
OSSInsight: Scalable GitHub Analysis
Ahmad Ghazal

PingCAP
Sunnyvale, CA, USA

ahmad.ghazal@pingcap.com

Zhiyuan Liang
PingCAP

Sunnyvale, CA, USA
liangzhiyuan@pingcap.com

Sunny Bains
PingCAP

Sunnyvale, CA, USA
sunny.bains@pingcap.com

Hanumath Maduri
Workday

Pleasanton, CA, USA
hanumath.maduri@workday.com

ABSTRACT
GitHub is a platform hosting code, enabling collaboration, and
supporting version control for a global community of over 100
million developers. The need for free tools is crucial for researching
open-source software. Based on our research, we found out that
existing tools lack real-time GitHub data processing or have limited
functionalities.

This demonstration presents OSSInsight, an open source tool
for researching and analyzing GitHub repositories. We first present
the architecture of the tool including its access to nearly 7 billion
archived & real time data and how it is powered by TiDB. The
demonstration shows how OSSInsight provides analysis of GitHub
data along three dimensions: developers, repositories and orga-
nizations. All these analysis are based on generated SQL queries
submitted to TiDB database. TiDB possesses HTAP capabilities,
utilizing its row store for simple SQL queries while relying on its
column store for more complex queries. Users can view and edit
these SQL queries and also view their execution plan. Finally, OSSIn-
sight provides an innovative tool based on OpenAI, that conducts
data analysis using input in English text, yielding visual represen-
tations in the form of charts and graphs.

PVLDB Reference Format:
Ahmad Ghazal, Zhiyuan Liang, Sunny Bains, and Hanumath Maduri.
OSSInsight: Scalable GitHub Analysis. PVLDB, 17(12): 4321 - 4324, 2024.
doi:10.14778/3685800.3685865

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://ossinsight.io.

1 INTRODUCTION
GitHub, a central hub for open-source initiatives, supports 99% of
new software projects and is used by 70% of companies. In 2022,
over 52 million new open-source projects were initiated, underscor-
ing its crucial role in innovation and technological advancements.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685865

GitHub’s importance highlights the need for analysis tools in open-
source software research. However, tools like GitHub, GHArchive,
and CHAOSS may be proprietary, lack real-time processing, or have
limited visualization and natural language querying capabilities.

In this demonstration we present OSSInsight, an open source
tool that provides insights into GitHub. The main audience of the
tool are either developers and organizations researching the best
open source project that fits their needs or data analysts who wants
to get GitHub metrics.

Before we go over the demonstration details, we describe the
architecture of OSSInsight. The architecture covers the ETL process
leveraging archived and real time time data sources. TiDB is the
back-end which provides storage and compute through SQL queries.
OSSInsight is used through a user friendly GUI or a data explorer
with plain English text queries. The data explorer component calls
OpenAI through a prompt based on the GitHub schema and the
English based query. The data explorer gets the SQL back from
OpenAI, verifies it and send it to TiDB to process the user request.

The demonstration itself is the core part of this paper that goes
over different use cases including analysis with free text search,
analysis by repository, developer and organization. The demonstra-
tion also shows how users can view and edit the SQL behind these
reports and customize them if desired. Overall, this demo has three
main contributions to the database community: (1) free text search
to GitHub leveraging OpenAI for SQL generation and reinforced
learning for SQL syntax and semantics verification, (2) TiDB as
back-end is HTAP capable and can support simple and complex
queries issued by OSSInsight and (3) ability for users to write their
own SQL to query and analyze GitHub data.

The remainder of this paper is structured as follows: Section 2
reviews existing tools and their limitations in comparison to OSSIn-
sight. Section 3 outlines the overall architecture of OSSInsight. Our
primary contribution is detailed in Section 4, where we demonstrate
the features and user interaction with OSSInsight. Lastly, Section 5
discusses future work.

