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ABSTRACT

We demonstrate MaskSearch, a system designed to accelerate

queries over databases of image masks generated by machine learn-

ing models. MaskSearch formalizes and accelerates a new cate-

gory of queries for retrieving images and their corresponding masks

based on mask properties, which support various applications, from

identifying spurious correlations learned by models to exploring

discrepancies between model saliency and human attention. This

demonstration makes the following contributions: (1) the introduc-

tion of MaskSearch’s graphical user interface (GUI), which enables

interactive exploration of image databases through mask proper-

ties, (2) hands-on opportunities for users to exploreMaskSearch’s

capabilities and constraints within machine learning work�ows,

and (3) an opportunity for conference attendees to understand how

MaskSearch accelerates queries over image masks.
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1 INTRODUCTION

Masks highlight or isolate certain parts of an image based on de-

sired properties for further processing or analysis. Machine learning

tasks over image databases often involve generating masks, such

as image segmentation masks [13] and model saliency maps [16].

These masks are crucial for various applications, from model ex-

planation [6, 16] to tra�c analysis [1]. For example, practitioners

developing image classi�cation models can generate saliency maps

to examine which pixels contribute the most to the predictions.

Consider a scenario further discussed in §4, Alice, a data engi-

neer, uses the iWildCam dataset [4] for developing a wild animal

image classi�cation model. Facing validation accuracy issues, she

*Equal contribution.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685859

Figure 1: An example misclassi�ed image [4] and its saliency

map with the object bounding boxes (blue and yellow boxes).

Salient (red) pixels are in the background, which shows that

the model relies on irrelevant pixels to classify the image.

computes saliency maps [16] and object bounding boxes (e.g., gener-

ated by YOLO [13]) for the misclassi�ed images, an example of which

is shown in Figure 1. The red pixels in the �gure on the right of Figure 1

indicate higher importance for the model’s prediction, and the blue

pixels indicate lower importance. She �nds that the model focuses on

the background pixels, notably outside the ground-truth object bound-

ing boxes, rather than the animals, leading to misclassi�cations when

background conditions change. To correct the model’s focus, Alice

wishes to augment the dataset and retrain the model to ensure that

it relies on relevant features to make predictions. She �rst retrieves

a group of images where the model focuses on the areas outside the

object bounding boxes. She then augments the dataset by randomiz-

ing the pixels outside object bounding boxes in these images while

leaving the original labels unchanged and retrains the model with

the augmented dataset. Such an approach is known to help improve

model performance [18].

As the scenario shows, the ability to retrieve images and masks

based on the properties of the latter is valuable to machine learning

work�ows. However, the e�cient execution of these queries su�ers

from insu�cient systems support [8].

We recently developed MaskSearch [10], a system that ad-

dresses this challenge by accelerating queries over databases of

image masks. MaskSearch’s contributions include formalizing

a class of image and mask retrieval queries with support for ag-

gregations and top-ġ computations, introducing a novel indexing

technique over masks and an e�cient execution framework, and

implementing a prototype that signi�cantly outperforms existing

solutions in query execution e�ciency for both individual and

multi-query workloads that simulate machine learning work�ows.

In this demonstration, we introduce a graphical user interface

(GUI) forMaskSearch (§3), which enables users to execute queries

without writing SQL and conveniently displays images, masks, and
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bounding boxes. We also illustrate MaskSearch’s utility across

multiple scenarios (§4) in addition to the aforementioned scenario:

• Scenario 2 demonstrates howMaskSearch can assist in identify-

ing adversarial attacks. We show the ability of MaskSearch to

retrieve maliciously attacked images in a dataset by calculating

the dispersion of model saliency, relieving the e�ort required for

�nding attacks unrecognizable to human eyes.

• Scenario 3 demonstrates howMaskSearch helps in investigating

discrepancies between model saliency and human attention.

Overall, this demonstration will enable conference attendees to

experiment withMaskSearch hands-on and appreciate the �exi-

bility and performance of the system.

2 SYSTEM OVERVIEW

In this section, we summarize theMaskSearch system [10].

Data Model. An image mask is a 2D array of pixel values

represented by �oating-point numbers within the [0, 1) range.

