
DBG-PT: A Large Language Model AssistedQuery Performance
Regression Debugger

Victor Giannakouris
Cornell University
Ithaca, NY, USA

vg292@cornell.edu

Immanuel Trummer
Cornell University
Ithaca, NY, USA
it224@cornell.edu

ABSTRACT
In this paper we explore the ability of Large Language Models
(LLMs) in analyzing and comparing query plans, and resolving
query performance regressions. We present DBG-PT, a query re-
gression debugging framework powered by LLMs. DBG-PT keeps
track of query execution instances, and detects slowdowns accord-
ing to a user-defined regression factor. Once a regression is detected,
DBG-PT leverages the capabilities of the underlying LLM in order
to compare the regressed plan with a previously effective one, and
comes up with tuning knob configurations in order to alleviate
the regression. By exploiting textual information of the executed
query plans, DBG-PT is able to integrate with close-to-zero im-
plementation effort with any database system that supports the
EXPLAIN clause. During the demonstration, we will showcase DBG-
PT’s ability to resolve query regressions using several real-world
inspired scenarios, including plan changes because of index cre-
ations/deletions, or configuration changes. Furthermore, users will
be able to experiment using ad-hoc, or predefined queries from
the Join Order Benchmark (JOB) and TPC-H, and over MySQL and
Postgres.

PVLDB Reference Format:
Victor Giannakouris and Immanuel Trummer. DBG-PT: A Large Language
Model Assisted Query Performance Regression Debugger. PVLDB, 17(12):
4337 - 4340, 2024.
doi:10.14778/3685800.3685869

1 INTRODUCTION
In this demo, we explore the abilities of Large Language Models
(LLMs) in comparing and reasoning about query plans, as well as
addressing query performance regressions. We present an LLM-
backed system, namely DBG-PT, that assists in debugging regressed
queries in a database system. The key intuition behind DBG-PT is
the fact that when a query regresses due to changes in its plan, we
can leverage information about a previous, efficient query plan to
understand why the latest plan leads to regression. Then, using this
knowledge, we can take actions to alleviate the regression, such as
providing appropriate hints to the optimizer. DBG-PT is built on
the understanding that an LLM, with its capability to interpret and
reason about arbitrary and unstructured textual data, represents a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685869

naturally efficient way to automate this diagnostic and optimization
process.

The process of examining and debugging query regressions is
notoriously hard, especially when the workload consists of lengthy
queries with multiple joins, as they result in complex query plans.
Executed query plans are insightful and contain a lot of valuable
information that a Database Administrator (DBA) can utilize to
understand and fix the root cause of a query regression, if possi-
ble. Usually, the first step towards debugging a query regression
is to compare the two plans of the regressed query: a previously
efficient query plan and the latest plan that was executed when
the regression was detected. By comparing the two query plans,
the user can make interesting observations about what caused the
regression. For instance, by examining two query plans, the user
can check whether the join order changed significantly, or when a
different join strategy was selected for the same join, for instance,
if a nested-loop join was replaced with a hash, or a sort-merge join.
Another approach would be to compare the optimizer’s estimated
row counts for the intermediate results with their actual row counts,
if this information is available. In case the error is high, that could
imply that the optimizer made incorrect join order and strategy
decisions due to cardinality estimation errors, a very common issue
in queries that include multiple joins and index scans [4]. Such
observations can be key in determining what caused a query regres-
sion and fixing it. For instance, if a newly added index is responsible
for a chain of changes in a query plan that used to run faster, then
it might make sense to use specific hints to instruct the optimizer
not to use this index for that query. If for some reason a query used
to be more efficient by using nested loops in previous executions,
the DBA can explicitly disable all the other join strategies for that
query, in order to force the optimizer to use nested loops only. How-
ever, the process of understanding these problems and taking the
required actions to diagnose and fix query regressions require pro-
found knowledge of database system internals, which DBAs have
obtained over years of experience. Even for an advanced user, com-
paring query plans might become a very tedious process, as their
complex structure makes it difficult for the human eye to identify
potential plan differences. The database research community has
been diligently working on automating the process of tuning data-
base systems, while a lot of works have shown promising results
on identifying query plan regressions due to index creations [1],
or mistakes made by learned query optimizers [8]. However, all
of these methods require substantial integration effort with the
database system, and time consuming training phases, making it
hard for a non-expert user to integrate them in their systems.
Large Language Models. The emergence of Large Language Mod-
els (LLMs) like ChatGPT since its first release in late 2022 has