2 RELATEDWORK
As was discussed in section 1, it is crucial to have tools that mine
and analyze GitHub data. Examples of such analysis include: time
taken for pull requests, software popularity, and geography and
growth of new contributors [3, 5]. In this section, we list tools in
this area and show how OSSInsight addresses the limitations and
gaps in these tools.

4321

https://doi.org/10.14778/3685800.3685865
https://ossinsight.io
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685865
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Table 1: OSSInsight vs other tools

Product GitHub Realtime Data Visualisation Natural Lang Interface Custom SQL Open Source

OSSInsight Y Y Y Y Y
GitHub Innovation Graph N N N N N
CHAOSS Y Y N Y Y
LinearB Y Y N N N
GHArchive N Y N Y Y
HayStack Y Y N N N

Table 1 compares software development tools based on five cru-
cial metrics: Realtime data from GitHub, Visualization, Natural
language interface, Custom SQL, and Open Source. GHArchive
and GitHub Innovation Graph rely on historical events[1], while
CHAOSS and OSSInsight provide real-time analytics by combining
historical events and the GitHub stream API. Proprietary tools like
HayStack and LinearB are marketed as Engineering productivity
tools, pulling data from various sources. The data sources other
than GitHub are not considered due to their lack of relevance to
the assessment of open source health.

Another vital aspect is visualization support. CHAOSS relies on
a project called Grimoirelab [2] which uses Python libraries for
visualization, while proprietary tools like HayStack and LinearB
have visualization support limited to predefined metrics. Again
OSSInsight stands out by providing a native support to visualize
the result data.

Given the success of generative AI tools, supporting a natural
language interface for product usage is crucial. OSSInsight is the
only tool that supports querying GitHub using English.

All products have a back-end engine, but those with a relational
engine offer ad hoc querying support. The three open source tools
distinguish themselves with a relational database back-end, en-
abling ad hoc queries using ubiquitous SQL. Among them, OSSIn-
sight stands out using a HTAP scalable MySQL-compliant database
(TiDB) [4], providing an edge in real-time analytics on open source
projects.

In summary, all tools, excluding OSSInsight, have limitations
in one or more of the following: free text queries, real-time data
processing, visualization options, open-source, and custom SQL
query editing.

3 ARCHITECTURE
In this section, we describe the architecture of OSSInsight. Fig-
ure 1 depicts the different components of OSSInsight including data
sources, back-end, user interfaces and OpenAI as a third party tool.
Each component is described at a high level below.

TiDB
TiDB is a MySQL-compatible database that supports Hybrid Trans-
actional and Analytical Processing (HTAP) capabilities. OSSInsight
uses TiDB as a the back-end database to store data and perform
data queries. In terms of data analysis queries, TiDB supports accu-
rate secondary indexes for quick lookup like traditional row-based
databases, as well as columnar-storage for speeding up large-scale
data scans.

Figure 1: The Architecture of OSSInsight

Data Source
OSSInsight uses an Extract-Transform-Load (ETL) pipeline to re-
trieve GitHub event data from two main sources: GHArchive and
GitHub API. GHArchive provides archived historical event data
of GitHub from 2011 to today. Initially, historical data were im-
ported into the github_events table in TiDB, with hourly updates
through a CronJob.

In addition to the historical data, OSSInsight ETL captures real
time GitHub events using the GitHub API. The data is also cap-
tured in the same TiDB table github_events. Periodically, we also
use GitHub API to update users and repositories data into the
github_users and github_repos tables respectively.

Data Explorer
Data Explorer provides users with the feature to perform custom
queries in English. When Data Explorer receives the question from
the user, it builds a prompt and calls OpenAI. The prompt consists
of the relevant table schema and query and the result is a TiDB SQL
query. Finally, the data explorer sends the SQL to TiDB which has
the intelligence to decide whether to use the row-storage engine, the
column-storage engine, or both for query execution. We use multi-
agent reinforcement learning to verify and correct the OpenAI
results. Currently, we have 80% correctness (correct syntax and
semantics) rate for this feature.

