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ABSTRACT
The trend of decomposing monolithic data management systems
into a stack of reusable components has quickly gained momentum
across the industry. Although a series of open-source projects have
emerged targeting different layers of the stack, execution engines
are of special importance due to the complexity they encapsulate,
and the demand to optimize price-performance. In this tutorial,
we will survey the space of composability in data management,
focusing on the execution layer. We will discuss the main APIs,
integration with existing and novel data management systems, and
how specialized behavior can be accommodated by using extensi-
bility APIs. With an emphasis on analytics, we will take a deeper
dive into performance, discussing modern aspects of vectorization,
compressed (encoding-aware) execution, and adaptivity. While the
presentation is contextualized using real-world examples and expe-
rience while developing the Velox open-source execution engine
and integrations with existing systems like Presto (Prestissimo) and
Spark (Gluten), the concepts and techniques discussed are generally
applicable to other execution engines. Finally, we will discuss future
trends and ongoing work regarding novel file formats, compressed
execution opportunities, and nascent hardware acceleration efforts,
highlighting current challenges and open questions. With a survey
of the state-of-the-art in this space, we hope this tutorial will help
motivate individuals and organizations to embrace composability
and promote collaborations across related projects.
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1 INTRODUCTION
Data management system design has evolved over the last decade.
The traditional monolithic model of developing vertically integrated
systems has resulted in a fragmented landscape, causing inefficien-
cies such as limited reusability across silos, inconsistent APIs and
SQL dialects, and slowed down innovation. A new composable par-
adigm largely driven by open-source software has emerged [17]
where data management systems are decomposed into a modular
stack of reusable components with clearly defined responsibilities
and based on open standards and APIs. This new architecture is
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quickly gaining momentum in the industry as it streamlines de-
velopment, reduces maintenance costs, and ultimately provides a
more consistent user experience.

Execution engines are a key component of this architecture. These
libraries are responsible for executing fully optimized query plan
fragments (or IRs) locally, from a table scan or consumer side of a
shuffle, into a table write or producer side of a shuffle. Execution
engines encapsulate a high amount of complexity as they contain
the implementation of relational operators, efficiently handle I/O,
and are the most resource-intensive component of the stack. As ex-
ecution engines become composable, component boundaries need
to be carefully drawn such that each component is independent.
The API also plays an important role in performance and produc-
tivity; they need to provide configuration options and extensibility
support to allow developers to extend data types, scalar, aggre-
gate, and window functions, operators, file formats, serialization
protocols, connectors, filesystems, and more, enabling its usage in
environments that may require specialized behavior [16].

Vectorization [7] is today the main technique used to process
large amounts of data. Vectorized execution engines decompose
query plan fragments as a sequence of simple and concise oper-
ations over batches of data (tight loops), which can be efficiently
executed by modern CPUs as they provide more predictable mem-
ory patterns and minimize CPU stalls. Considering vectorization
relies on columnar layout, a myriad of data processing techniques
that leverage columnar encodings such as dictionaries, RLEs, and
constants are enabled. Today, modern compressed or encoding-aware
execution engines may leverage the input encodings of data batches
to choose more efficient kernels (tight loops), and may also generate
data that is arbitrarily encoded [9].

Although vectorization and columnar execution have been stud-
ied for decades and presented as tutorials in the past [1], recent
trends have fundamentally changed requirements and driven the
emergence of new techniques. First, composability dictates that
modern execution engines should be developed in a more reusable
manner, based on open standards and providing adequate extensi-
bility APIs. Second, with compressed execution and more flexible
file formats and storage APIs, execution engines can more aggres-
sively leverage the encodings of the input data as read from storage
while executing query plans; they may also leverage the generated
encodings while writing the data back to storage, or shuffling data
across query stages. Third, modern execution engines commonly
also rely on adaptivity, which is a set of techniques that allow
engines to adapt and choose more efficient loops based on stats
from processing previous batches from the same query. Balancing
configuration options and adaptivity is key for user adoption, as
systems with too many configuration options are hard for users
to use. Fourth, the composable architecture provides a compelling
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framework where hardware accelerators can more easily be inte-
grated into data management, but also open important research
avenues regarding how these can be enabled in a general manner.

