
DTGraph: Declarative Transformations of Property Graphs

Angela Bonifati
Lyon 1 Univ., Liris CNRS & IUF

angela.bonifati@univ-lyon1.fr

Yann Ramusat
Lyon 1 Univ., Liris CNRS

yann.ramusat@liris.cnrs.fr

Filip Murlak
Univ. of Warsaw

f.murlak@uw.edu.pl

Amela Fejza
Lyon 1 Univ., Liris CNRS

amela.fejza@liris.cnrs.fr

Rachid Echahed
LIG ś Univ. Grenoble Alpes

rachid.echahed@imag.fr

ABSTRACT

Current graph query languages, including the standards SQL/PGQ

and GQL, define their semantics in terms of sets of tuples. This

is largely inadequate for data interoperability tasks such as data

migration or data integration which require queries to output new

property graphs. This demonstration showcases DTGraph, an open-

source declarative rule-based framework for easily specifying and

efficiently executing property graph transformations. We describe

a novel comprehensive system that allows the declarative specifica-

tion of property graph transformations, by extending openCypher

queries with a new GENERATE clause for creating new property

graphs. The system includes several modules: a parser, a compiler

for translating the transformation logic into an efficient executable

openCypher script, and an interface assisting users in developing

their transformations. The demonstration showcases the ability of

our framework to scale to large graph data, and its suitability for

transforming real-world datasets.

PVLDB Reference Format:

Angela Bonifati, Yann Ramusat, Filip Murlak, Amela Fejza, and Rachid

Echahed. DTGraph: Declarative Transformations of Property Graphs.

PVLDB, 17(12): 4265 - 4268, 2024.

doi:10.14778/3685800.3685851

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/yannramusat/DTGraph.

1 INTRODUCTION

Property graph query languages are quickly evolving, with ongo-

ing development and diverse proposals, including Neo4j’s open-

Cypher [7], Oracle’s PGQL [12] and the international standards

SQL/PGQ and GQL [6]. In data interoperability scenarios requiring

the generation of new property graphs, the semantics of those query

languages ś defined as sets of tuples, becomes overly restrictive.

Current practical solutions for transforming property graphs ei-

ther (i) rely on opaque external libraries, such as Neo4j’s APOC [9],

or (ii) involve complex handcrafted queries, or (iii) could even be

externally implemented with general-purpose languages such as

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685851

Python. Meanwhile, declarative specifications have long been rec-

ognized as pivotal for solving data programmability problems [3].

They have clear semantics that allow them to be reused, composed,

and treated as first-class citizens in model management tasks. Due

to their ad-hoc nature and inherent complexity, handcrafted queries

written in openCypher rarely offer such benefits. On the other hand,

the APOC library does not have out-of-the-box solutions for prop-

erty graphs transformations. It supports graph projections with the

concept of virtual nodes and relationships that do not exist in the

graph (only returned by a query): this means that these projections

do not persist in the graph. Moreover, this library is vendor-specific,

hence it would not provide a system-agnostic universal solution

for this task; for instance, Memgraph’s MAGE [8] does not have

such primitives.

We demonstrate a novel system, DTGraph, which is to the best of

our knowledge the first system that allows users to formulate trans-

formations of property graphs in a declarative and intuitive manner,

aiming to follow the recommendations for data integration and data

exchange scenarios discussed in [3]. Indeed, our solution goes well

beyond implementing a simple transformation language by provid-

ing features to assist the user during the development process. The

rules are independent of each other and the transformation can be

built gradually; this means that independent business rules can be

integrated into a complex transformation. Ambiguity in the data

can be identified early in the process using built-in primitives to

detect inconsistencies in the produced output. Finally, the runtime

environment executing the transformation is simply the query pro-

cessor of the underlying database system, so our solution offers full

compatibility with several openCypher compatible backends such

as Neo4j or Memgraph, without needing to modify those.