4322

https://github.com/igrigorik/gharchive.org


Figure 2: Repository Analysis

Repository / User Metrics Service
The main user interface to OSSInsight is through the repository
/ user metrics service. This GUI service provides repository-level
metrics reporting for open source projects and individual-level
dashboards for open source community engagement, with built-in
parameterized SQL templates. It populates the SQL templates with
the query parameters from user interface to generate metrics SQL
and execute them on TiDB, and then visualizes the query results
on the front-end to provide users with intuitive charts.

OSSInsight also allows visualization of the SQL and its plan for
data explorer and the repository & user metrics service interface.
Users can also edit the SQL if necessary. This is more important for
the data explorer interface since OpenAI results could be inaccurate
and can be corrected directly by the user.

4 DEMO

Figure 3: Text Search SQL

The remainder of this section describes each use case, illustrating
some of user input and output that shows visualisations of metrics
and analysis results. For every detailed analysis, the system allows
the user to view the SQL (and its plan) that is used for pulling
the appropriate data for that specific analysis. Audience of the
demonstration can interact with the system through drop down
menus and free text queries under "Data Explorer".

Figure 4: Text Search Row Store Plan

Data Explorer
Data explorer allows users to query OSSInsight through text search.
For example "Top 3 ML repos by stars" (see screen shot in Figure 5)
represent a real life example of a user trying to find the best machine
learning platform for their project. The user starts with examining
top 3 common ML tools and do further analysis of each tool before
picking one of them for their solution. The query results in (1)
TensorFlow/TensorFlow, (2) HuggingFace/Transformers and (3)
Pytorch/Pytorch. As mentioned before, we use OpenAI for SQL
generation and we apply validation to the SQL before it is submitted
to TiDB. The SQL behind this query are shown in Figure 3.

OSSInsight operates within anHTAP framework, generating sim-
ple SQL queries to fetch individual developers or repositories, as
well as complex SQL queries to scan entire repositories or organiza-
tions. The above query involves a join between github_repo_topics
and github_repos tables on repo_id. The TiDB optimizer chose
TiKV (row store) to access both tables and used an index join as
shown in Figure 4. A more complex text query "top 50 repos by
stars" and the TiDB optimizer decided to use the column store (Ti-
Flash) in TiDB. The plan for the "top 50" is captured in Figure 6 and
shows github_repos is retrieved by the column store (TiFlash).

Another example that demonstrates varying complexities: com-
paring the queries "How many pull requests does PingCAP have?"
and "Identify the top 20 companies based on the number of pull
requests submitted in the last three months." We omit displaying
the SQL and the execution plan for these two queries due to space
constraints. However, to summarize, the first query is relatively
straightforward as it retrieves data for a single organization (Ping-
CAP) and a specific event type ("pull requests"). With appropriate
indexing, the row store can effectively handle this query. On the
other hand, the second query requires aggregating data from the
github_users table, which contains information on all companies.
The TiDB optimizer appropriately opted for the column store to
process this query.

Repository Analysis
This is available from the search window at the main page of OS-
SInsight. As a continuation of the use case in data explorer, we
compare TensorFlow and PyTorch repositories. The result shows
an overview and some details about these two repositories. Figure 2
is a screen shot of the summary results of TensorFlow and PyTorch
like stars (how many people bookmarked the project). It also dis-
plays other metrics like number of commits, issues, forks and pull
requests plus what development language is used.

The detailed results within repository analysis shows metrics
and charts. The key detailed metrics are:

• People: stargazers, issue creators and pull request creators.

4323



Figure 5: Data Explorer

Figure 6: Text Search Column Store Plan

• Commits: Commits & PushesHistory, lines of code changed
and commits time distribution.

• Pull Requests: pull request history and pull request time
cost.

• Issues:overview (number of issues, creators, comments and
comments).

The user can make a final choice of which ML tool to use based
on the above analysis considering popularity, number of contribu-
tors, number of issues, language used, .. etc. One good metric that
can be considered here is "language" with TensorFlow using C++
which is complex to use but had good performance. On the other
hand, PyTorch uses Python which is simpler than C++ but it is less
efficient.