4337

https://doi.org/10.14778/3685800.3685869
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685869

opened new avenues in leveraging AI to address complex challenges
across various domains, including database system tuning [6] and
code generation [7]. LLMs are exceptionally good at parsing vast
amounts of text, extracting relevant information, and providing
insightful suggestions, making them valuable tools for automat-
ing and enhancing database management tasks. When used as
agents, LLMs can eliminate the expensive training of the previously
machine learning-based solutions, as they can quickly return an
effective response after issuing a single API call, when the prompt
is properly structured with the right context.
LLM-Assisted Query Regression Debugging.We believe that
LLMs can be a natural solution when it comes to addressing query
plan performance regressions for the following reasons. First, we
observe that LLMs are very effective at identifying and reasoning
about structural changes between different query plans. For in-
stance, LLMs can easily catch differences in join order or strategy
changes, or access methods (e.g. index scans vs full table scans). Sec-
ond, having been trained on a vast amount of technical documents
crawled from the internet, LLMs can provide very accurate answers
when asked how to fix a query regression, provided they are given
the right context, in our case, two query plans. The fact that an LLM
has ingested data from sources that contain troubleshooting conver-
sations about real systems and problems, like StackOverflow make
them a great tool in resolving performance issues for a plethora of
well-known database systems. As a result, a regression debugging
tool built on top of an LLM can a a plug-and-play solution for most
of the popular database systems.

In this context, we introduce DBG-PT, a framework that uti-
lizes the power of LLMs to diagnose and fix query performance
regressions. DBG-PT leverages LLMs’ zero/few-shots abilities to
analyze extensive textual data, including system specifications and
query plan details, to diagnose the query regression root cause, and
provide a set of required actions in order to fix the regression, for
instance, by reverting the regressed plan to a previously effective
one. In contrast to the majority of the automated tuning solutions,
DBG-PT requires close-to-zero engineering effort to integrate with
new systems, as it is simply connected with any database system
compatible with the Python Database API Specification 1 and ex-
tracts the query plans by invoking the EXPLAIN clause, when it is
supported by the target system. Furthermore, DBG-PT requires
no retraining, or further adjustment in order to integrate with a
new database system and workload. Instead, DBG-PT simply in-
forms the LLM about the regression, the target database system
and information about the underlying infrastructure.

DBG-PT’s approach is simple, yet powerful; By keeping track
of different query execution instances, it alerts the end user if
a regression is detected. Upon the user’s request, DBG-PT will
automatically render a prompt which contains all the required
context for the LLM to resolve the query regression, including the
query plans, execution logs and hardware details. After sending
the generated prompt to the LLM, it retrieves a response which
highlights the differences between the efficient, and the regressed
query plan, a set of recommended tuning knobs to fix the regression,
and the LLM’s reasoning for the recommended knobs. DBG-PT is
inspired from the idea of our recent work on 𝜆-Tune [2], which

1https://peps.python.org/pep-0249/

exploits information from an input set of queries, in order to tune
an input database system in a workload-adaptive manner. Instead,
DBG-PT optimizes regressed queries, by solely focusing on a single,
regressed query and its query plan variations.

During demonstration, users will be able to experiment with
DBG-PT to resolve query regressions for various scenarios, includ-
ing regressions caused due to index creations, or configuration
changes, and over two popular database management systems, in-
cluding Postgres and MySQL. Furthermore, besides the uses cases
that we will provide, users will be encouraged to come up with
their own regression cases and explore DBG-PT’s ability to resolve
these regressions.

2 SYSTEM OVERVIEW
Figure 1 depicts DBG-PT’s architecture. Our system consists of the
following components.
Interactive Query Executor (IQE). This component is the first
point of interaction between DBG-PT and the end user. Via IQE,
the user is able to execute previously registered, or new ad-hoc
queries to the target system, and database. At the same time, the
user can also modify the tuning knobs for that query, and explore
the different generated plans by the query optimizer of the target
database. Once the user executes the query, the execution metrics
are stored in DBG-PT’s query metrics store, along with the query
plan information. Furthermore, the performance history of every
previously executed query can be investigated by the live perfor-
mance plots on top of the page (see Figure 2). This component
serves as a user-friendly point of interaction between the user and
the database system. For this demonstration purposes, we will be
using IQE in order to explore how the query optimizer behaves and
its produced plans given a query, and different tuning knob sets.
Regression Debugger. The Regression Debugger is responsible
for detecting query regressions, and generating the appropriate
prompt (by invoking the Prompt Generator) in order to attempt to
fix the regression. A regression is simply detected by comparing
the latest execution of the query with previous execution instances.
Let𝑇 (𝑞, 𝑡) the execution time of query 𝑞 at time 𝑡 . A query 𝑞 is clas-
sified as regressed when𝑇 (𝑞, 𝑡 ′) ≥ 𝜙𝑇 (𝑞, 𝑡), where 𝑡 ′ > 𝑡 the latest
execution timestamp of query 𝑞 and 𝜙 a user-defined regression
factor. In other words, a query is considered as regressed when it
becomes 𝜙 times slower. In case of a detected regression, DBG-PT
will obtain the two executed query plans at times 𝑡 and 𝑡 ′. Next, the
two query plans will be passed to the prompt generator, in order
to render them into a prompt, which will be used to obtain the
following three pieces of information, as depicted in Figure 3. First,
we ask the LLM to provide a summary of the plan differences, to get
a better understanding of what changed in the regressed query plan.
Next, we retrieve a set of recommended configurations to fix the
plan regression. In most of the cases, this will include knobs such
as optimization hints that attempt to revert the plan in its initial
state, before the regression. Finally, we ask the LLM to provide
the reasoning about the recommended configurations, and how
these are related to the two plans that we provide. This information
provides a better understanding of the differences between the two
plans, and how the recommended configurations can help in fixing
the query regression.

