co-Chair of the Reproducibility Com-

mittee of VLDB since 2023, after serving in the VLDB and SIGMOD

reproducibility committees as a reviewer since 2016. He is an Assis-

tant Professor at the University of Massachusetts Dartmouth, and

his research focuses on database and software security fields.

6 RELATEDWORK
There are a number of previous works that have covered related

topics. For example, at ICDE 2021 Mauerer and Scherzinger [12]

have presented a tutorial on long-term reproducibility and best

practices for preparing artifacts, also using Docker. Bajpai et al.

[6] presents a beginner friendly introduction to reproducibility,

including best practices for documentation, data collection, and

tool recommendations. Chirigati et al. [8] present ReproZip, a tool

for automatically creating reproducible experiments from existing

ones. ReproZip captures the environment of an experiment and

packages so can be shared. This is compatible with our tutorial,

but ReproZip is more focused on capturing the environment of an

existing experiment, while we focus on preparing artifacts from

scratch.

REFERENCES
[1] [n.d.]. Docker. https://www.docker.com/. Accessed: 2024-04-01.
[2] [n.d.]. Docker Compose. https://docs.docker.com/compose/. Accessed:

2024-04-01.

[3] [n.d.]. Docker Hub. https://hub.docker.com/. Accessed: 2024-04-01.
[4] [n.d.]. PVLDB Reproducibility. https://vldb.org/pvldb/reproducibility/.

Accessed: 2024-04-01.

[5] [n.d.]. SIGMOD Reproducibility ARI. https://reproducibility.sigmod.
org/. Accessed: 2024-04-01.

[6] Vaibhav Bajpai, Anna Brunstrom, Anja Feldmann, Wolfgang Kellerer, Aiko Pras,

Henning Schulzrinne, Georgios Smaragdakis, Matthias Wählisch, and Klaus

Wehrle. 2019. The Dagstuhl beginners guide to reproducibility for experimental

networking research. ACM SIGCOMM 49, 1 (2019), 24–30.

[7] Carl Boettiger. 2015. An introduction to Docker for reproducible research. SIGOPS
Oper. Syst. Rev. 49, 1 (jan 2015), 71–79. https://doi.org/10.1145/2723872.
2723882

[8] F. Chirigati, R. Rampin, D. Shasha, and J. Freire. 2016. ReproZip: Computational

Reproducibility With Ease. In ACM SIGMOD. 2085–2088. https://doi.org/
10.1145/2882903.2899401

[9] David L Donoho, Arian Maleki, Inam Ur Rahman, Morteza Shahram, and Victo-

ria Stodden. 2008. Reproducible research in computational harmonic analysis.

Computing in Science & Engineering 11, 1 (2008), 8–18.

[10] Yolanda G., C. H. David, I. Demir, B. T. Essawy, R. W. Fulweiler, J. L. Goodall,

L. Karlstrom, H. Lee, H. J. Mills, J. Oh, Ss A. Pierce, A. Pope, M. W. Tzeng,

S. R. Villamizar, and X. Yu. 2016. Toward the Geoscience Paper of the Future:

Best practices for documenting and sharing research from data to software to

provenance. Earth and Space Science 3, 10 (2016). https://doi.org/10.1002/
2015EA000136

[11] Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Kho-

dakarami, Massive Analysis Quality Control (MAQC) Society Board of Directors,

et al. 2020. Transparency and reproducibility in artificial intelligence. Nature
586, 7829 (2020), E14–E16.

[12] W. Mauerer and S. Scherzinger. 2021. Nullius in Verba: Reproducibility for

Database Systems Research, Revisited. In IEEE 37th ICDE. https://doi.org/
10.1109/ICDE51399.2021.00270

[13] T. Neumann. [n.d.]. Experiments Hurt the Review Process. https:
//databasearchitects.blogspot.com/2014/09/experiments-hurt-
review-process.html. ([n. d.]). Accessed: 2024-04-01.

[14] M. Pawlik, T. Hütter, D. Kocher, W. Mann, and N. Augsten. 2019. A link is not

enough–reproducibility of data. Datenbank-Spektrum 19 (2019), 107–115.

[15] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical

Database. In Proceedings of the 2019 International Conference on Management of
Data. 1981–1984.

4224

https://www.docker.com/
https://docs.docker.com/compose/
https://hub.docker.com/
https://vldb.org/pvldb/reproducibility/
https://reproducibility.sigmod.org/
https://reproducibility.sigmod.org/
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1002/2015EA000136
https://doi.org/10.1002/2015EA000136
https://doi.org/10.1109/ICDE51399.2021.00270
https://doi.org/10.1109/ICDE51399.2021.00270
https://databasearchitects.blogspot.com/2014/09/experiments-hurt-review-process.html
https://databasearchitects.blogspot.com/2014/09/experiments-hurt-review-process.html
https://databasearchitects.blogspot.com/2014/09/experiments-hurt-review-process.html

	Abstract
	1 Introduction
	2 Containerized Reproducibility
	2.1 Dockerfiles and Docker Images
	2.2 Docker Compose
	2.3 Automate as Much as Possible

	3 Artifact Documentation
	4 Challenges and Open Questions
	5 Presenters
	6 Related Work
	References