Tutorial overview. This tutorial presents a survey of these
recent trends, based on the authors’ experience creating and de-
veloping open-source projects in this space (notably, the Velox
open-source execution engine library [15]), and large organiza-
tional programs related to composability [8]. Although some of
the discussion will be contextualized using real-world examples
from Velox and its integrations with systems like Spark [21] and
Presto [22], the techniques, concepts, and trade-offs presented are
fundamentally equivalent and generally applicable to any other
execution engines. During the presentation, related projects such
as Apache Datafusion and Comet, in addition to Databricks’ Photon
will also be discussed.

The tutorial has a 90 min duration, and will be organized into
three sections of 30 mins each: (a) we will first present a survey of
composability and composable execution, discussing recent indus-
try trends; (b) we will present the performance aspects of modern
vectorization and compressed execution; (c) finally, we will discuss
ongoing work, challenges, and future directions on this space.

Tutorial audience. This tutorial is intended for engineers and
developers of data processing systems, and research groups who
want to prototype and evaluate new execution techniques. The
audience will learn about composing and reusing various compo-
nents of a data processing engine, state-of-the-art vectorization
techniques for data processing, and skills to improve existing data
processing systems by leveraging open-source libraries.

2 TUTORIAL OUTLINE
This tutorial is organized into three main sections. In the first part
(30 mins), we present a survey of composability in data manage-
ment, discussing how it started, the industry trends that led to
this inflection point, and the technological and economic benefits
of this paradigm. We also present the reference composable data
stack, its layers, APIs, responsibilities, principal projects, and open-
source technologies on each layer. We focus on the execution engine
component, highlighting progress and challenges in making them
composable and discussing their common extensibility APIs.

In the second part (30 mins), we take a deeper dive into per-
formance. With an emphasis on analytical workloads, we start
by discussing the state-of-the-art in columnar layout, vectorized
processing, compressed (encoding-aware) execution, I/O, and adap-
tivity. We take a closer look into the main relational operators - the
ones that commonly consume the most resources in production
workloads -, discussing in detail how table scans, filter/projection,
hash joins, aggregates, shuffles, and table writes work in many
real-life systems.

In the third part (30 mins), we discuss ongoing areas of research
and future directions. We discuss existing research in improving file
formats and data encoding by different groups in the academia, and
the additional opportunities this presents for compressed execution
and encoding-preserving operators. Lastly, we discuss how compos-
ability is paving the way for the adoption of hardware accelerators
in data management, and discuss ongoing research avenues and
open questions.

2.1 Composability
In the last decade, there has been an inflection on how data manage-
ment systems are designed [17] [10]. As database vendors increased
focus on the delivery of services and price-performance rather than
proprietary software, open-source big data technologies and open
standards have emerged and become commonplace. The Apache
Hadoop project [11] started the trend by disaggregating storage and
compute. With projects like Apache Parquet, Iceberg, Ibis, Substrait,
and Velox, the data stack has evolved from a vertically integrated
monolith into a composable stack of reusable components. A com-
posable data stack promotes reusability across systems, reduces
maintenance costs, provides a more consistent user experience
across engines, and ultimately favors innovation. Recently, not only
have new data management systems been created in record time by
assembling spare parts and reusing existing components [14] [10],
but decade-old battle-tested systems have also gone through major
overhauls to make their architecture more composable [5] [8] [16].

The composable data stack is composed of:
(1) A language frontend responsible for interpreting user

input (such as a SQL string or a dataframe-based API) into
an internal format.

(2) An intermediate representation (IR) of the query - usu-
ally a logical or a physical plan.

(3) A query optimizer responsible for taking the query in-
termediate representation and generating a more efficient
representation ready for execution.

(4) An execution engine able to locally execute IR fragments.
(5) An execution runtime that provides the distributed envi-

ronment in which query fragments can be executed.
Execution engines. Distributed computations are often decom-

posed into query fragments (or stages) that either start on a table
scan or the consumer side of a data shuffle and end on a table write
or the producer side of a data shuffle. Execution engines are libraries
able to take query fragments and execute them by leveraging the
local resources of a host. They provide efficient implementations
of relational operators such as table scans, projections, filters, joins,
aggregates, shuffles, and table writes.