The purpose of this demonstration is to showcase in an inter-

active manner: (i) how users can build their own transformations

on real-world graph data and benefit from the facilities offered by

the system; and (ii) the efficiency of the system in building the

target property graphs and (iii) its scalability in transforming large

graph-shaped data.

2 FOUNDATIONS

In the following, we assume the property graph data model of [6].

Property graphs have the following characteristics:

• They contain nodes and edges having a unique identifier.

• Each node and edge can have zero or more labels.

• Each node and edge can have properties (key-value pairs).

• Each property is single-valued (atomic).

• Each edge is directed.

4265

https://www.acm.org/publications/policies/artifact-review-and-badging-current


Our demonstrated system, DTGraph, takes a declarative, rule-

based approach to transforming property graphs. This system is

built on top of openCypher queries and supports sets of property

graph transformation rules that can be of two kinds: node rules and

edge rules. These rules connect the output of a query over the input

property graph with descriptions of new elements to be included

in the output property graph. The full syntax and the semantics of

the transformation language can be found in [5].

Arbitrary openCypher queries can be used for extracting infor-

mation from the source property graph, provided that they only

return Node and Relationship structural types [10]. We connect

their output to constructors which are expressed in a syntax resem-

bling that of openCypher, contained in a new GENERATE clause that

we introduce for this purpose. For instance, the following rule

1 MATCH (n:FirstName)-[r]->(m:LastName)

2 GENERATE (x = (r):FullName {value = n.value + m.value})

consists of a left-hand side extracting information from the source

using a MATCH clause, and a right-hand side defined by a GENERATE

clause which contains one node constructor consisting of three

fields. The first field (r) specifies the identity of the node. It con-

tains a list of expressions that can be source variables (as in the

example), access keys 𝑥 .𝑎 for 𝑥 a source variable and 𝑎 an attribute

name, or data values. The values of these expressions are passed

to a Skolem function, which is an injective function defining the

identity of a new element from the given arguments. This allows

several rules to refer to the same element, provided that the ex-

pression lists in their respective constructors take the same values.

The second field :FullName specifies the label, and the third field

{value = n.value + m.value} specifies the properties of the el-

ement (+ denotes string concatenation). Importantly, the transfor-

mation rules do not forbid additional labels and properties, which

will allow the user to split the description of an output element

across multiple rules, if the user so desires. Section 4 showcases

an interaction between two rules, where each rule defines its own

label and properties.

Conflict detection. The data model we consider, unlike the one

of openCypher, imposes single-valued properties. In openCypher,

properties are multi-valued: they can store lists of data values.

Restricting to atomic property values is crucial to transpose the

achievements that have been made for relational databases to prop-

erty graphs. Recall that in relational databases, the first normal

form assumes atomicity. The work on normalization of property

graphs [11] and the solutions proposed to cope with data incon-

sistencies in data integration tasks [3] all assume atomicity of the

data. DTGraph is able to identify conflicts, which occur when two

rules specify different values for a property of an output element;

and provides suitable feedback to the user. Section 4 describes a

complete scenario where users benefit from the interaction with

the system to build their own meaningful transformation.

Advantages of this approach. The use of Skolem functions to

implement a mapping language has already been studied, e.g., in [2,

4], but never to date on property graphs. This approach offers

several benefits, (i) there is a unique well-defined output for each

input, hence the set of rules defines a function mapping property

graphs to property graphs, (ii) the order in which the rules are

applied does not impact the produced output, (iii) it permits to keep

track of conflicting attributes on the produced property graph.

We leverage this in DTGraph to design a system that allows

users to: (i) incrementally build their transformations (because

rules model independent business rules and do not depend on

each other, they can be added in any order to a transformation

scenario and the output can be visualized and investigated during

the development process) and (ii) receive relevant feedback about

the current output (the system includes an error reporting tool that

can display relevant metadata that include the number of elements

created, and the number of conflicts that have been generated).