MaskSearch supports queries over a database of masks by ex-

posing those masks through a conceptually relational view with

one attribute holding the mask data and the other attributes cap-

turing the mask metadata.
MasksDatabaseView (

mask_id INTEGER PRIMARY KEY,

image_id INTEGER, // Image from which the mask was derived

model_id INTEGER, // Model that generated the mask

mask_type INTEGER, // Type of mask (e.g., saliency map)

mask REAL[][]);

Region of Interest (ROI). An ROI is de�ned by a bounding box

that speci�es the area of interest within a mask. It is not included

in MasksDatabaseView since it is query-dependant and may be

computed on the �y (e.g., object detector applied to the image).

CP Function. CP stands for “Count Pixels”. CP(ģėĩġ, Ĩĥğ, (ĢĬ,īĬ) )

counts the number of pixels within the ROI in the mask whose

values fall within the speci�ed value range [ĢĬ,īĬ). Users can use

multiple CP functions and apply arithmetic operations in queries.

MaskSearch supports various query types, including �lter

queries, top-k queries, and aggregation queries, as detailed below.

Filter Query. This query type retrieves masks based on �lter con-

ditions on CP(ģėĩġ, Ĩĥğ, (ĢĬ,īĬ) ) . The �lter condition is de�ned by

a threshold T and an inequality symbol.
SELECT mask_id FROM MasksDatabaseView

WHERE CP(mask, roi, (lv, uv)) < T;

Top-K Query. This query type retrieves the top-ġ masks ranked
by CP(ģėĩġ, Ĩĥğ, (ĢĬ,īĬ) ) . The ranking order can be ascending (ASC)
or descending (DESC).
SELECT mask_id FROM MasksDatabaseView

ORDER BY CP(mask, roi, (lv, uv)) DESC LIMIT K;

Aggregation Query. MaskSearch supports both scalar aggrega-

tion and mask aggregation. For scalar aggregation, the user can

aggregate the outputs of CP functions through the SCALAR_AGG

function. MaskSearch supports aggregation functions like SUM,

AVG, MIN, and MAX. Mask aggregation facilitates the combination

or comparison of information across multiple masks (of the same

image), treating aggregated masks as new queryable entities. The

user needs to de�ne a function MASK_AGG that takes in a list of

masks and returns an aggregated mask: MASK_AGG→ REAL[][],

where MASK_AGG can be any function Ĝ (ģ1,ģ2, ...,ģĤ ) , whereģğ

represents a mask. For example, intersect(ģ1 > 0.8, ...,ģĤ > 0.8)

outputs the intersection of the masksģ1, ...,ģĤ thresholded by 0.8

(pixels > 0.8 becomes 1; otherwise 0).
SELECT image_id FROM MasksDatabaseView

WHERE mask_type IN (1, 2, ..., n)

GROUP BY image_id ORDER BY CP(MASK_AGG(mask), roi, (lv, uv));

To e�ciently support these queries,MaskSearch introduces two

key components: the Cumulative Histogram Index (CHI) and a �lter-

veri�cation query execution framework. CHI is a novel indexing

technique that stores pixel counts for di�erent key combinations

of spatial locations and pixel values, which enables the e�cient

derivation of upper and lower bounds for pixel counts of arbitrary

ROIs and pixel value ranges speci�ed by the user at query time.

The �lter-veri�cation framework leverages CHI to compute bounds

to determine which masks can be added directly to the result set

or pruned without loading them from disk to memory and which

require further veri�cation by loading them from disk and applying

the predicate. This approach signi�cantly reduces disk I/O which is

the bottleneck for query execution. The details of MaskSearch and

the performance comparison with existing solutions can be found

in [10]. In this demonstration, attendees will be able to explore how

MaskSearch executes queries and experience its ease-of-use and

query performance improvements.

Limitations. MaskSearch needs to build CHI for the aggregated

masks for mask aggregation queries. With the incremental index-

ing technique [10], the start-up overhead gets amortized quickly.

The demo currently supports only a single ROI per image/mask;

however, this is not a limitation of MaskSearch.

3 MASKSEARCH INTERFACE

This section describesMaskSearch ’s interface (Figure 2).

MaskSearch allows users to load and specify their own mod-

els, datasets, and masks. In this demonstration, the GUI loads the

datasets, models, and masks for the corresponding scenarios. This

process is followed by the automatic calculation and display of the

model’s accuracy and a confusion matrix where each clickable cell

represents the images whose ground truth label and predicted label

are the corresponding row and column of the cell, respectively. For

example, cell (146, 17) represents images of class 146 that were

classi�ed as class 17. The GUI shows the top-100 cells in terms of

the number of misclassi�cations. As illustrated in Step 1 in Figure 2,

this functionality allows for detailed visualization of the images

from the selected cell (146, 17) with their corresponding masks. Due

to space constraints, the initial data loading, confusion matrix, and

the illustrative �gure for CHI are not presented in Figure 2.