Extensibility. To be reusable across data management systems
which may provide specialized behaviors and/or different SQL se-
mantics, composable execution engines need to be extensible. A
series of extensibility APIs are commonly exposed to allow devel-
opers to specialize the engine behavior, e.g, adding custom scalar,
aggregate, and window functions, operators, file formats for stor-
age, network serialization protocols, connector, and filesystem/blob
storage APIs [23].

2.2 Performance
There are two predominant paradigms for the efficient process-
ing of relational operators. Execution engines can either remove
the cost of query interpretation by generating executable code at
runtime (also known as just-in-time compilation) [13], or engines
can amortize the interpretation overhead by processing batches
of data at a time (also known as vectorization). Although today
most large-scale execution engines are based on vectorization, the
suitability of each strategy given a target workload is still a debated
topic [12].
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The main idea behind a vectorized engine is to decompose larger
computations as a sequence of simple and concise operations over
a batch of data - tight loops - which often provide more predictable
memory patterns and minimize CPU stalls caused by cache misses
and branch mispredictions. Vectorization enables CPUs to fully
leverage out of order execution and SIMD instructions [18], while
providing a programming paradigm that is more naturally translat-
able to highly parallel hardware accelerators like GPUs.

Vectorization relies on columnar layout [4], opening opportuni-
ties for more compact representations of the data since values of the
same data types are contiguously stored. Although a myriad of en-
coding and compression techniques have been developed over the
last decades [3] [6], cascading (or recursive) encoding techniques
such as dictionaries, run-length, and constant have received particu-
lar attention due to their dual applicability for both compression
and processing efficiency. For example, dictionaries can be used
not only to compact the data, but also to represent the output of
cardinality reducing or increasing operations such as filters, joins,
and unnests, in many cases without having to modify the input
columnar buffers underneath.

These and other techniques are usually referred to as compressed
or encoding-aware execution [16] [19]. Encoding-aware engines
can:

(1) Leverage the input encodings of the data for efficient execu-
tion. For example, expressions may be evaluated only on
distinct values of dictionaries or over a constant.

(2) Use encodings to efficiently represent the output of opera-
tions. For example, filters may be executed by simply wrap-
ping a dictionary to the input that only selects the rows
that survived the filter. Joins, unnests and other cardinality-
increasing or reducing operations can be executed using a
similar technique.

Despite opening opportunities for numerous optimization tech-
niques, this architecture adds an extra layer of complexity since
many versions of the same loop may need to be implemented to
handle each type of encoding. It makes the engine’s codebase more
complicated, harder to write and reason about, and more error-
prone [20]. If taken to the extreme, these techniques may also bloat
the engine code size and exacerbate compilation times. In the tuto-
rial, we discuss the optimizations and techniques that were found
to provide the best benefit and justify the added complexity [20].

Adaptivity. Vectorized engines may also be able to learn when
applying computations over successive batches of data, in order to
more efficiently process incoming batches. For example, engines
often keep track of hit rates of filters and conjuncts to optimize
their order; engines may also keep track of join key cardinality to
more efficiently organize the join execution; or learn about which
columns are in fact used at later stages of the operator tree to
improve prefetching logic. We discuss some of the main areas where
adaptivity is used in modern engines and present ongoing areas of
research.

Memory Management. The vectorized engine must efficiently
allocate and reserve the available memory among various operators.
If an operator requests more memory, then the memory manager

must dynamically arbiter the requested amount among other re-
maining operators. If no memory is available, the operator must
spill to disk.

Input/Output. The performance of the vectorized engine also
depends on the read/write throughput latency from the file system
where the data is stored, and data caching. The data cache can
be in memory or on disk/SSD. The in-memory data cache must
work with the memory manager for optimal memory utilization.
The engine must also be able to coalesce the reads to maximize
throughput, and prefetch data to minimize latency. This can further
be extended to track the read patterns and adaptively prefetch data
streams.

2.3 Ongoing Research and Opportunities
Recently, there are three main areas that have received considerable
attention as requirements for data management evolve and center
around AI workloads.