In this demonstration, we will showcase in Section 4 concrete

scenarios on real graph data where the user benefits from the unique

features of DTGraph presented above to develop a transformation

that meets their business needs.

3 SYSTEM ARCHITECTURE

Our system is implemented as an open-source Python3 package,

freely available on GitHub1. It exposes a programmatic API that em-

powers users with the ability to specify their own transformations

with declarative rules and to execute them on any openCypher

compatible back-end. It has currently been tested on Neo4j 5.16.0

and Memgraph 2.14.0, the latest publicly available versions of both

systems. We now present in detail the components of our system

as shown in Figure 1.

The interface is based on interactive JupyterLab notebooks.

It allows users to incrementally build and validate their transfor-

mations by adding new rules to currently active transformations,

thus permitting an incremental development process. The interface

also displays information and statistics on the execution context

(query execution time, number of generated elements, information

about conflicts, etc.). The output of the transformation is persisted

in the database and can be visualized throughout the process using

the vendor’s built-in visualization tools such as Neo4j browser and

Memgraph lab.

Aparser and a compiler that parse the input rules and generate

efficient openCypher scripts. The transformation rules introduced

in Section 2 are expressed in our own Domain Specific Language,

which complements the syntax of openCypher. The right-hand side

of a rule corresponds to a new Cypher clause we introduce for

this purpose, called GENERATE. We support a streamlined syntax

close to the one of openCypher for our node and edge constructors.

Examples of rules are given in Section 4.

Then our rules are compiled into efficient openCypher scripts.

Different back-ends may have mild discrepancies, such as variations

in the syntax for creating and removing indexes. Consequently, we

may have minor differences in the compiled script depending on

which back-end is used.

A back-end module which encapsulates a Neo4j bolt connec-

tor for Python to execute the transformation scripts produced by

the compiler, and retrieves the statistics which are made available

to the users. This module manages the transformation: it sets up

the indexes and metadata needed to execute the transformation

efficiently, and removes them when the transformation has been

validated by the user.

1https://github.com/yannramusat/DTGraph

4266



Executes 
transformations

with conflict detection

Inspects metadata

Inspects the outputWrites declarative specifications
 of transformations

Parses
transformation 

rules
Parser Generates 

openCypher scripts
Compiler Graph

Database
Back-end 

module

Figure 1: Architecture of the DTGraph system.

Advantages of this architecture. The demonstrated system is a

complete and novel solution for extending openCypher with the

ability to produce complex property graphs, given a specification

consisting of a set of declarative rules. It is a layer on top of open-

Cypher, implemented as a Python3 library. As such, it is compatible

with any openCypher’s compatible backends such as Neo4j or Mem-

graph, without the need to modify those.

Graph transformation API. Users can manage a transformation 𝑡

by interacting with the system through the following functions.

• 𝑡 .abort() sets the state of 𝑡 to inactive and removes from the

database the current output of the transformation.

• 𝑡 .add(𝑟𝑢𝑙𝑒) adds a declarative transformation rule to the

transformation object 𝑡 . If the transformation is already

active on a graph, the rule is parsed, compiled into an open-

Cypher script and this script is executed on this graph and

the output of the current transformation is updated.

• 𝑡 .apply_on(𝑔𝑟𝑎𝑝ℎ) executes all the rules of the transforma-

tion on the given 𝑔𝑟𝑎𝑝ℎ database. The output is created in

the same database, but is disconnected from the input data.

𝑡 is now active on 𝑔𝑟𝑎𝑝ℎ.

• 𝑡 .diagnose() displays the possible output elements that have

a conflict in one of their attributes.

• 𝑡 .eject(𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒) removes all internal bookkeeping data

on the output graph and sets the state of 𝑡 to inactive. If

𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒 is set to 𝑡𝑟𝑢𝑒 , the input data is also removed.

