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ABSTRACT

ADatabase Replay System (DRS) captures workloads from a produc-
tion system and subsequently replays them in a testing environment
to verify correctness and performance. Prior to the replay process,
DRS initially generates a dependency graph from the workload to
ensure output determinism and to maximize replay concurrency in
the testing system. However, the state-of-the-art inefficiently gen-
erates unnecessarily larger dependency graphs, creating a major
bottleneck in the end-to-end pipeline. DoppelGanger++ is a new
DRS supporting fast dependency graph generation. This demonstra-
tion illustrates how it captures and replays workloads, with a focus
on efficiently generating compact dependency graphs. Specifically,
we showcase the end-to-end database replay workflow using the
complete database replay workload, accompanied by a web tool
developed for our demo which can animate the dependency graph
generation process and visualize important internal data structures.
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1 INTRODUCTION

Database Replay Systems (DRSs) test relational database systems
within a testing environment. DRSs capture database workloads on
a production system and then replay them in a testing environment.
Here, a workload consists of user requests, each containing a SQL
statement with session ID.With DRSs, DBAs can avoid risks such as
(a) performance regression, (b) bugs, or (c) new resource contention
prior to applying the system changes to production [3, 5].

DRSs generate a dependency graph on the captured workload
before replaying it to provide output determinism [2]. Here, output
determinism means that the replay of a captured workload pro-
duces the same output as the original run, enabling DRSs to ensure
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correctness in the test system by comparing the results of each
query during capturing and replaying. Nodes in the dependency
graph correspond to requests in the captured workload, while edges
represent the relative ordering constraints between two dependent
requests. By concurrently replaying the captured requests while
preserving the order constraints in the dependency graph, DRSs
can maximize replay concurrency while detecting correctness bugs.

The state-of-the-art [5] employs a generate-and-prune approach
for creating a dependency graph.With this approach, the generation
step generates the dependency graph using an algorithm called
RBSS. RBSS generates the incoming edges of each node by finding
the latest dependent nodes in each of the other sessions through
backward scans. Then, the pruning step prunes all redundant edges
using expensive transitive reductions [1]. Here, a direct edge (𝑣,𝑢)
is redundant if removing it still allows 𝑣 to be reached from 𝑢.

However, RBSS induces a major bottleneck in the capture-and-
replay pipeline due to its inefficiency. First, it generates an unnec-
essarily large dependency graph containing many redundant edges,
increasing the cost of the pruning step. Second, RBSS could show
quadratic time complexity in relation to the number of requests, ow-
ing to repeated backward scans for each session. As a result, it can
constitute over half of the total end-to-end time [4]. As customers
continuously capture and replay evolving workloads to rapidly
assess divergences in system changes, there is a substantial need to
accelerate dependency graph generation.

We demonstrate DoppelGanger++ [4], a novel database replay
system supporting a fast dependency graph generation. It efficiently
removes two types of dominant, redundant edges in the dependency
graph called object transitivity (OT) and inter-session transitivity
(IT) (see Section 3.1 for those definitions), during dependency graph
generation. For this, DoppelGanger++ employs a novel and effi-
cient dependency graph generation algorithm called stateful single
forward scan (SSFS), which avoids repetitive scans over requests
using a novel memoization technique. Consequently, SSFS consid-
erably boosts the dependency graph generation by up to two orders
of magnitude compared to RBSS, reducing more than 50% of the
end-to-end time in the capture-and-replay pipeline.

The main contribution of this paper is to analyze how Doppel-
Ganger++ efficiently generates a compact dependency graph com-
pared toRBSS. First, to help better understand DRS, we demonstrate
the complete database replay pipeline using SAP HANA Cockpit,
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Figure 1: The architecture of DoppelGanger++.

which provides web interfaces to administrate the database, includ-
ing capturing and replaying workloads with DoppelGanger++. By
following the demonstration scenario in Section 4, the audience
will see that DoppelGanger++ detects performance degradation
due to software changes. Then, we showcase a web application that
allows users to engage with the generation of dependency graphs
in DoppelGanger++ through a live animation of the algorithm’s
execution, accompanied by visualizing memo structures.

2 ARCHITECTURE

Figure 1 shows the overall architecture of DoppelGanger++, in-
cluding the four steps in its workflow. It consists of a production
system, a control system, a replayer, and a target system. The pro-
duction and target systems capture and replay a workload, respec-
tively. The control system receives the workload from the produc-
tion system and generates the dependency graph. The replayer
loads the dependency graph and sends the requests associated with
their dependency information to the target system. By separating
the control and target system from the production one, the users
can replay the workload without performance regression in their
production system.

