
Rodeo: Making Refinements for Diverse Top-kQueries
Felix S. Campbell

Ben-Gurion University of the Negev
felixsal@post.bgu.ac.il

Julia Stoyanovich
New York University
stoyanovich@nyu.edu

Yuval Moskovitch
Ben-Gurion University of the Negev

yuvalmos@bgu.ac.il

ABSTRACT
Database queries are commonly used to select and rank items. With
the increasing awareness of diversity, ensuring a diverse output
(i.e., the representation of different groups in the top-𝑘 positions)
becomes essential. To address this challenge, we present Rodeo, a
system that generates minimal modifications to queries to enhance
the diversity of the ranking they produce based on constraints over
groups’ representation in the top-𝑘 for various 𝑘 values.

PVLDB Reference Format:
Felix S. Campbell, Julia Stoyanovich, and Yuval Moskovitch. Rodeo:
Making Refinements for Diverse Top-k Queries. PVLDB, 17(12): 4341 -
4344, 2024.
doi:10.14778/3685800.3685870

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fsalc/rodeo.

1 INTRODUCTION
Decision-making based on ranking is commonly used in important
domains, such as hiring and school admission. It usually includes
choosing qualifying candidates based on specific criteria (e.g., for a
job) and ranking them using a quantitative measure to identify the
top candidates among those who qualify (e.g., for a job interview).
This process can be automated and represented using SQL queries,
with the WHERE clause used to select candidates who fulfill specific
criteria and the ORDER BY clause used to rank them. Further, it is
often required to impose cardinality constraints, over both the num-
ber of candidates to return (e.g., 𝑘 = 10 job applicants to interview)
and the presence of some demographic groups among the top-𝑘
candidates. Let us consider an example.

Example 1.1. Consider the hypothetical STEM-Stars foundation
that wishes to grant university scholarships to high-performing
students. They use a database of students seeking scholarships
provided by their schools, such as the one in Table 1. Students have
6 attributes: a unique ID, gender, family income, grade point average
(GPA), SAT score, and extracurricular activity (one of robotics (𝑅𝐵),
Science Olympiad (𝑆𝑂), Math Olympiad (𝑀𝑂), game development
(𝐺𝐷), and STEM tutoring (𝑇𝑈)).

STEM-Stars would like to award scholarships to strong students
(GPA above some threshold) who also participate in extracurriculars.
The selected students are then ranked by their SAT scores, and the
foundation grants funding to the best six, with additional funding

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685870

Table 1: Students

ID Gender Income GPA Activity SAT ↓
𝑡1 M Medium 3.7 SO 1590
𝑡2 F Low 3.8 SO 1580
𝑡3 F Low 3.6 GD 1570
𝑡4 M High 3.8 RB 1560
𝑡5 F Medium 3.6 MO 1550
𝑡6 F Low 3.7 SO 1550
𝑡7 M Low 3.7 RB 1540
𝑡8 F High 3.9 RB 1530
𝑡9 M High 3.7 RB 1520
𝑡10 F Low 3.8 RB 1490
𝑡11 M Medium 4.0 RB 1480
𝑡12 F Low 3.7 RB 1410

going to the top three students. Further, STEM-Stars wishes to
promote female students by awarding a proportional number of
scholarships by gender (i.e., top-6 should include at least three
women). Finally, to expand access to STEM education, they limit
the number of scholarships to students from high-income families
(i.e., the top-3 can include at most one high-income student).

To start, a STEM-Stars data analyst expresses the requirements
using query 𝑄 that selects students who have participated in ex-
tracurricular robotics and have a GPA of at least 3.7:

Q: SELECT * FROM Students
WHERE GPA >= 3.7 AND Activity = 'RB'
ORDER BY SAT DESC

Evaluating this query over the datasets in Table 1 produces the
ranking [𝑡4, 𝑡7, 𝑡8, 𝑡9, 𝑡10, 𝑡11, 𝑡12]. Observe that this result does not
satisfy the diversity constraints, because it includes only 2 women
(𝑡8 and 𝑡10) and more than 1 high-income student (𝑡4 and 𝑡8).

