
UniView: A Unified Autonomous Materialized View Management
System for Various Databases

Zhenrong Xu, Pengfei Wang
Zhejiang University
Hangzhou, China

{xuzhenrong,wangpf}@zju.edu.cn

Guoze Xue, Qitong Yan
Zhejiang University
Hangzhou, China

{xuegz,qitong.yan}@zju.edu.cn

Shenghao Gong, Yelan Jiang
Zhejiang University
Hangzhou, China

{gongshenghao,jiangyelan}@zju.edu.cn

Yuren Mao, Yunjun Gao
Zhejiang University
Hangzhou, China

{yuren.mao,gaoyj}@zju.edu.cn

Shu Shen, Wei Zhang, Dan Luo
Huawei

Hangzhou, China
{shenshu,zhangwei09,luodan2}@huawei.com

Lu Chen
Zhejiang University
Hangzhou, China
luchen@zju.edu.cn

ABSTRACT
Materialized views (MVs) are critical for improving query perfor-
mance of database systems, especially in online analytical process-
ing (OLAP) databases. Typically, MVs are maintained by DBAs,
which relies on prior knowledge and manual operations. Recently,
autonomous solutions are designed for specific databases. How-
ever, a data warehouse for OLAP is typically hierarchical, which
uses different database engines at different stages. Hence, existing
methods have limitations in terms of autonomy and unification to
support practical applications.

Motivated by these, we develop UniView, a unified autonomous
materialized view management system that supports various popu-
lar databases, including Spark SQL, PostgreSQL, and ClickHouse.
Moreover, we provide a cross-platform web user interface, where
users can carry out the process of materialized views and evaluate
the optimization performance. In the demonstration, we show that
UniView is user-friendly and can achieve superior performance in
the practical industry scenarios.

PVLDB Reference Format:
Zhenrong Xu, Pengfei Wang, Guoze Xue, Qitong Yan, Shenghao Gong,
Yelan Jiang, Yuren Mao, Yunjun Gao, Shu Shen, Wei Zhang, Dan Luo,
and Lu Chen. UniView: A Unified Autonomous Materialized View
Management System for Various Databases. PVLDB, 17(12): 4353 - 4356,
2024.
doi:10.14778/3685800.3685873

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ZJU-DAILY/UniView.

1 INTRODUCTION
Materialized views (MVs) are of critical importance to the query
performance of database systems. As shown in Figure 1, we can
materialize a view to speed up the query process. In online analyti-
cal processing (OLAP) databases, many SQL queries share common

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685873

OrderKey CustKey TotalPrice OrderDate Name Address Zipcode
0001 0001 10.0 09152022 A E 310024

0002 0002 100.0 09152022 B F 310023
0003 0004 50.0 09152022 C G 310024

0004 0003 2000.0 09152022 D H 310020

Select Order.TotalPrice
From View
Where Zipcode=310024

Select Order.TotalPrice
From Orders, Custormers
Where Oders.CustKey = Custormers.CustKey
AND Zipcode=310024

View

Figure 1: An example of materialized views.

subqueries and there are lots of redundant computations among
these queries. Materializing views on these subqueries can avoid
redundant computation and improve query performance, which is
a space-for-time trade-off principle. Therefore, it is vital to select
the optimal MVs that can bring the most query performance im-
provement within a space budget. For example, in Amazon Redshift,
automated materialized views are a powerful tool for improving
query performance.

Most existing methods rely on DBAs to generate and maintain
MVs [3]. Nevertheless, these methods require prior knowledge and
manual operations, which are costly, and thus, cannot efficiently
and effectively support large-scale databases. Motivated by this,
autonomous MV selection methods are proposed recently. The MV
selection process within a space budget can be regarded as a 0-
1 integer linear programming (0-1 ILP) problem. Solving 0-1 ILP
is too expensive for large workloads since the complexity of the
0-1 ILP approach is 𝑂 (2𝑛). To efficiently solve the MV selection,
two lines of methods exist. One line of MV selection methods is
heuristics, such as the greedy strategy [1, 2]. Another line of studies
uses reinforcement learning (RL) [3, 4, 7, 10] or graph algorithm [5]
to solve the 0-1 ILP problem faster.

There exist many works[3, 4, 6, 7, 9–11] that leverage ML meth-
ods to solve database problems, indicating a growing trend.