During the capturing step, DoppelGanger++ automatically cap-
tures the workload information, such as requests and execution
contexts, from the production system with minimal overhead. It
categorizes and archives captured information, including SQL and
transaction data, into distinct files based on their respective types. It
provides filters for the captured requests, allowing users to capture
only workloads crucial for replay and to exclude sensitive infor-
mation. Additionally, DoppelGanger++ creates a backup of the
current snapshot, ensuring it is available for subsequent replay.

In the preprocessing step, a control system processes captured
workload files and produces dependency graph files using SSFS for
consistent workload replay. The input files hold data on requests
made by each database session at capture time. The output files
can be used for replay multiple times. The generated dependency
graph file serializes requests, associating each with its dependent
requests in other concurrent sessions. Note that if we use RBSS,
the generation of the dependency graph would constitute over half
of the overall end-to-end time.

In the replaying step, the captured workload is replayed using
dependency graph files, maintaining the transactional order on
the target system, which is initialized with the previously backed-
up snapshot. In this process, loader threads load the dependency
graph files and feed the requests on distinct request queues for each
session. A request dispatcher manages each queue, determining

when to execute the requests. These requests are then dispatched
to execution threads. The requests not having incoming edges are
executable without waiting. A non-commit request first acquires
a snapshot and eliminates its outgoing edges, allowing long-read
transactions to be completed successfully without obstructing write
transactions. On the other hand, a commit request obtains a commit
timestamp, and its execution eliminates the outgoing edges, facili-
tating successful commitment. After executing each (non-commit
and commit) request, the execution threads return the result.

In the analysis step, the system compares the replayed outcomes
with those captured and then visualizes the analysis reports. The
comparison is performed regarding resource usage, performance,
and consistency. To assess performance, it measures the execution
times of respective requests as well as system-level throughput and
resource consumption. For consistency check, it measures the over-
all database state and the execution result of respective requests.

3 DEPENDENCY GRAPH GENERATION

3.1 Workloads and Dependency Graphs

AworkloadW is represented as a directed graphGini = (VR , Eses)
where each node corresponds to a request inW, and consecutive
requests are connected by edges in a session (e.g., the nodes in
Session 338954 in Figure 2a). Here, each request 𝑟 has attributes
including a logical timestamp (𝑟 .𝑡𝑠), a session ID (𝑟 .𝑠𝑖𝑑), and a set of
objects accessed by 𝑟 (𝑟 .𝑜𝑏 𝑗𝑠). In cases where 𝑟 is a commit request,
𝑟 .𝑜𝑏 𝑗𝑠 denotes the set of all objects modified by the committed
transaction. As in [5], an object can be a table or a table parti-
tion. Requests are classified into non-commit (NC) (i.e., SELECT or
UPDATE) and commit (C) requests making their updates perma-
nent. When a transaction does not modify any object, its commit
request is not dependent on any request from the other sessions.
Therefore, during the dependency graph generation step, it is sim-
ply disregarded, only to be replayed at the end of the transaction
in the replay step. Requests within a session will be replayed in
timestamp order, as imposed in Eses. However, Eses does not need
to be generated explicitly, as requests in a session are stored in a
timestamp order [5]. Note that Gini = (VR , Eses) is not a complete
dependency graph since it only includes the ordering constraints
within each session.

Given a workload, we need to generate the edges for every pair
of dependent requests (𝑟, 𝑟 ′). Here, we assume the isolation level is
either statement-level or transaction-level snapshot isolation, which
our underlying DBMS supports. Then, 𝑟 and 𝑟 ′ are dependent if the
two requests access a common object, and at least one of them is a
commit request modifying the object.

However, generating all the edges is unnecessary, as some edges
are redundant. For example, in Figure 2a, all dotted edges are redun-
dant, whereas only few solid edges are non-redundant. Generating
redundant edges increases the cost of the transitive reduction since
all redundant edges will be removed.

To formally address this problem, DoppelGanger++ avoids gen-
erating edges of OT and IT types. OT refers to redundancy due
to a path where all requests on the path access a common object
and every pair of consecutive requests in the path is dependent. IT
refers to redundancy due to a path through requests in two sessions,
regardless of whether the requests access a common object. IT and
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Figure 2: The screenshots of our web tool.

OT are dominant in the dependency graph. Note that RBSS avoids
special cases of IT edges only [4].

For example, consider the dependency graph in Figure 2a. Then,
(𝑟9, 𝑟19) is anOT edge due to the path (𝑟9, 𝑟18, 𝑟19) where all requests
access WAREHOUSE table (i.e., a common object) while every pair
of consecutive requests is dependent. However, it is not an IT edge
as the requests in the path are in three different sessions. The edges
of OT only are highlighted in blue. On the other hand, (𝑟0, 𝑟18) is
an IT edge due to the path (𝑟0, 𝑟1, · · · , 𝑟7, 𝑟18) through requests in
Sessions 338954 and 338957. However, it is not an OT edge as neither
the requests in the path access a common object nor the pairs of
consecutive requests in 𝑟0, 𝑟1 · · · , 𝑟7 are dependent (note they are
all non-commit requests). The edges of IT only are highlighted
in red. Finally, (𝑟10, 𝑟19) is both OT and IT edge due to the path
(𝑟10, 𝑟18, 𝑟19) which satisfies OT and IT connectivity. The redundant
edges due to both OT and IT are highlighted in green.