To fulfill the desired constraints, STEM-Stars may manipulate
the output, awarding 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8 and 𝑡10 with a scholarship,
where 𝑡4, 𝑡5 and 𝑡6 will get the extended grant. However, modify-
ing the results after they were computed may raise a procedural
fairness concern. Moreover, it may explicitly use information about
demographic or otherwise protected group membership, raising a
disparate treatment concern. Alternatively, 𝑄 may be refined by
adjusting the condition on Activity to include students involved
in Science Olympiad (𝑆𝑂), resulting in the following query 𝑄 ′:

Q': SELECT * FROM Students
WHERE GPA >= 3.7 AND (Activity = 'RB' OR Activity = 'SO')
ORDER BY SAT DESC

Note that the essence of the query (selecting students who have dis-
played interest in STEM) is maintained by the refined query, while
the constraints are satisfied as the top-6 tuples (𝑡1, 𝑡2, 𝑡4, 𝑡6, 𝑡7, and
𝑡8) consist of three women (𝑡2, 𝑡6 and 𝑡8) where the top-3 includes
only a single student (𝑡4) with high-income. In general, modifying
the selection conditions may be desirable as they could themselves
be the source of bias in the results. Furthermore, this approach is
usually legally permissible, essentially because it applies the same
evaluation process to all individuals.

4341

https://doi.org/10.14778/3685800.3685870
https://github.com/fsalc/rodeo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685870
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Contributions. To facilitate such a process, we present Rodeo
(Refinements fOr DivErse tOp-𝑘 queries), a system for refining
queries to improve the diversity of the ranking they produce. Rodeo
is an interactive system, allowing users to define queries and con-
straints over the top-𝑘 tuples for different values of 𝑘 in their output
using a dedicated interface.

Rodeo complements a recently published paper [3] by imple-
menting the methods proposed in that paper in an interactive sys-
tem. To the best of our knowledge, our work is the first to intervene
on the ranking process by modifying which items are being consid-
ered by the ranking algorithm. This admits a large class of ranking
algorithms while keeping the relative order of tuples consistent.
This—of course—does not come for free; the coarseness of refine-
ments means that there may be no refinement that produces a
satisfactorily diverse ranking. Therefore, Rodeo focuses on find-
ing a refined query that is within a specified maximum distance
from satisfying all of the constraints, if one exists. The system im-
plements a solution based on a reduction to mixed-integer linear
programming (MILP). Given an input, Rodeo formulates an MILP
instance and utilizes a state-of-the-art solver to derive a solution.
We will demonstrate the usefulness of Rodeo using three real-life
datasets, allowing the audience to formulate their own queries and
constraints and interact with Rodeo to generate refinements.

Related work. The notion of refining queries to satisfy a set of
diversity constraints was recently presented in [10, 11, 13], however,
this work focuses on constraints over the entire output, does not
consider the order of tuples, and cannot be easily extend to ranking
queries. The problem of ensuring diverse outputs in ranking queries
has receivedmuch recent attention from the research community [1,
4, 5, 9, 16, 17]. These works can be categorized as post-processing
methods (e.g., [5, 16, 17]) that directly modify the output, or in-
processing methods [1, 4, 9] that adjust the ranking algorithm or
modify items to produce a different score. Our solution can be
considered as an in-processing method, however, unlike existing
solutions, we assume that the ranking algorithm and the scoring
function are well-designed, and do not modify them.

2 TECHNICAL BACKGROUND
We next informally introduce the model and algorithms underlying
Rodeo. Please see Campbell et al. [3] for more details.

2.1 Model
Queries and refinements. We support the class of conjunctive

Select-Project-Join (SPJ) queries which have an ORDER BY 𝑠 clause
where 𝑠 is some function mapping a single tuple 𝑡 to a real-valued
score. A query may have numerical or categorical predicates which
filter its input to tuples matching these predicates. A numerical
predicate has the form 𝐴 ⋄𝐶 where ⋄ ∈ {<, ≤,=, >, ≥}, 𝐴 is some
attribute, and𝐶 ∈ R. A categorical predicate has the form

⋁︁
𝑐∈𝐶 𝐴 =

𝑐 where 𝐴 is some attribute and 𝐶 is a subset of constants of the
domain of𝐴. We use the notion of query refinement defined in [12].
For a numerical predicate, refinements are changes to the value
of the constant; for categorical predicates, a refinement is done by
adding or removing values from the original constant list. We say
that a query 𝑄 ′ is a refinement of query 𝑄 if 𝑄 ′ is obtained from 𝑄

by refining some predicates of 𝑄 .

