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ABSTRACT
Graph Neural Networks (GNNs) have gained significant popular-
ity for learning representations of graph-structured data. Main-
stream GNNs employ the message passing scheme that iteratively
propagates information between connected nodes through edges.
However, this scheme incurs high training costs, hindering the
applicability of GNNs on large graphs. Recently, the database com-
munity has extensively researched effective solutions to facilitate
efficient GNN training on massive graphs. In this tutorial, we pro-
vide a comprehensive overview of the GNN training process based
on the graph data lifecycle, covering graph preprocessing, batch
generation, data transfer, and model training stages. We discuss
recent data management efforts aiming at accelerating individual
stages or improving the overall training efficiency. Recognizing the
distinct training issues associated with static and dynamic graphs,
we first focus on efficient GNN training on static graphs, followed
by an exploration of training GNNs on dynamic graphs. Finally,
we suggest some potential research directions in this area. We
believe this tutorial is valuable for researchers and practitioners
to understand the bottleneck of GNN training and the advanced
data management techniques to accelerate the training of different
GNNs on massive graphs in diverse hardware settings.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have emerged as a powerful tool
for extracting complex structural and semantic information from
massive graphs. They have gained continuous popularity in a broad
range of graph-based applications including social network analy-
sis [15], financial risk assessment [2], knowledge graph construc-
tion [35], recommendation systems [10], etc.

Despite the variation in model architectures, most GNNs adopt
the message passing scheme that exchanges information among
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Figure 1: GNN training workflow.

nodes based on the graph structure. This scheme involves recur-
sive neighbor information aggregation, which poses significant
challenges when training GNNs on large graph datasets. These
challenges include (1) high communication cost among machines
for full-batch GNN training, (2) excessive data movement between
CPU and GPU for mini-batch GNN training, and (3) low hardware
utilization during model training. As highlighted by Sancus [27],
when performing full-batch training of the GCN model [20] on the
Ogbn-Products [14] dataset with an eight-GPU machine, the com-
munication time accounts for over 90% of the end-to-end training
time, even for highly optimized GNN training systems. Similarly,
data movement dominates the end-to-end mini-batch GNN training
time. The situation worsens for larger graph datasets like Ogbn-
Papers100M [14]. Moreover, a recent study [1] has revealed that
better computation resource utilization can lead to approximately
10× speedup in per-epoch GNN training efficiency.

As graph data continues to grow in size, developing efficient
GNN training systems becomes increasingly crucial. At a high level,
current training systems process graph data on hybrid CPU-GPU
platforms, following the intricate computational logic of forward
and backward propagation and facilitating data movement across
heterogeneous hardware. With a longstanding history of study-
ing efficient methods for complex graph processing, database re-
searchers have recently directed their efforts toward exploring data
management techniques to accelerate the GNN training process.
This line of research generally progresses in parallel with GNN
model development but emphasizes achieving better training effi-
ciency without compromising model performance.

In this tutorial, we aim at providing a comprehensive overview
of the recent efforts for accelerating GNN training on massive
graphs. Based on the graph data lifecycle, we view the training
process through the lens of four major stages: graph preprocessing,
batch generation, data transfer, and model training. We discuss
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innovative data management ideas at different stages that improve
GNN training efficiency. Both centralized and distributed training
environments will be considered. Due to the distinct characteristics
of static and dynamic graphs and their respective GNN models,
we first focus on efficient GNN training on large static graphs.
Subsequently, we will delve into the efforts aimed at training GNNs
on large dynamic graphs.

Tutorial outline and target audience. We plan for a 1.5-hour
tutorial. The tutorial is intended for researchers and practitioners
interested in GNN training systems, data management techniques
aimed at improving efficiency and scalability within these training
systems, as well as the broader field of scalable graph learning. We
organize the tutorial into the following sections.
• Introduction (15 mins): We provide an overview of key concepts
related to graphs, GNNs, and the systems tailored for GNN training.
• Graph preprocessing (10 mins): We introduce three graph pre-
processing methods that can enhance the efficiency of subsequent
GNN training processes.
• Batch generation (15 mins): We focus on the sampling methods
used during batch generation, which are efficient and effective
across different hardware settings.
• Data transfer (15 mins): We discuss efficient input graph data
and intermediate embedding transfer methods between CPU and
GPU, as well as among GPUs.
• Model training (10 mins): We present advanced techniques that
reduce the computation cost of the training workloads and improve
the utilization of computation resources.
• Training on dynamic graphs (15 mins): We cover the existing
methods to accelerate GNN training on dynamic graphs.
• Future research directions (10 mins): We conclude the tuto-
rial by exploring the potential future research directions on data
management for efficient GNN training.

Related tutorials.There is a tutorial about large-scale GNNs [31],
which focuses on advanced algorithms for training GNNs at scale.
Our tutorial has a stronger emphasis on exploring data management
techniques and system-level optimizations that can alleviate the
efficiency bottlenecks of GNN training. It covers different hardware
settings and GNNs for both static and dynamic graphs.