3.2 Single Forward Session Scan (SSFS)

SSFS generates a compact dependency graph through a single scan
over all requests using a memoization technique. While scanning
each request 𝑟 ′, SSFS generates the incoming edges of 𝑟 ′ from the
memo tables and updates them.

SSFS maintains the two succinct memo tables called the OT-
free candidate table (OTC), and the latest appended edges between
sessions (LAE). When generating the incoming edges of 𝑟 ′, SSFS
first enumerates the candidate source requests that do not have
OT connectivity to 𝑟 ′ using OTC, and then prunes the candidates
that have IT connectivity to 𝑟 ′ using LAE. Thus, we denote the
resulting graph as GIT[OT] . Now, we explain each table and how
SSFS generates the dependency graph using them.

OTC is a dictionary with keys represented by pairs of (𝑜𝑏 𝑗, 𝑡𝑦𝑝𝑒)
and values represented by sets of requests. For key (𝑜𝑏 𝑗,𝐶), the
value is the latest commit request 𝑟𝐶 accessing𝑜𝑏 𝑗 . For key (𝑜𝑏 𝑗, 𝑁𝐶),
the value is the set of non-commit requests accessing 𝑜𝑏 𝑗 subse-
quent to 𝑟𝐶 . For example, when processing 𝑟22 in Figure 2b, for
key (WAREHOUSE,𝐶), OTC stores the latest commit request 𝑟19
accessing WAREHOUSE table (see Figure 2a for the requests access-
ing WAREHOUSE table). For key (WAREHOUSE, 𝑁𝐶), OTC stores
{𝑟20} as the set of non-commit requests accessing 𝑜𝑏 𝑗 subsequent to
𝑟19. Among the subsequent non-commit requests, OTC maintains
only the latest one for each session as an optimization, since all
requests in a session are connected due to Eses.

LAE is another dictionary, where each key is a pair of sessions,
and the value is the latest appended edge between those sessions.
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Figure 3: End-to-end time breakdown in TPC-C (256 clients).

For example, for a pair of sessions (338954, 338957) in Figure 2b,
LAE stores (𝑟7, 𝑟18) as the latest appended edge.

For the request 𝑟 ′, SSFS first enumerates the candidate source re-
quests without OT connectivity to 𝑟 ′, by employing a two-step pro-
cess. In the first step, SSFS iterates over every object 𝑜𝑏 𝑗 ∈ 𝑟 ′ .𝑜𝑏 𝑗𝑠
to retrieve the candidate source requests from OTC. For brevity, we
denote the retrieved request set from OTC using a key (𝑜𝑏 𝑗, 𝑡𝑦𝑝𝑒)
as OTC[𝑜𝑏 𝑗, 𝑡𝑦𝑝𝑒]. Given an 𝑜𝑏 𝑗 , SSFS first retrieves OTC[𝑜𝑏 𝑗,𝐶],
that constitutes a singleton (i.e. a single request) having a depen-
dency on 𝑟 ′. In addition, if 𝑟 ′ is a commit request, SSFS additionally
retrieves OTC[𝑜𝑏 𝑗, 𝑁𝐶], whose requests have dependencies on 𝑟 ′

only when 𝑟 ′ is a commit request. Then, in the second step, SSFS
can prune some of the identified candidate requests with OT con-
nectivity to 𝑟 ′ through the other retrieved requests. Note that a
request 𝑟 in the candidates may have OT connectivity to 𝑟 ′ through
other candidates retrieved using different 𝑜𝑏 𝑗 or 𝑡𝑦𝑝𝑒 in keys. For
the detailed algorithm, please refer to [4].

From the enumerated candidates using OTC, SSFS retains the
latest request 𝑟 for each session and discards the others, as the other
requests in the same session have IT connectivity to 𝑟 ′ through 𝑟 .
Then, for each 𝑟 in the remaining candidates, SSFS retrieves the
latest appended edge from LAE using key (𝑟 .𝑠𝑖𝑑, 𝑟 ′ .𝑠𝑖𝑑). If the edge
constitutes the IT connectivity between 𝑟 and 𝑟 ′ (i.e., the source
node of the edge succeeds 𝑟 ), SSFS discards 𝑟 . Finally, it generates
the incoming edges of 𝑟 ′ from the remaining candidates.