Constraints. A group is a set of tuples all sharing the same value
for a given categorical attribute, e.g., Gender = 𝐹 is the group of
females and Gender = 𝐹 ∧ Income = 𝐿𝑜𝑤 is the group of females
with a low-income level. Imposing constraints on the cardinality
of tuples belonging to certain groups may be used to improve the
diversity of the outputs of queries, and such methods have been
studied in [10, 11, 13]. In the ranking setting, instead of specifying
these constraints over the entire output, we may specify these
constraints over the top-𝑘 tuples for multiple different values of
𝑘 . Our goal is to find minimal refinements to the original query
that fulfill a specified set of constraints, however, we note that the
notion of minimality may be defined in different ways, depending
on the user’s preferences, as we next demonstrate.

Example 2.1. Recall 𝑄 from Example 1.1. We may refine it by
relaxing the GPA requirement to 3.6 and including students who
participated in game development (𝐺𝐷), obtaining query 𝑄 ′′:

Q'': SELECT * FROM Students
WHERE GPA >= 3.6 AND (Activity = 'RB' OR Activity = 'GD')
ORDER BY SAT DESC

Similarly to the refined query 𝑄 ′, which adjust the condition on
Activity to include students involved in Science Olympiad (𝑆𝑂),
the top-6 students selected by 𝑄 ′′ (𝑡3, 𝑡4, 𝑡7, 𝑡8, 𝑡9, and 𝑡10) include
three women (𝑡3, 𝑡8, and 𝑡10), and there is only one high-income stu-
dent (𝑡4) among the top-3. While the predicates of𝑄 ′′ are intuitively
more distant from the original query than 𝑄 ′ (two modifications
compared to a single one), its output is more similar to the output
of the original query (the top-3 sets differ by one tuple).

To accommodate alternative query refinement objectives, as illus-
trated above, Rodeo supports three distance measures to determine
the minimality of a refinement query.

(i) Queries predicate distance. The first distance measure con-
siders the difference between the predicates of the query 𝑄 and a
refinement 𝑄 ′, thus preserving the essence of the original query 𝑄 .
For each numerical predicate 𝑛𝑄 = 𝐴 ⋄𝐶 it computes the distance
|𝑛𝑄 .𝐶 −𝑛𝑄 ′ .𝐶 |, where 𝑛𝑄 .𝐶 is the value of𝐶 in 𝑛𝑄 and 𝑛𝑄 ′ .𝐶 is the
value of𝐶 in𝑄 ′. The distances between all numerical predicates are
(normalized and) aggregated as

∑︁
𝑛𝑄

|𝑛𝑄 .𝐶−𝑛𝑄′ .𝐶 |
𝑛𝑄 .𝐶

. The distance
between categorical predicates is measured using Jaccard distance.
These values are then summed to formulate a distance measure.

(ii) Output set distance. An alternative distance measure Rodeo
supports considers the output of the query 𝑄 and a refinement 𝑄 ′

over the dataset 𝐷 using Jaccard distance over the top-𝑘 tuples.

(iii) Output order distance. Finally, Rodeo can take into account
the order of tuples in top-𝑘 item in the output to measure the
distance between queries using (a variant of) Kendall’s 𝜏 [8] that
was proposed by Fagin et al. [7] to compare ranked lists.

Given a query𝑄 over a dataset 𝐷 , along with a set of cardinality
constraints and a distance measure, the goal is to find a refinement
with minimal distance from 𝑄 while satisfying the constraints.
However, a refinement satisfying the constraints exactly may not
always exist.We therefore relax the requirement for strict constraint
satisfaction and instead focus on finding a refinement that comes
close to satisfying the constraints, i.e.,within an acceptable distance.
This allows us to provide results that are more useful to the user

4342

than simply stating its infeasibility. To measure the deviation from
the satisfaction of a given set of constraints, we leverage the notion
of themean absolute percentage error, as was done in [2], but modify
its definition as to not penalize some cases that are acceptable in
our setting.

2.2 MILP-based solution
Rodeo implements a mixed-integer linear program (MILP) solution
to generate refinements. Mixed-integer linear programming is a
model for optimizing a linear objective function subject to a set
of expressions (equalities and inequalities) limiting the space of
feasible assignments. At a high level, Rodeo utilizes data annota-
tions to depict potential refinements. These annotations serve as
variables in the MILP instance and enable the system to quantify
the deviation from the constraint set without having to reevalu-
ate refinements across the DBMS. A MILP instance solution is an
assignment to the variables in the expressions that corresponds
to a minimal refinement. While solving MILP instances can be ex-
pensive, we introduce a number of optimizations to make solving
instances created from datasets of real-life scale efficient in practice.
We next briefly explain the MILP instance construction using our
running example, see [3] for details.