SQL Visualization and Editing
The SQL editing option provided by OSSInsight is currently limited
to one table github_events with no other limitations. The SQL
follows the syntax of TiDB which is MySQL compatible.

In our demo, we tried this option starting from repository analy-
sis for "PingCAP/TiDB". The template is something like "SELECT *
FROM github_events WHERE repo_id = 41986369 LIMIT 1" which
lists a random GitHub event information for TiDB. We modified
it to "SELECT actor_login, count(*) FROM github_events WHERE
repo_id = 41986369 group by actor_login order by count(*) desc
limit 10" which finds the top 10 contributors to TiDB.

Developer Analysis
OSSInsight can also be used to analyze GitHub data by developer.
We tried the user "feross" as an example for this analysis and high
level results for this developer is shown as a table and includes:
stars for their repositories & themselves, how many repositories
this developer contributed to, how many issues they created, how
many pull requests they authored, how many code reviews they
conducted and how many lines of code they did.

The rest of the analysis drills down into each of the metrics. For
example, OSSInsight shows metrics for top 10 repositories "feross"
was involved in based on the size of their contribution.

Organization Analysis
Finally, OSSInsight has a feature to analyze organizations in GitHub.
We tried "Facebook/Meta" company. Similar to developer analysis,
OSSInsight displays summary statistics that include: number of
stars earned, number of reviews, number of issues and a list of new
participants for repositories related to the organization. Details of
these metrics are shown after the summary. For example, popularity
of the "Facebook/Meta" is illustrated by showing the star growth of
the company over time.

5 FUTUREWORK
In the future, we aim to enhance the user experience of the data
explorer by expanding the use of multi-agent reinforcement learn-
ing. Our goal is to achieve higher levels of executable queries and
correctness. Additionally, we are contemplating the utilization of
OSSInsight as a benchmark for Hybrid Transactional/Analytical
Processing (HTAP).

ACKNOWLEDGMENTS
The authors express gratitude for the support and guidance on the
architecture and functionalities of OSSInsight from Raymond Paik,
Lux Li, Wink Yao, and Ed Huang.

REFERENCES
[1] 2024. Analysing commits on GitHub by @.gouv.fr authors – Antoine Au-

gusti. https://blog.antoine-augusti.fr/2019/04/analysing-commits-on-github-
by-gouv-fr-authors/

[2] Santiago Dueñas, Valerio Cosentino, Jesus M. Gonzalez-Barahona, Alvaro del
Castillo San Felix, Daniel Izquierdo-Cortazar, Luis Cañas-Díaz, and Alberto Pérez
García-Plaza. [n.d.]. GrimoireLab: A toolset for software development analytics.
7, e601 ([n. d.]). https://doi.org/10.7717/peerj-cs.601

[3] Sean Goggins, Kevin Lumbard, and Matt Germonprez. 2021. Open Source Com-
munity Health: Analytical Metrics and Their Corresponding Narratives. In 2021
IEEE/ACM 4th International Workshop on Software Health in Projects, Ecosystems
and Communities (SoHeal). 25–33. https://doi.org/10.1109/SoHeal52568.2021.00010

[4] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: a Raft-based HTAP database. Proc. VLDB
Endow. 13, 12 (aug 2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[5] Slinger Jansen. 2014. Measuring the Health of Open Source Software Ecosystems:
Beyond the Scope of Project Health. Information and Software Technology 56 (11
2014). https://doi.org/10.1016/j.infsof.2014.04.006

4324

https://blog.antoine-augusti.fr/2019/04/analysing-commits-on-github-by-gouv-fr-authors/
https://blog.antoine-augusti.fr/2019/04/analysing-commits-on-github-by-gouv-fr-authors/
https://doi.org/10.7717/peerj-cs.601
https://doi.org/10.1109/SoHeal52568.2021.00010
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1016/j.infsof.2014.04.006

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	4 Demo
	5 Future Work
	Acknowledgments
	References

