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ABSTRACT
Given a large number (notationally𝑚) of users’ (members or voters)
preferences as inputs over a large number of items or candidates
(notationally 𝑛), preference queries leverage different preference
aggregation methods to aggregate individual preferences in a sys-
tematic manner and come up with a single output (either a complete
order or top-𝑘 , ordered or unordered) that is most representative
of the users’ preferences. The goal of this 1.5 hour lecture style
tutorial is to adapt different preference aggregation methods from
social choice theories, summarize how existing research has han-
dled fairness over these methods, identify their limitations, and
outline new research directions.
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1 OVERVIEW & JUSTIFICATION
Preference queries [13, 18, 29] are prevalent in high fidelity data
management tasks, including, search, ranking, and recommenda-
tions [2, 3, 11, 23, 25], for applications such as selecting a handful
of candidates in domains where resource is scarce (such as hiring
and admission) and electoral voting systems, to name a few. Prefer-
ence queries leverage different preference aggregation methods to
aggregate individual preferences in a systematic manner and come
up with a single output (either a complete order or top-𝑘 , ordered
or unordered) that is most representative of the users’ preferences.
The need to support preference queries has not gone unnoticed
by the data management community, and a number of general
frameworks emerged [6, 18]. Two related aspects are studied: (i) se-
mantic clarity and adequacy, much of which are adapted from social
choice theory, and (ii) computational efficiency. Algorithmic fair-
ness has been receiving increasing attention [12, 26, 27, 33, 39, 48]
in ranking and recommendation mostly focusing on how to change
a single output (ranked or top-𝑘) and make it fair. In contrast,
fairness in preference queries (which involves multiple input pref-
erences) [28, 30, 34, 35, 45] remains less explored in the literature.
The tutorial is likely to bring interdisciplinary perspectives from
three different research communities - it will systematically identify
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fairness opportunities considering a wide variety of preference
aggregation methods adapted from social choice theory, investigate
their data management and computation implications.
The tutorial will be presented considering preference queries sup-
porting four interspersed dimensions, as described below.
Preference Elicitation Models. Study difference preference elici-
tation processes that we broadly categorize as rank based and non
rank based and their applicability to different applications. In rank
based processes, the users can provide a fully ranked order over all
items, a partial order, or a coarser preference (like item 𝑎 ranked
higher than item 𝑏, etc). In non rank based preferences, users can
provide only likes, both likes and dislikes, or even an ordinal pref-
erence (likes item a as "excellent", b as "good", etc). Rank based
ones are suitable in hiring/admission/electoral system, while non
rank based ones are more relevant in obtaining user feedback from
search results, user satisfaction survey, product reviews, etc.
Preference Aggregation Methods. The tutorial will identify ap-
propriate preference aggregation methods that are most commensu-
rate to the underlying preference elicitation process and underlying
application. For example, when user preferences are given as ranked
order, depending on the underlying application, we will aggregate
them using existing single-round rank based methods (e.g., Kemeny,
Spearman’s footrule, or Borda), or multi-round based methods (STV,
IRV). The former aggregation methods are suitable in hiring de-
cision, whereas, the latter ones are gaining popularity in voting
systems. On the other hand, when users provide non rank based
preferences, we will study how Jaccard similarity or Hamming
distances are suitable to aggregate them.
Produced Output Form. From the application point of view,
the produced output may require an order over all 𝑛 items (hir-
ing/admission), or a small number 𝑘 of 𝑛 items as outputs. In case
of top-𝑘 items requirement, the returned 𝑘-items may need to be
ordered for certain applications (top-𝑘 web pages returned by the
search engine), or in some cases it is fine to return them as a set (se-
lecting a set of representatives or body to form certain committee).
Make original outcome fair.How to quantify the minimum effort
needed to make the outcome fair. There are two ways to make
the outcome fair: A. change inputs. B. change outputs. We will
discuss both of these options and their fairness and computational
implications.

2 TARGET AUDIENCE AND ASSUMED
BACKGROUND

The tutorial will be of interest to both theoreticians and practition-
ers who are interested in the development of fair data-centric ap-
plications in the areas of databases, data mining, machine learning,
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social science, and algorithms, ranging from large-scale analytics
to emerging online applications. Tutorial attendees are expected to
have basic knowledge in algorithms, and data management. Knowl-
edge in constrained optimization is not necessary.

3 RELATED RECENT TUTORIALS & OVERLAP
The closest to our proposal is the tutorial [41] presented in SIG-
MOD 2023. It primarily focuses on classification framework for
fairness-enhancing interventions, single score-based ranking, and
supervised learning-to-rank. We, on the other hand, will focus on
preference queries that take multiple input preferences of different
forms. The overlap between our proposal and this tutorial is likely
to be minimal.