Given a query 𝑄 and a dataset 𝐷 , for each categorical predicate
over an attribute 𝐴 in 𝑄 , we define a variable 𝐴𝑣 ∈ {0, 1} for each
value 𝑣 in the domain of 𝐴 in the 𝐷 . For instance, the variable
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 is generated in our running example. Intuitively, a so-
lution to the MILP where 𝐴𝑣 = 1 corresponds to a refinement that
includes the value 𝑣 in the categorical predicate over 𝐴. For each
numerical predicate 𝐴 ⋄𝐶 , we define a variable 𝐶𝐴,⋄ , and a set of
variables 𝐴𝑣,⋄ for each value 𝑣 in the domain of 𝐴 in 𝐷 . The value
of 𝐶𝐴,⋄ represents the value of the constant 𝐶 in the refinement
query, and the variables𝐴𝑣,⋄ are used to determine whether a given
tuple 𝑡 in 𝐷 (with the value 𝑣 in 𝐴) satisfies that predicate over 𝐴
in the refined query (i.e., whether 𝑣 ⋄𝐶𝐴,⋄). In our example, the
variables 𝐶𝐺𝑃𝐴,≥ and 𝐺𝑃𝐴3.8,≥ are generated. We then use these
annotations to formulate expressions in the MILP instance.

Example 2.2. Tuples with GPA = 3.8 satisfy a refinement’s con-
straint𝐺𝑃𝐴 ≥ 𝐶 if the value of𝐶 is at most 3.8. Namely,𝐺𝑃𝐴3.8,≥ =

1 ⇔ 3.8 ≥ 𝐶𝐺𝑃𝐴,≥ and 0 otherwise. We model this using the
following two expression: 𝐶𝐺𝑃𝐴,≥ + 5 · 𝐺𝑃𝐴3.8,≥ ≥ 3.801 and
𝐶𝐺𝑃𝐴,≥ − 5 · (1 − 𝐺𝑃𝐴3.8,≥) ≤ 3.8. We add a small constant to
3.8 in the first expression in order to relax the inequality as MILP
expressions do not support strict inequalities. 𝐺𝑃𝐴3.8,≥ is multi-
plied by 5—a value larger than the possible values of 𝐶𝐺𝑃𝐴,≥ (a
constant known as “big M” in MILP modeling). Intuitively, the first
expression ensures that 𝐺𝑃𝐴3.8,≥ is 1 if 3.8 ≥ 𝐶𝐺𝑃𝐴,≥ and the sec-
ond expression is used to ensure that𝐺𝑃𝐴3.8,≥ is 0 if 3.8 ≱ 𝐶𝐺𝑃𝐴,≥ .

We use a variable 𝑟𝑡 to denote the existence of a tuple 𝑡 in the
output of a refinement query and a variable 𝑠𝑡 to indicate the posi-
tion of 𝑡 in the output. We utilize the data annotations to determine
whether a tuple satisfies the selection conditions of the refinement.
Consider for instance the tuple 𝑡2 in Table 1. Intuitively, assignment
of 1 to the variables 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 and 𝐺𝑃𝐴3.8,≥ corresponds to a re-
finement that includes 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑆𝑂 in the categorical predicates
and that 3.8 ≥ 𝐶𝐺𝑃𝐴,≥ , namely, 𝑡2 satisfies its selection conditions.
We construct the expression 0 ≤ 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑂 +𝐺𝑃𝐴3.8,≥ −2 ·𝑟𝑡2 ≤ 1

to model this. The position of 𝑡2 in the ranking depends on the exis-
tence of tuples ranked better than it in the output. This is modeled
using the expression 1+ 12 · (1− 𝑟𝑡2) + 𝑟𝑡1 = 𝑠𝑡2 . In the case of 𝑡2, its
position depends on the existence of 𝑡1 in the output (represented
with 𝑟𝑡1 in the expression). If 𝑡2 is not in the output, we set 𝑠𝑡2 to a
value larger than a refinement’s largest possible output size (12 in
our example). I.e., if 𝑟𝑡2 = 0 then 𝑠𝑡2 = 13.