Figure 3 shows end-to-end time breakdowns of SSFS and two
optimized versions of RBSS. The dependency graph generation
times of RBSSs take up to over 85% of the total end-to-end times,
which are the bottlenecks, while those of SSFS are nearly negligible.
Furthermore, in our extensive experiments using two synthetic
benchmarks and a real-world customer workload varying capture
duration, the number of clients, and the number of table parti-
tions, SSFS shows robust performance considering both efficiency
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and compactness. Due to the space limitation, we omit them and
encourage readers to refer to our paper for in-depth analysis [4].

4 DEMONSTRATION

The demonstration showcases the end-to-end database replay work-
flow finding a performance regression, and visualizes the depen-
dency graph generation process to analyze its efficiency. A user
can either capture new workloads or use pre-captured ones. We
provide configurable test scripts for running a TPC-C workload
with a new configuration as well as pre-captured ones with various
configurations.

4.1 S1. DRS To Find Performance Degradation

In the first scenario, a user will have the experience of recognizing
the risks of system changes in advance during the testing process
through database replay. Consider that the user is a virtual service
provider running a wholesaler management system which pro-
cesses a TPC-C-like workload with an additional query accelerated
by a secondary index. The user is planning a software update; how-
ever, the query optimizer of the new version of DBMS generates a
suboptimal plan that does not leverage the secondary index for the
additional query. Through database replay with DoppelGanger++,
the user will detect performance regression for the additional query
in the test system before updating the production system.

A user will follow the database replay workflow through the
visualization tool in SAP HANA Cockpit, which is explained in Sec-
tion 2. For the performance comparison in the following scenario,
DoppelGanger++ uses both SSFS and RBSS. In order to simulate
the changes in the query optimizer, we force the optimizer not to
select the secondary index. Note that a user can apply other system
changes, such as changing system configurations.

Finally, the web interface will provide the analysis report, which
consists of four tabs: overview, load, performance comparison, and
result verification. The overview tab contains the summary of the
replay results. The performance comparison tab categorizes the
replayed requests by whether they perform comparably, faster, or
slower. Thus, a user will see the requests for the additional query
slowed down in the test system due to not using the secondary
index. The load tab shows the resource usage comparison, helping
the administrators find a new resource contention. The last tab
verifies each request produces the same result at capture and replay
times, helping to find bugs.

4.2 S2. Dependency Graph Generation Analysis

In this scenario, our web tool visualizes the dependency graph gen-
eration phase to analyze the compactness of the dependency graph
and the efficiency of the algorithm. The results for the captured
workloads in the demonstration system, including those in the first
scenario, are automatically imported.

The web tool provides three pages: 1) overview, 2) dependency
graph analysis, and 3) algorithm analysis. When a user selects a
workload, the overview page displays the summary of the cap-
tured workload information and visualizes the comparison of SSFS
and RBSS in terms of algorithm efficiency and graph compactness.
For algorithm efficiency, it visualizes the end-to-end times to exe-
cute capture-and-replay pipelines for both algorithms, with their

breakdowns including dependency graph generation and transitive
reduction times. For graph compactness, it visualizes the number of
produced edges, where the portions for redundant edges are high-
lighted. As a result, a user will see how much DoppelGanger++
boosts database replay using SSFS.

Figure 2a shows the dependency graph analysis page, which
visualizes dependency graphs to compare them and analyze the
redundancies. Since the dependency graph is too huge and complex
(i.e., containing more than millions of edges), one can adjust the
window size to visualize tens or hundreds of requests at a time. This
page shows three types of dependency graphs: 1) GIT[OT] (ours), 2)
GRBSS (generated by RBSS), and 3) Gcol (containing all redundant
edges). When the cursor hovers over each request, it displays its
detailed information, including the SQL statement. The redundant
edges are color-highlighted based on their types. Through this page,
a user can visually compare the dependency graphs and inspect the
redundant edges, figuring out that the two redundancy types are
dominant and DoppelGanger++ generates a compact one.

The algorithm analysis page displays live animations for the
dependency graph generation processes by SSFS and RBSS. The
current node and the candidate nodes to be scanned in the graph
are color-highlighted, and the statistics pane in Figure 2b shows
the numbers of processed nodes, scanned candidate nodes, and
generated edges. A user can adjust the playback speed or advance
the generation process to a desired position. For SSFS, its memo
tables are also displayed and updated according to the generation
process, and the cells related to processing the current node are also
highlighted. A user can see how each algorithm works, compare
their efficiency, and understand how SSFS avoids repetitive scans
and eliminates redundant edges.

5 CONCLUSION

DoppelGanger++ is a database replay system supporting fast de-
pendency graph generation. The proposed demonstration show-
cases a use case of DoppelGanger++ to avoid risks from system
changes and highlights its efficient dependency graph generation.
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