4 SCOPE AND STRUCTURE
The tutorial will be divided in three parts.

4.1 Preference aggregation methods (30
minutes)

The basic model in computational social choice [15] is voting, in
which – first, preferences are elicitated from an agent community;
and then, those preferences are aggregated. Formally,

Definition 4.1. An election is a tuple 𝐸 = (𝐶,𝑉 ) where 𝐶 is a set
of𝑚 candidates and𝑉 is a set of 𝑛 voters; each voter 𝑣 ∈ 𝑉 submits
a ballot, denoted also by 𝑣 . A voting rule (i.e., aggregation method) is
a function that takes an election 𝐸 as its input and outputs a winner
of the election.
Input Formats - Preference Elicitation. The standard, most
popular preference elicitation formats are:
• Approval ballots [14] – voters specify approve/disapprove for

each alternative (so 𝑣 ∈ 2𝐶 );
• Ordinal ballots [5] – voters specify a linear order over the alter-

natives;
• Scoring ballots – voters specify a score for each alternatives

(consider also the related cumulative ballot format [40]).
Output Formats - Type of Winner. As for the outputs, the most
prominent ouput formats are:
• Single-winner elections [15, 20] – the winner is a single alterna-

tive (some 𝑐 ∈ 𝐶 ; this corresponds to, e.g., selecting a president).
• Multiwinner elections [21] – the winner is a set of alternatives

(some 𝑐 ⊆ 𝐶 of some size; e.g., selecting a committee or a parlia-
ment).

• Participatory budgeting [7] – the winner is a set of alternatives
but each alternative has a cost and the total cost of the selected
alternatives cannot go beyond some given budget (this is usually
done in municipal settings [42]).

Getting from Inputs to Outputs – Preference Aggregation.
Many voting rules (i.e., aggregation methods) have been devised
and analyzed [15, 20]. As the most well-studied social choice setting
is that of ordinal-based single-winner elections we mention some
of the prominent ones for this setting (recall that, here, preferences
are elicitated as linear orders – ranking – over the alternatives –
and the output is a single candidate. In the tutorial we will also
cover cases where the output is a set of candidates, either ordered
or unordered.):

• Plurality – the winner is the candidate ranked first the most
times.

• Borda – each voter gives a score of𝑚−𝑖 to a candidate it ranks in
the 𝑖th position and the candidate with the highest score wins.

• Copeland [36] – we create a directed graph with a vertex for
each candidate and a directed edge from 𝑢 to 𝑣 if there are more
voters ranking 𝑢 before 𝑣 ; and, then, the candidate with the
highest out-degree wins.

• STV [43] – in each iteration, if there is a candidate ranked first
by a majority, then it is selected as the winner; otherwise, a
candidate appearing first the least number of times is eliminated,
and the rankings are updated accordingly.

• Kemeny [1] – a Kemeny consensus ranking is the ranking that
minimizes the sum of Kendall-Tau distances to all the input
rankings and the winner is the candidate ranked in the first
position of the Kemeny consensus ranking.

Analyzing Aggregation Methods. How to choose which aggre-
gation method to use? The most popular analysis approaches are:

• An axiomatic approach – here, desired properties of aggrega-
tion methods are formally defined and methods are analyzed
to whether they satisfy them. Classical results here includes
May’s theorem [32] (essentially showing that simple majority is
the only reasonable voting rule when |𝐶 | = 2), Black’s median
theorem (essentially showing that taking the median is the only
reasonable voting rule when𝐶 is an Euclidean line), Arrow’s the-
orem [4] (essentially an impossibility result for the existence of
an aggregation method that has no dictatorial features) and the
theorems of Gibbard and Satterthwaite [22, 38] (essentially an
impossibility result for the existence of an aggregation method
that is resilient to strategic voting).

• A computational approach – here, computational features of
aggregation methods are analyzed (showing, e.g., the fact that
some aggregation methods are NP-hard to compute [16, 24, 46]).

• A simulation-based approach – here, aggregation methods are
simulated and their results are being statically-analyzed and
visualized [19].

4.2 Fairness in answering preference queries -
existing research (30 minutes)

As demonstrated in the previous section one of the goals in devising
and analyzing a preference aggregation method is to make sure that
it is faithfully and fairly representing the opinion of the voters. In
some applications the outcome of the preference queries needs also
to ensure a fair representation of the candidates. For example, if the
preference query is a ranked order of job applicants we may need
to make sure that gender and race are appropriately represented in
the ranked outcome.