For each constraint on the top-𝑘 over a group𝐺 , we use a variable
𝑙𝑡,𝑘 to indicate whether a tuple 𝑡 appears in the top-𝑘 ranked output
of the corresponding refinement query, and 𝐸𝐺,𝑘 to represent the
number of tuples from 𝐺 in the top-𝑘 that need to be added (or
removed) to satisfy the constraint. In our example, 𝑙𝑡2,6 is used to
indicate whether 𝑡2 is in the top-6 tuples, and we construct the
expression 𝑠𝑡2 + 25 · 𝑙𝑡6,6 ≥ 6.001 and 𝑠𝑡2 − 25 · (1 − 𝑙𝑡6,6) ≤ 6 to
model 𝑙𝑡2,6 = 1 ⇔ 6 ≥ 𝑠𝑡2 and 0 otherwise, similarly to Example 2.2.
𝑙𝑡2,6 is then used to determine the value of 𝐸Gender=‘Female′,6 which
corresponds to how many additional women should appear in the
top-6: 𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 0 and 𝐸𝐺𝑒𝑛𝑑𝑒𝑟=‘𝐹𝑒𝑚𝑎𝑙𝑒′,6 ≥ 3 − (𝑙𝑡2,6 +
𝑙𝑡3,6 + 𝑙𝑡5,6 + 𝑙𝑡6,6 + 𝑙𝑡8,6 + 𝑙𝑡10,6 + 𝑙𝑡12,6). Note that 𝑡2, 𝑡3, 𝑡5, 𝑡6, 𝑡8, 𝑡10 and
𝑡12 are all the tuples of the group Gender = ‘Female’. Finally, we
combine the 𝐸𝐺,𝑘 values in an expression that bounds their average
by the maximum average deviation specified in the input.

3 SYSTEM OVERVIEW
Users interact with Rodeo using a dedicated web-based user inter-
face implemented with React1. Rodeo’s back-end is implemented
in Python. It uses DuckDB [14] and the IBM CPLEX 2 MILP solver.

Input configuration. The input generation is done in three steps.
The first step includes the data selection and query definition.
Rodeo offers an easy-to-use interface to build queries by defin-
ing conditions over the attributes and specifying an expression that
is used to rank the tuples. The generated query is serialized to SQL
and displayed to the user. The next step includes the definition of
cardinality constraints. The user can define groups by selecting
attributes and choosing a value from within their domain in the
database. For each constraint, the user needs to indicate a 𝑘 value
and whether it is a lower or upper bound constraint. In order to
aid the user in choosing reasonable constraints, Rodeo provides
a sketch of the distribution in the database for attributes where
constraints are desirable. In the final step, the user configures the
maximum average deviation from the set of cardinality constraints
and sets the desired distance metric as shown in Figure 1. In order
to understand the impact of the deviation, Rodeo displays the effect
on the possible number of tuples in each group in the constraint
list in the refined query.

Output overview. Upon submitting a request for refinement, the
system communicates with the DBMS for query evaluation and the
data annotation generation for theMILP instance. Rodeo constructs
the MILP instance and utilizes the MILP solver to find a minimal
assignment and returns the corresponding refinement. After the
request for refinement has been processed by the back-end, the
results are presented to the user as depicted in Figure 2. A number
of features have been developed to assist the user in interpreting

1https://react.dev
2https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

4343

https://react.dev
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

Figure 1: Input screen

the result, including highlighting tuples added/removed, displaying
the membership of tuples to relevant groups, and a depiction of
how close each constraint is to being satisfied.

4 DEMONSTRATION
Wewill demonstrate the functionality of Rodeo using three real-life
datasets: (1) High-School Students [6], consisting of 649 students
from two Portuguese high schools with demographic information,
grades, and social life data; (2) Astronauts3, a dataset with back-
ground and careers information of 357 NASA astronauts; and (3)
Law Students [15], containing demographic information and per-
formance of 21,790 law students. We will let the audience specify
queries, constraints, and deviation values and observe refinements
produced by the system. The users will be able to interact with
Rodeo to explore the results of the refinement and modify different
steps of the pipeline to understand their effect on the output.

Demonstration Scenario. Let us consider the High-School Stu-
dents dataset and play the role of STEM-Stars, selecting students to
receive scholarships, as discussed in Example 1.1 in the Introduction.
We define three requirements to be considered for the scholarship:
(i) participation in extracurricular activities, (ii) at least 5 hours
of weekly study time, and (iii) selecting their school for its course
offerings (as opposed to, e.g., location). We rank the students based
on their final grades and grant scholarships to the top-50, and ex-
tended scholarships to the top-20. We then define constraints. To
ensure equal access to higher educational opportunities, we aim
to allocate half of the extended grants to students with a parent
lacking higher education and half of the total scholarships to rural
and/or female students (as shown in Figure 1).