4338

Prompt Generation
The following are two different plans for the same query:
P1 = $Plan1, P2 = $Plan2
 
A regression is observed when switching from P1 to P2

The query run on $DBMS.

Suggest configuration recommendations to speed-up P2, or revert it
to P1, if possible.  
 
Your response should strictly consist of a list of SQL commands
compatible with $DBMS, and no additional text.
 
Your response should strictly follow the following JSON schema: {…}

{
 “plan_diff”: the plan differences,
 “recommendations”: the recommendations,
 “reasoning”: explanation
}

Response

DBMS
Query Executor (IQE)

QueryMetrics Store

Met
rics

Query Plan

Regression Debugger

Query Meta

Regressed Plan

Efficient Plan

LLM

Figure 1: DBG-PT

Prompt Generator. The prompt generator uses a base prompt
template. It takes as input two query plans, and the hardware spec-
ification of the system, and renders them into the final prompt to
be sent to the LLM to retrieve the three aforementioned pieces of
information, along with the configuration recommendations to fix
the query regressions.

3 DEMONSTRATION SCRIPT
Our demonstration script consists of the following parts. First, users
will be able to explore the available databases via the Interactive
Query Executor (IQE) component of our user interface. Through
this interface, users will be able to experiment with the following.
First, they will be able to pick an input system (MySQL, Postgres,
Spark SQL), database and workload, from our predefined library,
which includes the Join Order Benchmark (JOB) and TPC-H. Users
are welcome to experiment either using the predefined queries, or
create and register their own ad-hoc ones to DBG-PT. Next, users
will be able to experiment by modifying the tuning knobs for the
specific query and see how the plan changes when they change
the input knobs, for instance, by enabling or disabling specific join
algorithms, modifying optimizer constants (e.g. scan costs), and

enabling or disabling indexes. Next, they will be able to execute the
query and measure its performance. Each query execution will be
recorded in DBG-PT’s database, along with its performance, and
query execution plan. This way, users will be able next to compare
the performance of the query under different execution contexts.
This part of the demonstration will allow users to create their own
query regression use-cases, in order to test the effectiveness of
our LLM-assisted regression debugger in the latter demonstration
phases.

In the next phase, users will be able to use DBG-PT in order
to choose and debug pre-existing query regressions, that we will
have created beforehand. Users will be prompted to pick and debug
regressed queries from the following scenarios:
Scenario 1: Index-Related Regressions. In this scenario, users
will be provided with a set of query regressions related to index
availability. Two uses-cases will be provided in this scenario. In
the first case, there will be a set of queries which performance
eventually suffered because one or more indexes where dropped.
This scenario will demonstrate how DBG-PT utilizes the LLM in
order to compare the query plans, identify the missing index scans
in the latest plan and finally recommend creating the appropriate
indexes in order to restore the performance of the query. In the
second use-case, we will demonstrate DBG-PT’s ability to recover
from a query regression which happened because new indexes were
added to the database. Regressions of complex queries after index
creations are a common scenario, as they are making the query
optimizer’s task even more complex, due to higher cardinality es-
timation errors [1, 4]. In this use-case, we will demonstrate how
DBG-PT detects the occurrences of new index scans in the query
plan, and the corresponding plan changes (e.g. join strategies) and
its ability to recommend a set of configurations to revert to the
initial efficient query plan.
Scenario 2: Knob-Related Regressions. In this scenario we well
explore the use-case of query regressions due to the misconfigu-
ration of a tuning knob. For instance, one tuning knob that is set
globally because it benefits a subset of queries might cause another
subset of queries to regress, e.g. by disabling the nested-loop joins.
Users will be able to explore a set of regressed queries due to tuning
knob changes and examine the differences between the execution
times and structural differences among the different plans. Next, we
will demonstrate how DBG-PT can use the underlying LLM in order
to compare the two plans, identify the differences and recommend
a set of configurations that will fix the regression, by utilizing past
knowledge, i.e. the old, efficient query execution plan.
Scenario 3: QueryRuntimeErrors. In this scenario, wewill show-
case DBG-PT’s ability in resolving runtime errors by incorporating
query execution logs in the prompt. For instance, out-of-memory
(OOM) errors are a very common issue in Spark SQL, especially in
queries with multiple joins due to the exploding intermediate result
sizes. In this scenario, we will demonstrate DBG-PT’s effectiveness
in leveraging execution logs during prompt construction, and pre-
venting workers of crashing due to such errors by re-configuring
the driver node with the appropriate knobs.