File formats. Existing file formats used in most data manage-
ment systems, such as Apache ORC and Parquet, were developed
more than a decade ago when use cases and requirements were
substantially different. For instance, the rapid growth of machine
learning and proliferation of training tables containing at times
tens of thousands of feature streams are inadequately supported
in existing formats. Existing formats are also tightly coupled with
data encodings, being unable to accommodate recent advances in
data encodings and compression or features such as cascading en-
codings [2]. Lastly, the layout of existing file formats did not take
into account that file decoding would eventually need to be effi-
ciently supported in accelerators such as GPUs. The current layouts
present major bottlenecks and hinder the adoption of hardware
accelerators in data management. In this tutorial, we present the
existing research around the topic, highlighting recent advances to
the state-of-the-art, and discuss challenges and opportunities.

Encoding preservation. ETL pipelines for offline batch pro-
cessing are commonly the largest consumer of compute resources
in large data lakehouses. The common pattern for ETL queries is
to read one or a few input tables, join them, apply transformations,
and generate an output table. As file formats evolve and present
better encoding ratios, the overhead of decoding the data during
this process and re-encoding it before writing to the output table be-
comes more evident. An open avenue of research is understanding
to which extent compressed execution techniques may be applied
along with lazy materialization to allow encoded data to traverse
the operator tree (potentially through shuffle boundaries and net-
work serialization) to the table writer, without ever getting decoded.
In the tutorial, we discuss compelling use cases, the progress made
so far, and open other questions around this topic.

Hardware acceleration. The exponential growth of AI work-
loads has driven an accelerator-first inflection in the data center
space. As AI emerges as the main consumer of data management
and generation-over-generation gains in accelerators and networks
are outpacing CPUs, data management and AI architectures are
brought closer together. In the meantime, data management frag-
mentation has historically hindered the adoption of hardware ac-
celerators, as it is too costly to integrate accelerators into existing
systems.

4251



Composable data management systems present a compelling
architecture to hardware vendors, as hardware integration could
be done in a single composable execution library, and be reused by
any data management system integrated with this library. In this
tutorial, we discuss the industry landscape of Velox and accelerator
integrations, initial results using GPU and FPGA integration in a
composable manner, and a sketch of the software framework. We
discuss how vectorized execution can be offloaded to accelerators
in a general manner, supporting not only multiple data systems but
also different types of accelerators. To that end, we generalize the
traditional query processing model to extract all latent parallelism
and asynchronicity. We then present a new framework under devel-
opment called Velox Wave, which enables GPU offload of arbitrary
Velox query plans. The core open question is under what circum-
stances does it pay off to pivot to accelerators and what changes in
engineering thinking this entails.

Finally, we will highlight the challenges and opportunities in
this space and hope to motivate other individuals and organiza-
tions to embrace composability as the future of data management
architecture.

3 PRESENTERS
Pedro Pedreira is a Software Engineer at Meta. During his 11-
year tenure, he has led a variety of projects related to Compute in
Meta’s Data Infrastructure, including systems like Cubrick, Scuba,
and more recently, the Velox open-source execution engine. Pedro
has been one of the main proponents behind the composable data
system movement and leads many of the collaborations across
Meta and the open-source community in this space. Pedro holds a
Ph.D, M.Sc, and B.Sc degrees in computer science, and his research
interests include query execution, composability, and data system
architecture.

Deepak Majeti is a Principal Software Engineer at IBM. He
is working towards making Presto a turnkey high-performance
analytical engine. Deepak is a Velox maintainer, a PMC member for
the Apache ORC project, and a committer for the Apache Arrow
project. Deepak is passionate about thinning the line between Big
Data and High-Performance computing. Deepak graduated with a
Ph.D from Rice University, USA, and an M.Tech from IIT-Kanpur,
India in the field of computer science.

Orri Erling co-founded the Velox composable query execution
project at Meta. Prior to this, he worked on Google’s F1 and be-
fore then created OpenLink Virtuoso, a relational/graph store best
known for its applications in linked data and knowledge graphs. His
research interests include benchmarking and generalizing query
processing to fuse with neighboring graph, AI and HPC domains.
Orri’s mission is to create a line of components from execution to
query optimization to distributed computing.
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