The query derived from our original requirements does not sat-
isfy the constraints and so we use Rodeo to refine it. We first
consider the most-similar-query distance measure and try to refine
the query. The system indicates that no refinement can perfectly
satisfy the constraints. We may compromise on the constraint sat-
isfaction by increasing the maximum average deviation to obtain
refinements that are close to satisfying them. By doing so, Rodeo
is able to produce a refinement which reduces the study time to at
least 2 hours of weekly study time (the result shown in Figure 2).

While this query is close to the original query, we observe that
ten students who were originally slated to receive scholarships no

3https://www.kaggle.com/datasets/nasa/astronaut-yearbook

Figure 2: Displaying results of the refinement process

longer would. We can ask Rodeo for a refinement whose output is
most similar to the original, and obtain one that differs by only one
student compared with the original query. This refinement is similar
to the original query, omitting the requirement to participate in
extracurricular activities. Interactingwith Rodeo helps the user find
a refinement that best aligns with their preferences and evaluate
the trade-off between query refinement and constraint satisfaction.

ACKNOWLEDGMENTS
This research was partially supported by the Israel Science Foun-
dation grant 2121/22, the Frankel Center for Computer Science at
BGU, and NSF Awards No. 2326193 and 2312930.

REFERENCES
[1] Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, and Gautam Das. 2019. De-

signing Fair Ranking Schemes. In ACM SIGMOD.
[2] Matteo Brucato, Azza Abouzied, and Alexandra Meliou. 2014. Improving package

recommendations through query relaxation. In Data4U@VLDB. ACM.
[3] Felix S. Campbell, Alon Silberstein, Julia Stoyanovich, and Yuval Moskovitch.

2024. Query Refinement for Diverse Top-k Selection. Proc. ACM Manag. Data 2,
3, Article 166 (May 2024), 27 pages. https://doi.org/10.1145/3654969

[4] L. Elisa Celis, Anay Mehrotra, and Nisheeth K. Vishnoi. 2020. Interventions for
ranking in the presence of implicit bias. In FAT* ’20. ACM.

[5] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. 2018. Ranking with
Fairness Constraints. In ICALP (LIPIcs), Vol. 107.

[6] Paulo Cortez. 2014. Student Performance. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5TG7T.

[7] Ronald Fagin, Ravi Kumar, and D. Sivakumar. 2003. Comparing Top k Lists. SIAM
J. Discret. Math. 17, 1 (2003).

[8] M. G. Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1-2
(1938).

[9] JonM. Kleinberg andManish Raghavan. 2018. Selection Problems in the Presence
of Implicit Bias. In ITCS (LIPIcs), Vol. 94.

[10] Jinyang Li, Yuval Moskovitch, Julia Stoyanovich, and HV Jagadish. 2023. Query
Refinement for Diversity Constraint Satisfaction. PVLDB 17, 2 (2023).

[11] Jinyang Li, Alon Silberstein, Yuval Moskovitch, Julia Stoyanovich, and H. V.
Jagadish. 2023. ERICA: Query Refinement for Diversity Constraint Satisfaction.
PVLDB 16, 12 (2023).

[12] ChaitanyaMishra and Nick Koudas. 2009. Interactive query refinement. In EDBT.
[13] Yuval Moskovitch, Jinyang Li, and H. V. Jagadish. 2022. Bias analysis and mitiga-

tion in data-driven tools using provenance. In TaPP. ACM.
[14] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical

Database. In SIGMOD. ACM.
[15] Linda F Wightman. 1998. LSAC National Longitudinal Bar Passage Study. LSAC

Research Report Series. (1998).
[16] Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. 2019. Balanced Ranking with

Diversity Constraints. In IJCAI, Sarit Kraus (Ed.). ijcai.org.
[17] Ke Yang and Julia Stoyanovich. 2017. Measuring Fairness in Ranked Outputs. In

SSDBM. ACM.

4344

https://www.kaggle.com/datasets/nasa/astronaut-yearbook
https://doi.org/10.1145/3654969

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Model
	2.2 MILP-based solution

	3 System overview
	4 Demonstration
	Acknowledgments
	References