Fairness constraints may be imposed in case the output of the
query is a ranking (either full or partial ranking), but also in case
of perpetual voting of a single candidate. Consider the case where
viewers are polled to select the “movie of the day”, everyday. It
makes sense to impose some fairness constraints on the selections
to avoid the case that all the chosen movies are of the same genre
whose number of followers is a majority.
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We model fairness by protected attributes. Each item/candidate
𝑐 ∈ 𝐶 is associated a set protected attributes 𝐴𝐶 , where each pro-
tected attribute 𝐴𝐶 (𝑖) an take any of ℓ𝑖 different values. As an
example, seniority level is a multi-valued protected attribute with
three possible values Junior, Mid career, Senior, while gender is
commonly a binary protected attribute with two values male and
female.
Ensuring fairness. Recent work considered several way to ensure
fairness. Celis et al. [17] introduce a top-𝑘 fairness measure that
ensures a given upper and lower bound of the representation of each
of the protected attribute values in the top-𝑘 , for a fixed value of 𝑘 .
Zehlike et al. [47] extend group fairness using the standard notion
of protected groups and ensure that the proportion of protected
candidates in every top-𝑘 ranking remains statistically above a
given minimum (while not ensuring any upper bound).

A more general way to ensure fairness of a ranking of size 𝑛
is proportionate fairness that was introduced in the context of fair
rankings by Wei et al. [45]. For any protected attribute value 𝑝 ,
let 𝑓 (𝑝) denote the fraction of items with this value. A ranking
is proportionate fair or p-fair if for every 𝑘 ∈ [1..𝑛], the number
of items with protected attribute value 𝑝 among the 𝑘 top ranked
items is either ⌊𝑓 (𝑝) · 𝑘⌋ or ⌈𝑓 (𝑝) · 𝑘⌉. (A relaxed p-fairness can be
defined by introducing an integer tolerance to the constraint on
the number of items with protected attribute value 𝑝 among the
𝑘 top ranked items.) P-fairness was introduced in the well known
Chairman Assignment problem [44] that studies how to select a
chairman for a union of states such that at any time the accumulated
number of chairmen from each state is proportional to its weight.
This notion has been studied in the context of resource allocation
and scheduling [9, 10].
Multi protected attributes. In some applications fairness needs
to be ensured for multiple protected attributes, such as gender, race,
and income. In this case it makes a difference whether the protected
attributes are independent or not. In case of independence multi
protected attributes can be converted to a single attribute whose
set of values is the Cartesian product of the original protected
attributes, and the respective proportions are given by multiplying
the proportions of the original values. An example to protected
attributes that may be assumed to be independent are gender and
race as in most applications the representation of race within each
gender needs to be proportionate. In some cases it may not make
sense to assume that the protected attributes are independent. For
example, consider income and race. In this case ensuring fairness
over multi attributes is more difficult computationally. As a matter
of fact it is shown in [28] that for three or more dependent protected
attribute even determining whether there exists a fair output is
strong NP-Hard.
Producing a fair outcome. The preference aggregation methods
introduced earliermay not necessarily produce a fair outcome. Thus,
this outcome needs to be modified to obtain a fair outcome. Cer-
tainly, the goal is to minimize the modification in order to maintain
the faithful and fair representation of the opinion of the voters.There
are two approaches in making such modification; (1) modify the
output of the preference aggregation method to produce a fair out-
put, and (2) modify the input preferences so that the aggregated
preference is guaranteed to be fair. In both cases the goal is to min-
imize the modification, and thus in the first approach it a metric

space needs to be defined over the set of possible preferences, and
the goal is to find the fair preference that is closest to the aggregated
preference. For example, in [45] the preferences are full rankings
and the distance between two rankings (permutations) is Kendall
Tau distance. In the second approach the distance may be measured
by the number of votes modified/added/removed. This closely re-
lates to the Margin of Victory [8, 31, 37] problem defined as the
minimum number of vote changes needed to change the outcome
of an election.

Both approaches introduce interesting problems and will be
covered in the tutorial.

4.3 Future research directions (30 minutes)
We will focus on the three major aspects.

New preference aggregation methods. First, the design and
analysis of new preference aggregation methods using both the
axiomatic approach and the computational approach, specifically,
for the cases of perpetual voting and participatory budget will be
investigated in this discussion. We will also provide a roadmap that
could be helpful to the practitioners in identifying the appropriate
aggregation methods considering the application at hand.

Alternative models to enable fair outcome. Enabling fairness
on preference queries could be studied as a bi-criteria optimization
problem, that is, for a given pair (𝛼 > 1, 𝛽 > 1) and a set of𝑚 input
preferences make the outcome fair, such that the distance between
the original output (ranked or top-𝑘) and the produced output is
at most 𝛼 and its distance from a fair ranking is at most 𝛽 , if such
an output exists. These opportunities will be investigated in this
section. Other than demographic parity [33], p-fairness [45], and
top-𝑘 statistical parity [30], we will also explore what other fairness
measures are applicable to preference queries.

Efficient solution design. Ensuring a fair outcome while main-
taining adequate representation of the voters also poses several
problems, mainly computational. These problem are closely related
to the Margin of Victory problems that are known to be computa-
tionally hard. Finding an approximate solution to such problems is
a challenge.
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