
Navigating Data Repositories: Utilizing Line Charts to Discover
Relevant Datasets

Daomin Ji
RMIT University

daomin.ji@student.rmit.edu.au

Hui Luo
University of Wollongong

huil@uow.edu.au

Zhifeng Bao∗
RMIT University

zhifeng.bao@rmit.edu.au

Shane Culpepper
The University of Queensland

s.culpepper@uq.edu.au

ABSTRACT
Line charts are fundamental to data analysis and exploration, of-
fering concise visual representations of trends. However, gaining
access to the underlying data used to construct these charts is often
challenging. In this paper, we describe DDLC (short for Dataset
discovery via line charts), an automatic dataset discovery tool that
is able to not only identify datasets (from a dataset repository) that
are “relevant” to the information depicted from a line chart provided
by the users, but also empower users to refine search results based
on specific visual elements extracted from the line chart. Moreover,
DDLC offers multiple avenues for users to validate search out-
comes: 1) Providing explanations on how a similar line chart could
be generated from the identified dataset; 2) enabling comparison
of line charts generated from different datasets via different ways
(e.g., the aggregation vs. non-aggregation operator); 3) facilitating
fine-grained examination of the correspondence between the line
chart and the identified dataset. By seamlessly combining dataset
retrieval with visual refinement and validation mechanisms, DDLC
offers a comprehensive solution for the data-driven exploration and
analysis.

PVLDB Reference Format:
Daomin Ji, Hui Luo, Zhifeng Bao, Shane Culpepper. Navigating Data
Repositories: Utilizing Line Charts to Discover Relevant Datasets. PVLDB,
17(12): 4289 - 4292, 2024.
doi:10.14778/3685800.3685857

1 INTRODUCTION
Dataset discovery [2, 3, 10, 12] is a common activity in data ex-
ploration and analysis, which aims to identify and select a set of
datasets from a large repository that can meet user needs. It serves
as a cornerstone in the data science pipeline, influencing the effec-
tiveness of subsequent analysis tasks. Existing dataset discovery
methods fall into two main categories: 1) keywords-based dataset
discovery [11], which finds datasets whose contents are the most

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685857

∗ corresponding author.

relevant to specified keywords; 2) unionable or joinable dataset dis-
covery [3, 8, 12], which finds datasets that can be joined or unified
with a user-provided dataset.

In this work, we introduce an novel method for users to find
relevant datasets through line charts. Line charts, being visual rep-
resentations of data, are essential tools in various domains for
decision-making, forecasting, and communicating statistical in-
sights. Nonetheless, the underlying data that generates the line
chart is usually unavailable. Thus, one may ask, given a line chart,
whether there exists a tool to help users identify a set of relevant
datasets that can generate line charts similar to the given one? For
instance, in stock market analysis, it enables analysts to delve into
historical data associated with stock trend line charts for further
exploration, leading to more accurate forecasting.

To bridge this gap, we present a novel dataset discovery tool,
called DDLC (short for Dataset discovery via line charts), enabling
users to find relevant datasets for a given line chart. At first, DDLC
employs a learned cross-modal relevance function to identify an
initial set of relevant datasets and returns them to the users. Upon
these datasets, users are allowed to refine them by specifying fur-
ther information that they think should be relevant to the desirable
datasets, such as the title and labels of the line chart. Considering
that data exploration purpose varies from one user to another and
from one stage to another, we additionally provide the following
functions to cater for a range of typical purposes below: (1) Expla-
nation. DDLC provides explanations for users why such a dataset
presents in the result by illustrating how a similar line chart can
be generated by the dataset; (2) Comparison. Users are also allowed
to compare the line charts generated from different datasets in
different ways (e.g., the same line chart could be generated from
different aggregation operators upon different datasets), such that
users can further pick those that truly meet their information needs;
(3) Locating.Users can check finer-grained correspondence between
a line chart and a relevant dataset by specifying a region in the
line chart. Accordingly, DDLC will locate the corresponding data
segments of the dataset that matches the region best.