2 GRAPH PREPROCESSING
To enhance the efficiency of GNN training, existing works propose
to perform necessary graph preprocessing. In this section, we intro-
duce three common preprocessing techniques, namely graph size
reduction, graph partitioning, and graph reordering, and discuss
how they influence the later batching and transferring efficiency of
the GNN training.

Graph size reduction. Training on large graphs can be time-
consuming, and a straightforward idea to address this problem is
to compact the training graph while maintaining the model ac-
curacy. To do this, three common techniques are available: graph
coarsening, graph sparsification, and graph condensation. Graph
coarsening [24] tries to group nodes in the original graph into super-
nodes so that the graph size is reduced. Graph sparsification [19]
removes the edges in the original graph to eliminate redundant and
insignificant relationships. Graph condensation is different from
the above two techniques in that it tries to construct synthetic

smaller graphs. The graph condensation problem is often formu-
lated as a bi-level optimization problem: we update the synthetic
data in the outer loop based on the neural network trained on the
synthetic data in the inner loop. Solving the bi-level optimization
problem can be computationally expensive or even intractable. To
improve the graph condensation efficiency, existing works try to (1)
speed up the inner loop [6], or (2) avoid the bi-level optimization by
solving the inner loop model training problem with a closed-form
solution [30]. There are also works about graph-free condensation
for better generalization ability [37].

Graph partitioning. Due to the limited device memory, graph
partitioning on graph structure and feature data is employed to
create smaller subgraphs for distributed GNN training. The current
partitioning algorithms aim to reduce the communication cost and
balance the workloads across different subgraphs. To partition the
graph structure, we can use traditional graph partitioning algo-
rithms [4, 27] (e.g., METIS partitioning, random partitioning) or
strategies tailored for GNN training [17, 26]. For feature data, 𝑃3 [9]
optimize the communication cost by vertically partitioning.

Graph reordering. Reordering the vertices in graph is an ef-
fective way to enhance locality, which benefits both model compu-
tation and data transfer in GNN training. For example, GNNAdvi-
sor [29] reorders the graph selectively to improve the locality of
computation in graph convolution kernels. DUCATI [34] also pro-
poses to reorder the graph based on access frequency to facilitate a
lightweight cache construction and lookup for the topology data
of the graph dataset. When traversing the graph topology with
the unified memory, the HALO reordering [13] can improve the
utilization of PCIe bandwidth and accelerate batch data transfer.

3 BATCH GENERATION
In GNN training, graph sampling has emerged as a powerful tech-
nique for generating batches. It selects nodes and their associated
edges from the original graph. The sampled subgraphs serve as the
batches that are fed into the downstream GNN training.

Graph sampling algorithms. A variety of graph sampling
approaches have been tailored specifically to the characteristics
of GNN training workflows. Node-wise sampling aggregates mes-
sages from a subset of neighbors, mitigating the computational
challenges arising from the exponentially increasing dependencies
in GNNs. Layer-wise sampling employs independent sampling for
each network layer and leverages importance sampling to maintain
a constant sample size, effectively controlling the computational
growth. Subgraph-wise sampling generates a subgraph and reuses
it for the computation across all layers. Furthermore, certain studies
have highlighted the benefits of delicately considering the spatial
locality in feature storage and extraction, which can significantly
reduce the transfer cost. Feature-oriented sampling [33] initiates
the sampling process by selecting node features, which then guides
the formation of the corresponding subgraph for a mini-batch.

Graph sampling implementations. Efficient sampling in-
volves leveraging the computational capabilities of available hard-
ware resources in the system. The GPU serves as an ideal hardware
choice for this purpose due to its excellent parallel computing power.
Meanwhile, generating the sampled subgraphs on the GPU avoids
the additional costs of transferring graph samples into the device
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memory. Nextdoor [16] is a pioneer work that performs graph
sampling on a single GPU. It loads the entire graph into device
memory and proposes a transit-parallelism strategy to accelerate
the sampling process by aggregating the same transit nodes. To
enhance scalability through the extensive capacity of host mem-
ory, the Unified Virtual Addressing (UVA) technique is adapted for
graph sampling [4, 34]. It stores the graph structure in host memory
and executes graph sampling on GPUs, taking advantage of the
combined resources of both the host and the device.

4 DATA TRANSFER
Efficient data transfer between CPU and GPU(s), or among multiple
GPUs, is paramount for ensuring high GNN training efficiency on
large-scale graphs. This is because the required data for model com-
putation may not be locally available. The specific data that needs
to be transferred depends on the applied GNN training approach,
i.e., mini-batch based or full-batch based GNN training.