4339

Figure 2: Regression Debugger: Performance Visualization

Figure 3: DBG-PT: Regression Debugging

4 CONCLUSIONS AND RELATEDWORK
Recently, there has been a significant interest in leveraging lan-
guage models for database system tuning. DB-Bert [6] offers a
reinforcement learning-based solution that extracts tuning recom-
mendations from the database manual. GPTuner [3] introduces a

Bayesian Optimization-based solution that extracts information
both from the manual and a LLM. Additionally, D-Bot [9] employs
an LLM-backed approach to detect and alleviate database anom-
alies, while Panda [5] focuses on performance debugging by provid-
ing troubleshooting recommendations based on execution metrics,
rather than query plans. To the best of our knowledge, DBG-PT is
the first approach to utilize LLMs for debugging regressed queries
directly using information from executed plans. Unlike previous
methods that primarily aim to optimize overall workload perfor-
mance by adjusting tuning knobs without leveraging query-specific
information, or at best use execution metrics as in Panda, DBG-
PT pioneers in comparing executed plans of the same query to
diagnose and fix performance regressions. Although DBG-PT is
in its early stages, it has already demonstrated promising capabil-
ities in automating query performance debugging. Through this
demonstration, we will illustrate how our approach simplifies the
complex task of debugging regressed query plans and showcases
its effectiveness in leveraging the underlying LLM to resolve query
regressions inspired by real-world scenarios.

REFERENCES
[1] Bailu Ding, Sudipto Das, RyanMarcus,WentaoWu, Surajit Chaudhuri, and Vivek R

Narasayya. 2019. Ai meets ai: Leveraging query executions to improve index rec-
ommendations. In Proceedings of the 2019 International Conference on Management
of Data. 1241–1258.

[2] Victor Giannakouris and Immanuel Trummer. 2024. Demonstrating 𝜆-Tune: Ex-
ploiting Large Language Models for Workload-Adaptive Database System Tuning.
Proceedings of the ACM SIGMOD (Accepted in the Demo-Track) (2024).

[3] Jiale Lao, Yibo Wang, Yufei Li, Jianping Wang, Yunjia Zhang, Zhiyuan Cheng,
Wanghu Chen, Mingjie Tang, and Jianguo Wang. 2023. GPTuner: A Manual-
Reading Database Tuning System via GPT-Guided Bayesian Optimization. arXiv
preprint arXiv:2311.03157 (2023).

[4] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How good are query optimizers, really? Proceedings of
the VLDB Endowment 9, 3 (2015), 204–215.

[5] Vikramank Singh, Kapil Eknath Vaidya, Vinayshekhar Bannihatti Kumar, Sopan
Khosla, Murali Narayanaswamy, Rashmi Gangadharaiah, and Tim Kraska. 2024.
Panda: Performance debugging for databases using LLM agents. (2024).

[6] Immanuel Trummer. 2022. DB-BERT: a Database Tuning Tool that" Reads the
Manual". In Proceedings of the 2022 International Conference on Management of
Data. 190–203.

[7] Immanuel Trummer. 2023. From bert to gpt-3 codex: harnessing the potential of
very large language models for data management. arXiv preprint arXiv:2306.09339
(2023).

[8] Lianggui Weng, Rong Zhu, Bolin Ding Di Wu, Bolong Zheng, and Jingren Zhou.
2023. Eraser: Eliminating Performance Regression on Learned Query Optimizer.

[9] Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. 2023. Llm as dba. arXiv preprint
arXiv:2308.05481 (2023).

4340

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Script
	4 Conclusions and Related Work
	References