• 𝑡 .exec(𝑔𝑟𝑎𝑝ℎ, 𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒) is a shorthand for the composi-

tion of apply_on(𝑔𝑟𝑎𝑝ℎ) followed by eject(𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑣𝑒).

The following section showcases how the user can interact with

our library to build meaningful transformations.

4 DEMONSTRATION SCENARIOS

In order to demonstrate the novelty, efficiency, and applicability of

this approach for transforming property graphs, our demonstration

scenario will use the following datasets:

• the Movies2 dataset from Neo4j which contains a small

graph of movies and people related to those movies as ac-

tors, directors, producers, etc. It is small and simple enough

to showcase the capabilities of the framework in a demon-

stration setting;

• two real data exchange scenarios adapted to the data model

of property graphs:Amalgam1ToAmalgam3which describes

metadata about bibliographical resources andGUSToBioSQL

which maps fragments of the Genomics Unified Schema

2https://neo4j.com/docs/getting-started/appendix/example-data/

(GUS) to the generic Biological Schema (BioSQL), that have

been provided as part of the iBench benchmark suite [1].

• the Offshore Leaks Database and guide from the International

Consortium of Investigative Journalists (ICIJ), a popular real-

world property graph3 with 1,908,466 nodes, 3,193,390 edges.

The users will also be free to write their own queries, helping them

get familiar with DTGraph’s features and limitations.

Movies dataset. First, we will start with an introductory trans-

formation scenario using the Movies dataset (171 nodes and 253

edges). In this dataset, people are connected with movies through

relationships whose type indicates their role in the movie, e.g., actor,

director, etc. This is inadequate if we want to efficiently filter the

people that have co-directed a movie, as such a query would greatly

benefit from a label containing all people who directed at least

one movie, thus avoiding an expensive scan of all person nodes

and their outgoing relationships. The following transformation can

be used to solve the above problem. It generates a new property

graph disconnected from the input one, containing the refactoring

specified with the three declarative transformation rules below. The

steps correspond to those shown in Figure 2.

Step (i). The user first applies the transformation 𝑡 containing

the following two rules on our current Movies database:
1 MATCH (n:Person)-[:ACTED_IN]->(:Movie)

2 GENERATE (x = (n):Actor { name = n.name, born = n.born })

1 MATCH (n:Person)-[:DIRECTED]->(:Movie)

2 GENERATE (x=(n):Director { name = n.name, born = n.born })

At this point, the transformation is executed on the database and

its output can be visualized with tools such as Neo4j browser or

Memgraph lab. It is important to understand that all these rules

collaborate together and that the output of the transformation con-

solidates the output of all rules. For instance, because the same

argument list (𝑛) is provided in both rules, we create only one node

(with the two appropriate labels) for a person which is both an

actor and a director in some movies.

Step (ii). The user now add rules to the currently executed trans-

formation to incorporate some relationships in the output graph

between these newly created nodes, one of which could be:
1 MATCH (n:Person)-[:ACTED_IN]->(m:Movie)<-[:ACTED_IN]-(o:Person)

2 GENERATE

3 (x = (n):)-[():COLLEAGUE { movie = m.title }]->(y = (o):)

Note that endpoints will be recognized by the system as matching

previously created nodes because of their identical id field, so there

is no need to specify their contents again.

Step (iii). Dealing with conflicts is an important aspect of prop-

erty graph transformations. We recall that a conflict occurs when

3https://github.com/ICIJ/offshoreleaks-data-packages

4267



Figure 2: Transformation management in DTGraph.

two rules specify different values for a property of an output el-

ement. Indeed, in the property graph data model, each attribute

must be single-valued. In our scenario, Lana and Lilly Wachowski

have produced together many movies, hence the only COLLEAGUE

relationship between them would store more than one title on the

movie attribute. To solve this issue, the user replaces the last rule

with one in which the identifier list of the COLLEAGUE relationship

is (𝑚), to specify that there should be as many relationships be-

tween two people as there are movies in which they both starred.