Input Section. The Input Section is demonstrated on the left of

Steps 2 and 3 in Figure 2. It simpli�es the creation and manipulation

of search queries by providing a form that guides users through

specifying their query, including de�ning an optional ROI (full

mask by default), upper and lower bounds of the pixel value range,

and choosing between di�erent queries such as Top-K Query, Filter

Query, and Aggregation Query. The ROIs are provided by the user,

such as object bounding boxes generated by an o�-the-shelf model.

Based on the aforementioned user-speci�ed parameters, the GUI

generates an SQL query shown in the “Query Command” window,

which allows the users to inspect the formalized query and, if

necessary, directly modify the SQL query for their search. Clicking

“Execution Detail” (needs to happen after clicking “Start Query”)
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Step 1

The accuracy is low! 

The model is not looking at 

the correct region to predict.

Class: 146 Meleagris Ocellata

Model Prediction Accuracy: 0.5

146 -> 17

Saliency Map146 -> 17

Saliency Map

Step 2 Step 3

I9d like to augment the dataset by randomizing 

the irrelevant pixels and retrain the model.
What are other images where the 

model made the same mistake?

Figure 2: An example work�ow of usingMaskSearch’s GUI in Scenario 1. In Step 1, 146 -> 17 means that the image with a

ground truth label 146: Meleagris Ocellata was misclassi�ed as class 17: Panthera Onca. The images are fromWILDS [4].

triggers the GUI to show the number of masks loaded from disk

during query execution vs. the number of total masks.

Query Result Section. The Query Result Section, presented on

the right of Steps 2 and 3 in Figure 2, displays the query results as a

combination of images and their corresponding masks, dependent

on the speci�c scenario. For example, in Step 2 of Figure 2, the

returned images are overlaid with their saliency maps and the

object bounding boxes. The GUI also o�ers users the ability to click

and zoom in on the query results in a popup window.

Dataset Augmentation. To extend MaskSearch for machine

learning work�ows, this demonstration also incorporates a dataset

augmentation feature, which is further described in §4.

4 DEMONSTRATION SCENARIOS

Our demonstrationwill walk through a series of scenarios that show

MaskSearch’s utility in real-world machine learning work�ows:

Scenario 1: Debugging Image Classi�cation Models [18],

illustrated in Figure 2. Recall the scenario mentioned in §1. Alice

noticed that the model learned to rely on the presence of confound-

ing factors in the background to classify the animals, as shown in

Step 1 in Figure 2. To mitigate the model’s reliance on confounding

factors, Alice can �rst use a Top-K query to retrieve the images with

the least number of high-value pixels in the ROI (object bounding

box generated by YOLO [13]) normalized by the area of the ROI,

as shown in Step 2 in Figure 2. Another option is to use a Filter

query to retrieve all the images for which the normalized number

of high-value pixels in the ROI is below a threshold. She can then

augment her training set by randomizing the pixels outside the ROI

in the retrieved images with the original labels, as shown in Step 3

in Figure 2, and retrain her model on the augmented training set,

which guides the model to classify the animals without relying on

the randomized background pixels.

In this scenario, we demonstrate MaskSearch ’s ability to exe-

cute Top-K and Filter queries e�ciently. On an AWS EC2 p3.2xlarge

instance which has an Intel Xeon E5-2686 v4 processor with 8 vC-

PUs and 61 GiB of memory, and EBS gp3 volumes provisioned with

125 MiB/s throughput for disk storage, without MaskSearch, the

median execution times of 5 Filter queries and 5 Top-K queries

(OS page cache cleared before each run) on 22,275 images (with

their model saliency masks) from the iWildCam dataset [4] are

both around 100 seconds (wall clock time). In contrast, it takes

MaskSearch less than a second to execute the same queries (OS

page cache cleared before each run), which is a 100× speedup.

The conference attendees will interact with MaskSearch using

the interface. They will be able to explore misclassi�ed images and

execute Top-K and Filter queries (we will pre-populate the �elds and

the attendees will be able to change the values). After clicking “Start

Query”, returned images overlaid by their corresponding saliency

maps will be displayed. Attendees will also be able to click the

“Augment” button to augment those images, and the result will be

shown on the interface. Finally, we will provide an additional tab

showing the details of the CHI and how di�erent image masks were

e�ectively �ltered during query execution.