However, existing automatic MV selection methods are designed
for specific database systems, e.g., DQM [6] designed for Spark
SQL, AutoView [3] designed for PostgreSQL,DBMind [11] designed
for OpenGauss, and SOFOS [8] designed for knowledge graphs.

4353

https://doi.org/10.14778/3685800.3685873
https://github.com/ZJU-DAILY/UniView
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685873
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Cost
Workload

I.MV GenerationDatabase Engine II.Cost Estimation

 III.MV Recommend IV.MV Rewriting

DNN
Training

DNN
Testing

Materialize Rewriting

RL Greedy
Strategy

AST

Figure 2: UniView system architecture. Figure 3: MV generation algorithm.

Their customized design makes them highly coupled and hard to
migrate to other databases. In real life applications, different types of
database systems are typically used at different stages. For example,
a data warehouse hierarchical uses different database engines (e.g.,
Spark SQL and Clickhouse) at different stages for decision-making.
Hence, a unifiedmanagement system is preferred to support various
popular databases while materializing views autonomously.

In this demonstration, we developUniView, aunified autonomous
materialized viewmanagement system for various databases. Specif-
ically, UniView consists of four phases: (i) MV Generation aims to
parse the queries and generate candidate views; (ii) Cost Estimation
utilizes the deep network to estimate the cost of queries and MVs;
(iii) MV Recommend aims to recommend the optimal MVs within
a space budget based on the cost; and (iv) MV Rewriting aims at
rewriting the query using the most appropriate views. UniView
supports three different types of database systems, i.e., Spark SQL,
PostgreSQL and ClickHouse. We also provide a cross-platform web
UI, where users can submit queries and get recommended views
to materialize. The web UI can demonstrate the difference in ex-
ecution performance of queries with/without materialized views
so that users are able to understand better how UniView improves
the query performance. Moreover, UniView has been deployed in
the Huawei Consumer Business Group (CBG) to manage materi-
alized views for query performance improvement. We summarize
the contributions as follows:

• We demonstrate UniView, a unified autonomous materi-
alized view management. To the best of our knowledge,
UniView is the first autonomous materialized view manage-
ment supporting various popular databases simultaneously.

• We implement a cross-platform web UI to interact with
users and demonstrate the improvements brought by Uni-
View. We have open-sourced UniView, and it is available
at GitHub https://github.com/ZJU-DAILY/UniView.

• UniView has been deployed in Huawei CBG to improve
query efficiency. Our preliminary results show that Uni-
View is able to reduce query execution time using recom-
mended materialized views, which verifies the effectiveness
of UniView in the real-world industry scenario.

The rest of the paper is organized as below. Section 2 presents
system overview. Section 3 provides demonstration overview. Sec-
tion 4 makes conclusions with promising future directions.

2 SYSTEM OVERVIEW
We first offer some preliminaries of UniView, and then, we present
the system architecture and a detailed workflow of UniView.

2.1 Preliminaries
We first introduce the query tree to represent a SQL query, based
on which, materialized view management is present.

Query Tree.Given a SQL query 𝑞, we parse it as a query tree (ab-
stract syntax tree, AST). Each subtree rooted at a node corresponds
to a subquery, and each node indicates an operator. All subqueries
except the leaves in the query tree can be materialized as views.

Materialized View Management. Given a query workload 𝑄 ,
there exists a setV of candidate MVs. It is vital to select a subset
𝑉 ∗ ⊆ V to materialize within a given space budget 𝜏 , which can
minimize the total execution time of the query workload.

2.2 Workflow
Figure 2 illustrates the overall system architecture of UniView. It
is composed of four phases, namely, (i) MV generation, (ii) cost
estimation, (iii) MV recommend, and (iv) MV rewriting.

MVGeneration aims to find common subqueries for generating
candidate MVsV . First of all, we parse all SQL queries in the query
workload 𝑄 as query trees. Common subqueries are the equivalent
subtrees among different query trees of queries. After finding all
common subqueries, we are able to generate V . Specifically, we
compute the qualities of all common subqueries. The qualities are
formulated as the weighted sum of some important factors, e.g., the
number ofMV that matched the original queries, the size of the table
that the MV contains, and the number of predicates. After that, the
common subqueries with high qualities will be selected as candidate
MVs V . Our UniView supports three popular databases, including
Spark SQL, PostgreSQL, and ClickHouse. Figure 3 illustrates the
abstract code of MV generation for Spark SQL, PostgreSQL, and
ClickHouse. Note that, since execution plan structures and operator
types generated by different database engines are different, it is
required to customize the analysis of the execution plans for the
three databases.