In order to achieve the above functions, DDLC is designed to
encompass the following components: 1) Extractor aims to extract
informative visual elements from the line chart that can guide the
dataset discovery search, such as lines, labels, titles and ticks; 2)
Matcher aims to estimate the relevance score between a candidate
dataset and a line chart; 3) Filter aims to filter out the datasets
that are irrelevant to the visual elements specified by the users; 4)
Explainer provides the explanation on why such a relevant dataset

4289

https://doi.org/10.14778/3685800.3685857
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685857


v

lines

Line Chart V

Y-ticks range:
(-1,1)

Dataset T

Filtered
by

Columns

Ranking 
all datasets

Relevance Score

Matcher

An initial Search Result

Filter

Stock2Stock1Date
101.62101.762020/1/1

101.01102.162020/1/2

100.48103.142020/1/3

………
98.96107.072020/1/10

99.28106.972020/1/13

99.03107.382020/1/14

Stock1
101.76
102.16
103.14
…

107.07
106.97
107.38

Stock2
101.62
101.01
100.48
…

107.07
106.97
107.38

X-label: Date

Y-label: Price

Title: Stock

A refined Search Result

Intermediate results

Explainer

Explanation

Specify a region by users

Comparator

Different Line Charts

Locator

107.07

106.97

107.38

Best-matched Data 
Segments

Extractor

Figure 1: The architecture of DDLC.

is presented in the search result. 5) Comparator allows users to
compare the line charts generated from different datasets; 5) Locator
aims to find the data segment that matches the user-specific line
chart region best.

Regarding efficiency, DDLC employs a hybrid indexing strategy,
combining interval trees and the locality-sensitive hashing, to ex-
pedite the search for relevant datasets. This approach significantly
reduces the search time compared to a basic linear scan algorithm.

2 TOOL DESIGN
DDLC is mainly composed of the following components, extractor,
matcher, filter, explainer, and locator as illustrated in Fig. 1.
Extractor aims to extract key visual elements from a line chart,
which is informative about the relevant datasets. Specifically, DDLC
considers the following visual elements in a line chart:
• Lines are the most essential visual elements in a line chart that

demonstrate how the underlying data of the line chart will
change within a given period.

• Ticks are the markings or values displayed along each axis, indi-
cating the range corresponding to the points of each line.

• Title describes the primary topic of the line chart.
• Labels delineate the attribute of the data represented along each

axis.
Specifically, in DDLC, lines and ticks are the primary visual

elements for identifying relevant datasets due to two reasons: 1)
they provide key information about the data values and data trend of
the datasets; 2) other visual elementsmay not show up in a line chart
or convey misleading information if users arbitrarily specified them
during line chart generation. Therefore, DDLC retrieves relevant
results in two stages: 1) in the first stage, it leverages lines and ticks
to identify an initial set of relevant datasets; 2) in the second stage,
it allows users to specify other visual elements that a desirable
dataset should be relevant to, thereby refining the search result.

To implement the extractor, we resort to image segmentation
methods, which have been widely used in the field of computer vi-
sion to extract objects or instances from an input image. Specifically,
we train a line chart segmentation model based on Mask R-CNN [5]

from scratch. To this end, we automatically label and collect the
first training dataset for the line chart segmentation, LineChartSeg,
with the help of the python visualization library matplotlib [6].
Matcher adopts a machine learning model to learn a cross-modal
relevance function between a line chart and a candidate dataset,
which is achieved in two steps:

• Representation Learning. In the first stage, the matcher encodes
both the line chart and the dataset and learns their fine-grained
representations that can preserve locality semantics. Here, lines,
as the most essential visual elements of the line chart, are lever-
aged to learn the representation of the line chart, and for datasets,
DDLC first employs the extracted y-tick ranges to exclude the
columns whose range does not have an overlap with the y-tick
range. Specifically, for each line of the line chart or each column
in the dataset, we first divide it into a sequence of line segments
or data segments. Specifically, for a line that can be expressed as
a 2-D image with 𝐻 ×𝑊 , where 𝐻 and𝑊 represent the height
and width of the image, respectively, we divide it into a sequence
of small images with 𝐻 × 𝑃1, where 𝑃1 denotes the width of the
line segment. For a column that can be expressed as a data series
with length 𝑁 , we directly divide it into 𝑁

𝑃2
data segments with

length 𝑃2, where 𝑃2 denotes the length of each data segment.
Then we employ Transformer [4, 13] to learn their representa-
tions by capturing the relations among the line segments or data
segments. Finally, we assemble the representations of all the line
segments and data segments to obtain the representation of the
line chart and dataset, respectively.

• Relevance Calculation. In the second stage, the matcher calculates
the relevance between the line chart and the dataset based on
their learned representations. To this end, matcher employs a
hierarchical attention network to capture the fine-grained align-
ment between the line chart and the dataset. Specifically, in the
low-level attention network, the alignment between each line
segment and each data segment is performed, while in the high-
level attention network, the alignment between each line and
each column is performed. Through the above alignment, the rep-
resentations of the line chart and the dataset are reconstructed,

4290



which are finally sent into a multi-layer perceptron (MLP) to
estimate a relevance score between the line chart and the dataset.