Scenario 2: Identifying Adversarial Attacks [20]. Claudia

is an ML engineer who develops and maintains an image classi-

�cation model that performs with high accuracy in production.

During a routine check, she discovers that there is a signi�cant

drop in the prediction accuracy. Claudia examines the misclassi�ed

images manually and they look normal. However, after computing

the model saliency maps for those images, she notices that the

model’s attention is di�used across irrelevant regions similar to

the example shown in Figure 3 (b). Hence, she starts to suspect

the misclassi�cation may be due to malicious modi�cations that

mislead the model to focus on irrelevant pixels. She wishes to re-

trieve the saliency maps that contain the most mid-value pixels,

which indicates di�used model attention. WithMaskSearch, she

speci�es the ROI as the full mask and issues a Top-K query. An

example query she might use is,
SELECT mask_id FROM MasksDatabaseView

ORDER BY CP(mask, full_img, (0.2, 0.6)) DESC LIMIT 25;

By examining the returned masks (and their corresponding im-

ages), Claudia could better understand whether (and to what extent)

the images were maliciously modi�ed and improve the model’s re-

silience to such malicious modi�cations.

The conference attendees will be able to walk through the sce-

nario with the same interface shown in Figure 2. They will �rst
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(a) before the attack (b) after the attack

Figure 3: Saliency masks before and after a malicious attack

on an example image from ImageNet [5]. The object of inter-

est in the image is the �sh held by the man.

Figure 4: Comparison of human attention maps and model

saliency maps on images from CUB-200-2011 [19]. The hu-

man attention map shows that humans look at the head

and tail of the Pomarine Jaeger to classify it, which are the

discriminate traits. The model saliency map shows that the

model is focusing on thewings instead. This explainswhy the

model misclassi�es Pomarine Jaeger as Long Tailed Jaeger.

see both attacked and unattacked images and their corresponding

saliency maps shown side-by-side to explore di�erent patterns, e.g.,

focused attention vs. di�used attention, between the two categories;

Based on the observation of which range the majority of di�used

attention pixel values fall within, they can establish custom upper

and lower bounds in Top-K query to obtain masks with the most

(or least) di�used attention. Attendees will be able to examine the

model saliency maps overlaid on the returned images.

Scenario 3: Investigating discrepancies between model

saliency and human attention [2]. This scenario demonstrates

MaskSearch’s ability to perform aggregation queries e�ciently.

Fine-grained image classi�cation requires identifying local and

discriminate regions that correspond to subtle visual traits. Exploit-

ing human attention can rectify models that deviate from critical

traits for making correct predictions [14]. An example is illustrated

in Figure 4. Imagine a scenario in which a researcher, Bob, wants to

investigate whether a �ne-grained classi�cation model is looking

at the same region as humans to classify images. He �rst thresholds

the saliency maps and human attention maps (pixels > thresh-

old becomes 1; otherwise 0) to reduce noise in the masks. With

MaskSearch, he can then e�ciently retrieve the images where the

attention of the model and human experts has the lowest degree of

alignment by aggregating the human attention and model saliency

masks (group by image_id) and computing the Intersection over

Union (IoU). An example query he might use is shown below:
SELECT image_id,

CP(intersect(mask > 0.8), roi, (lv, uv))

/ CP(union(mask > 0.8), roi, (lv, uv)) as iou

FROM MasksDatabaseView WHERE mask_type IN (1, 2)

GROUP BY image_id ORDER BY iou ASC LIMIT 25;

In this scenario, the conference attendees will be guided to exe-

cute aggregation queries on the given human attention map and

model saliency map withMaskSearch. They need to de�ne a value

T for thresholding the two masks and either start a Filter query

or a Top-K query following the same input procedure described

in Scenario 1, except that the ROI is set to the whole image. The

query will return a list of images where the human attention map

and model saliency map have the lowest IoU. Attendees will see

the two masks of those images presented side-by-side on the GUI.

5 RELATED WORK

Although prior work has proposed systems that support queries

over image databases [3, 7, 15], these methods are not optimized

forMaskSearch’s target queries. Array databases [12] specialize

in handling multi-dimensional dense arrays but do not support

e�cient searching from large numbers of arrays.MaskSearch falls

into the group of systems that support ML model inspection, expla-

nation, and debugging [9, 11, 17], among which DeepEverest [9]

is most relevant to MaskSearch, but it targets a fundamentally

di�erent class of queries.
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