Transferring input graph data. For mini-batch based GNN
training on large-scale graphs, cross-device transfer of the input
graph data (initial node feature vectors and graph structure infor-
mation) is a necessity. However, this data transfer process incurs
substantial costs during training. To alleviate this issue, a common
practice is to utilize local graph data caches to reduce the volume
of data being transferred and employ sophisticated cache manage-
ment policies. PaGraph [26] and GNNLab [32] exploit node feature
locality, caching node feature vectors locally prior to training with
certain hotness metrics. DUCATI [34] further exploits the locality of
graph structure data and introduces an additional graph structure
data GPU cache. It also leverages a refined allocator for managing
both types of caches, to minimize the aggregate transfer volume of
both types of graph input data between CPUs and GPUs.

Transferring intermediate node embeddings. For full-batch
based GNN training, a large graph is typically partitioned across
devices. In this setup, intermediate node embeddings, capturing
the neighborhood-aggregated node representations across differ-
ent GNN layers, need to be transferred across devices to enable
full-neighbor aggregation of target nodes. DGCL [3] finds optimal
transfer routes for every node’s intermediate embeddings given the
system topology to minimizing the corresponding transfer costs.
Neutronstar [28] achieves reduced transfer cost for intermediate
node embeddings at the expense of redundant bottom-up neigh-
borhood aggregation locally. Sancus [27] proposes a skip-broadcast
data transfer mechanism that flexibly bypasses intermediate node
embedding transfer between GPUs during specific training epochs.
This is guided by several refined management regarding the stale-
ness of the embeddings.

5 MODEL TRAINING
The efficiency of model training (i.e., the forward and backward
propagation) is also important for the overall training efficiency.
Researchers have explored approaches to avoid redundant com-
putation [18] or optimize the computation schedule, i.e., optimiz-
ing resource allocation of different operations for better resource
utilization in a collaborative CPU-GPU computation setup [25],
optimizing training parallelism [25], and improving the efficiency
of computation graphs and operators on hardware [7, 8].

6 TRAINING ON DYNAMIC GRAPHS
Apart from the traditional static graphs, many real-world graphs
exhibit dynamic behaviors with evolving interaction patterns. Typi-
cally, there are two types of dynamic graphs: discrete-time dynamic
graphs (DTDGs) and continuous-time dynamic graphs (CTDGs),
which are typically handled by dynamic GNNs (D-GNNs) and tem-
poral GNNs (T-GNNs), respectively. The dynamic nature of these
graphs introduces new challenges and optimizations for accelerat-
ing data transfer and computation during GNN training.

Optimized data transfer for dynamic graphs. For D-GNN
training, Chakaravarthy et al. [5] capitalize the topological similari-
ties across different graph snapshots, and design a graph-difference
based transfer method to reduce the transfer cost of graph snap-
shots. For T-GNN training, ETC [11] identifies the redundant data
access patterns and utilizes a redundancy-aware data access policy
to reduce the transfer volume of input features. SIMPLE [12] fur-
ther captures the complex entanglement effect between time and
frequency information in CTDGs, and reduces the data transfer
cost via dynamic data placement on GPU.

Optimized computation for dynamic graphs. Li et al. [21]
identify the reusable intermediate embeddings across graph snap-
shots in D-GNN training, and propose cache policies that maximize
the saved model computation time for the next snapshot. Orca [22]
also caches intermediate embedding in T-GNN training. It employs
a reuse-distance based cache policy, which optimally minimizes the
overall re-computation costs under the given GPU cache budget.
Zebra [23] points out the temporal effect of node influence in T-
GNN training. It performs single-layer aggregation over the most
influential neighbors, improving computational efficiency.

7 FUTUREWORK
Considering more tiers of memory hierarchy. There exist ex-
tremely large real-world graphs that exceed the total main memory
capacity of multiple machines. In this case, we need to leverage ad-
ditional tiers of the memory hierarchy, e.g., SSD, HDD, distributed
storage, and cloud storage services, to train GNNs. Training GNNs
efficiently in this situation demands future research efforts since
the preferred access pattern and access latency of these memory
levels are considerably different from that of the main memory.

System evolution for dynamic graphs. Dynamic graphs ex-
hibit evolving structures and features over time, which poses addi-
tional challenges for continuous GNN training. The data access and
data transfer patterns, which form the basis for the optimizations in
batch generation and data transfer, will gradually change after the
initial system deployment. To sustain the efficiency of GNN train-
ing systems, future work needs to devise adjustable and evolving
systems as the underlying graph data changes.

Adaptation to enhanced GNN models on TAGs. Conven-
tional GNNs can only process numerical vertex features, which are
often lossy compressions of the original rich textual features in the
text-attributed graphs (TAGs). Recently, there has been increasing
interest in modifying the architecture of GNNs to improve their
learning capability on TAGs [36]. However, the newly introduced
components, such as word embedding layers, are positioned differ-
ently against the original GNN layers and cause a significant drift
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of workload distribution. Therefore, adjusting system designs for
enhanced GNN models on TAGs is also a potential future direction.
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