In practice, when employing a line chart to visualize a dataset,
people may apply some data aggregation (DA) operations (i.e.,𝑚𝑖𝑛,
𝑚𝑎𝑥 ,𝑚𝑒𝑎𝑛, and 𝑠𝑢𝑚) to obtain the statistics within a period. For
instance, retailers typically calculate weekly revenue by summing
up the daily sales figures throughout the week. However, such data
aggregation operations may shift the data distribution of the origi-
nal data, thus posing a great challenge in accurately calculating the
relevance between the line chart and the dataset. DDLC supports
handling DA-based line chart by introducing three DA-related lay-
ers in the process of the dataset representation learning: 1) The
transformation layer to bridge the distribution gap between the
aggregated data and the original data. 2) The hierarchical represen-
tation learning layer to learn a comprehensive representation for
the dataset by jointly considering different aggregation window
sizes. 2) The mixture-of-experts layer to infer the most likely data
aggregation operator.
Filter aims to judge whether a dataset is relevant to user-specific vi-
sual elements, i.e., labels and titles. To this end, the filter also adopts
a machine learning model to estimate a relevance score between
the visual elements specified by the users and the dataset. To this
end, DDLC employs TURL [1], a large language model (LLM) for
the tabular data, to obtain the representation of the dataset, and em-
ploys a pre-trained LLM, BERT [7], to obtain the representation(s)
of the specified visual element(s). If the number of specified visual
elements is more than one, DDLC averages the representations
to obtain the final representation for them. Finally, a cosine simi-
larity is used to calculate the relevance score between the dataset
and the specified visual elements. The similarity score less than a
user-specific threshold will be filtered out.
Explainer aims to provide useful explanations for users to help
them understand why a dataset presents in the search result. Specif-
ically, explainer tells users how they can leverage a relevant dataset
to generate a line chart similar to the given one from two aspects:
1) which column in the dataset is mostly likely to produce a line
similar to the one in the line chart; 2) whether a data aggregation
operation is involved in the generation of the line chart. To this
end, the explainer mainly employs the intermediate result from the
matcher to generate the corresponding explanation. Specifically, the
alignment information from the hierarchical attention network is
leveraged to address the first question, and the distribution of differ-
ent data aggregation operators inferred by the mixture-of-experts
layer is leveraged to address the second question.
Comparator enables users to compare different line charts gener-
ated from different datasets in different ways, such that they can
further choose the ideal dataset for the subsequent data analysis
task. In DDLC, we mainly adopt the common python visualization
library matplotlib [6] to visualize the selected datasets.
Locator allows users to check fine-grained correspondence be-
tween a line chart and a dataset, by identifing the data segment in
the dataset that best matches the region specified by the users. To
achieve this goal, DDLC also employs the extractor to extract the
line segments from the specified region, and then for each line seg-
ment, DDLC adopts the matching algorithm proposed in Qetch [9]
to locate the data segment that best matches the line segment.

Hybrid Indexing Strategy. Besides the above main components,
DDLC also adopts a hybrid indexing strategy to accelerate the
search process, which is constructed based on the interval tree
and locality-sensitive hashing. The former aims to quickly locate
datasets whose values have overlaps with those of the line chart,
and the latter aims to reduce the number of candidate datasets in
the dataset repository by only considering datasets having the same
binary code-based representations with the line chart.

3 DEMONSTRATION OVERVIEW
DDLC is implemented based on Python 3.9 and PyQt6. In this
demonstration, we illustrate how DDLC assists users in discover-
ing relevant datasets for a given line chart and understanding the
relationship between these datasets and the line chart.
Step 1: Upload Chart & Specify Repository Path. At first, users
need to upload a line chart and specify the path of dataset repository
through the “Upload” and “Path” button, respectively. Then the
overview of the line chart and contents of dataset repository will be
displayed, as illustrated in Fig. 2a. At the same time, DDLC builds
the index for the dataset repository and extracts the visual elements
from the line chart in the background.
Step 2: Obtain and Refine the Result. Once the index has been
built, DDLC starts the search process on the dataset repository, and
the top-𝑘 relevant datasets will be displayed as the search result
associated with the relevance score estimated by DDLC, where
𝑘 can be specified by the users (Shown in Fig. 2a). Specifically,
DDLC arranges the results in three different lists, aggregation, non-
aggregation, and overall, where aggregation and non-aggregation
represent whether the line chart is more likely to be generated
by the dataset based on a data aggregation operator or not. For
example, in Fig. 2b, if users think a desirable table should be relevant
to “stock”, the title of the line chart, they can tick the corresponding
radio button and click the “Filter” button to refine the results. As a
result, the datasets whose content does not fall in the stock domain
are further excluded from the result.
Step 3: Explain the Result. DDLC also provides useful explana-
tions why each dataset shows up in the search result. Users only
need to select the dataset in the search list by clicking one of them,
and then click the “Show Explanation” button (shown in Fig. 2b).
The corresponding explanation will be displayed from two aspects,
as shown in Fig. 2c. The explanation tells users how to leverage
the selected dataset to generate a line chart similar to the given
one, such as which lines can be derived from specific columns of
the dataset. Furthermore, a line chart based on the above inference
will be generated for users to compare with the given one. For
example, in Fig. 2c, based on the explanation generated by DDLC,
the users understand that two stocks , “GaleForce” and “BluePeak”
from the Stock_97 dataset have similar trends with “EcoFusion” and
“Skyline” from the line chart, and no data aggregation operator is
involved in this process. Furthermore, the high similarity between
the inferred line chart and the given one also demonstrates the
relevance of the selected dataset, Stock_97, to the given line chart.
Step 4: Compare Different Relevant Datasets. DDLC also en-
ables users to compare the line charts generated from different
relevant datasets in different ways (e.g., with or without data aggre-
gation), which will help them further choose the ideal dataset for