Users can now see through their favorite graph visualization tool

that there are several relationships between the two producers, and

DTGraph indicates that there is no longer a conflict in the output.

Step (iv). The transformation obtained so far meets the needs of

the user and can therefore be validated. DTGraph offers an option

to remove all internal bookkeeping data used by the system for

handling the transformations.

Figure 2 shows all the metadata returned by the system dur-

ing the development of a transformation (Steps 1ś4): execution

time, number of elements built, elements in conflicts, creation and

destruction of internal bookkeeping data such as indexes, etc.

Scalability assessment. Then, wewill move to the realistic data ex-

change and data integration scenarios (i.e., Amalgam1ToAmalgam3

and GUSToBioSQL) to demonstrate the scalability of our system.

These scenarios consist of two relational schemas and a mapping

between them expressed as a set of SO-tgds. We transform the input

instance, a rudimentary property graph obtained after importing

the input relational data using a generic ingestion method, into

a full-fledged property graph following the output schema and

modeling join tables as relationships.

We will showcase the scalability of our system using synthetic

data generated with the iBench tool [1], generating arbitrarily large

input instances. The users will have access to plots and charts

demonstrating the scalability of the system and its other desirable

features (e.g., the order in which the rules are applied does not have

an impact on the time to construct the output). Users will also be

able to interactively: load reasonably sized input data, examine the

transformation rules implementing the required mapping, modify

them if desired, execute them, and visualize the output produced.

Offshore Leaks dataset. We end our demonstration scenario by

showcasing a comprehensive refactoring on the last dataset, using

approximately 20 rules. This illustrates how our system can be used

for deep refactoring of the data, still maintaining practical efficiency

on a large scale. The user will have access to a notebook providing

the motivation behind each rule, and how they are tied together.

ACKNOWLEDGMENTS

Filip Murlak was supported by Poland’s NCN grant 2018/30/E/ST6/-

00042 and the other authors by ANR-21-CE48-0015 VeriGraph.

REFERENCES
[1] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The

IBench Integration Metadata Generator. VLDB 9, 3 (2015), 108ś119.
[2] Patricia C. Arocena, Boris Glavic, and Renee J. Miller. 2013. Value Invention in

Data Exchange. In SIGMOD. 157ś168.
[3] Philip A. Bernstein and Sergey Melnik. 2007. Model Management 2.0: Manipu-

lating Richer Mappings. In SIGMOD. 1ś12.
[4] Iovka Boneva, Benoît Groz, Jan Hidders, Filip Murlak, and Slawek Staworko.

2023. Static Analysis of Graph Database Transformations. In PODS. 251ś261.
[5] Angela Bonifati, Filip Murlak, and Yann Ramusat. 2024. Transforming Property

Graphs. arXiv:2406.13062 [cs.DB] https://arxiv.org/abs/2406.13062
[6] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor

Marsault, Wim Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and
Domagoj Vrgoc. 2023. GPC: A Pattern Calculus for Property Graphs. In PODS.
241ś250.

[7] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD. 1433ś1445.

[8] Memgraph. 2023. Memgraph Advanced Graph Extensions. Retrieved February
13, 2024 from https://github.com/memgraph/mage

[9] Neo4j. 2023. APOC user guide for Neo4j 5. Retrieved November 9, 2023 from
https://neo4j.com/docs/apoc/current/

[10] Neo4j. 2024. Cypher Query Language Reference, V9. Retrieved February 27,
2024 from https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

[11] Philipp Skavantzos and Sebastian Link. 2023. Normalizing Property Graphs.
Proc. VLDB Endow. 16, 11 (jul 2023), 3031ś3043.

[12] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: A Property Graph Query Language. In GRADES. 1ś6.

4268


	Abstract
	1 Introduction
	2 Foundations
	3 System architecture
	4 Demonstration scenarios
	Acknowledgments
	References