4291



(a) Step 1: Upload Chart & Specify Repository Path. (b) Step 2: Obtain and Refine the Results. (c) Step 3: Understand the Result.

(d) Step 4: Compare Different Relevant Datasets. (e) Step 5: Check Fine-grained Correspondence.

Figure 2: The illustration of Workflow of DDLC.

their data analysis task. Specifically, users can select the relevant
datasets in the result list and then click “Add to Comparison” button
(shown in Fig. 2b), then those datasets along with the corresponding
line charts will be displayed, as shown in Fig. 2d. Additionally, for
each dataset, users can specify the way to generate the line chart
by defining the data aggregation operator and aggregation window
size in the combo box and input line, respectively. For example,
in Fig. 2d, users compare the line charts of two datasets, Stock_97
and Stock_92, and may find that the the former one is better than
the latter one, since the line charts of Stock_97 are more similar to
the given one. Thus, users may opt for the dataset Stock_97 on the
subsequent task.
Step 5: Check Fine-grained Correspondence. DDLC also allows
users to check fine-grained correspondence between the dataset and
the given line chart, as shown in Fig. 2e. Similarly, users can select a
dataset in the result list, and then click the “Check Correspondence”
button to activate this process (shown in Fig. 2b). Furthermore,
users can specify a region in the line chart that contains several line
segments and click the “Confirm” button, then DDLC will conduct a
search on the dataset and return the data segment that best matches
the specified region. For example, in Fig. 2e, users want to check
the correspondence between the dataset Stock_97 and the given
line chart. As a result, users may find that for any specified region,
there always exists a data segment from the chosen dataset that
matches the region well. As a result, they may believe the dataset
Stock_97 is the one that they really need for the subsequent data
analysis task.

4 ACKNOWLEDGEMENT
Thiswork is supported in part byARCDP240101211 andDP220101434.

REFERENCES
[1] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. Turl: Table

understanding through representation learning. ACM SIGMOD Record 51, 1
(2022), 33–40.

[2] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient joinable table discovery in data lakes: A high-dimensional similarity-
based approach. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 456–467.

[3] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J Miller. 2023. Semantics-
Aware Dataset Discovery from Data Lakes with Contextualized Column-Based
Representation Learning. Proceedings of the VLDB Endowment 16, 7 (2023),
1726–1739.

[4] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, et al. 2022. A survey on
vision transformer. IEEE transactions on pattern analysis and machine intelligence
45, 1 (2022), 87–110.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[6] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[7] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT. 4171–4186.

[8] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. Proceedings of the ACM on Management of Data 1,
1 (2023), 1–25.

[9] Miro Mannino and Azza Abouzied. 2018. Expressive time series querying with
hand-drawn scale-free sketches. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–13.

[10] Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. 2018. Table union
search on open data. Proceedings of the VLDB Endowment 11, 7 (2018), 813–825.

[11] Natasha Noy, Matthew Burgess, and Dan Brickley. 2019. Google Dataset Search:
Building a search engine for datasets in an open Web ecosystem. In 28th Web
Conference (WebConf 2019).

[12] Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana
Freire. 2021. Correlation sketches for approximate join-correlation queries. In
Proceedings of the 2021 International Conference on Management of Data. 1531–
1544.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

4292

https://doi.org/10.1109/MCSE.2007.55

	Abstract
	1 Introduction
	2 Tool Design
	3 Demonstration Overview
	4 Acknowledgement
	References