Cost Estimation aims at conducting cost estimation to estimate
the benefit, including the execution time and the space cost. The
benefit estimation is the difference between the cost of a query
and the corresponding rewritten query. We also estimate the space
cost (i.e., storage cost) of each MV candidate. We adopt a deep

4354

https://github.com/ZJU-DAILY/UniView

(a) Parameter Configuration (b) MV Process Tracking

(c) MV Results Visualization (d) MV Results Evaluation

Figure 4: UniView visualization.

neural network (DNN) to predict the cost. The DNN takes in two
parts of information: i) execution plans of queries and MVs, and
ii) metadata. In particular, the metadata includes the schema of
input tables (e.g., table names, column names, and column types)
and the statistics of input tables (e.g., the number of tables and the
number of columns).// The DNN is trained in a regressive manner
and we use some actual cost as ground truth to train our model.
Specifically, we execute several (e.g., 100) rewrite queries to get
the actual execution time cost. And we materialize several MVs to
get the actual space cost. After training, we predict the cost of all
rewrite queries and all MVs.

MV Recommend aims to select a subset𝑉 ∗ ⊆ V to materialize
when given a space budget 𝜏 . Our current implementation develops
two selection strategies: reinforcement learning (RL) and greedy
algorithm. Based on the results of cost estimation, we can get the
benefit and the storage cost of each view. As mentioned before,
the MV selection process within a space budget can be regarded
as a 0-1 integer linear programming (0-1 ILP) problem. RL is an
efficient method to solve 0-1 ILP, which considers the global opti-
mal solution and needs a training process. Let 𝑒𝑖 𝑗 ∈ {0, 1} denotes
whether we use 𝑣 𝑗 ∈ V to rewrite 𝑞𝑖 ∈ 𝑄 , 𝑥𝑖 ∈ {0, 1} represents
whether 𝑣 𝑗 will be materialized, and 𝜏 is the space budget. We op-
timize: argmax𝑒𝑖 𝑗

∑ |𝑄 |
𝑖=1 B (𝑞𝑖 ,𝑉𝑖), s.t.,

(∑ |V |
𝑗=1 𝑥 𝑗

��𝑣 𝑗 ��) ≤ 𝜏 , where B

denotes the benefit, 𝑉𝑖 =
{
𝑣 𝑗 | 𝑒𝑖 𝑗 = 1, 𝑗 ∈ [1, |V|]

}
,∀𝑖 ∈ [1, |𝑄 |],

and 𝑥 𝑗 = max
{
𝑒𝑖 𝑗 | 𝑖 ∈ [1, |𝑄 |]

}
,∀𝑗 ∈ [1, |V|]. The greedy algo-

rithm iteratively selects a view with largest benefit considering the
local optimal solution, and hence, its execution time is very short.

MV Rewriting aims at rewriting SQL queries using the rec-
ommended MVs during the optimization phase of the execution
plan. Execution plans are represented as query trees. We match the
execution plan of the query and MVs in three parts: i) input (i.e.,
tables they used); ii) intermediate processing (e.g., the conditions of
join and filter); and iii) output (e.g., projection and aggregation). If
the matching is successful, we will rewrite this part of the execution
plan with the execution plan of the MV.

3 DEMONSTRATION OVERVIEW
UniView is built as a cross-platform web-based application, where
users can submit their queries and get recommended views to ma-
terialize. Figure 4 shows the main interfaces of UniView, including
parameter configuration, MV process tracking, MV results visual-
ization, and MV result evaluation.

Parameter Configuration. First of all, a user needs to config-
ure parameters and submit queries before materializing views. As
depicted in Figure 4(a), a user can submit their queries by clicking

4355

Figure 5: An example of candidate materialized view.

the "submit queries" button. In addition, the users also need to in-
put some important hyper-parameters, e.g., selecting a database
engine and a suitable recommend method. UniView provides a de-
tailed explanation of parameters and their default values to simplify
parameter configuration. Since the target group of UniView may
include both domain experts and ordinary users, UniView provides
two options for the parameter configuration: (i) domain experts can
configure all parameters manually; (ii) ordinary users only need to
select the engine of the database, and other parameters can use the
default values.

MVProcess Tracking. After the parameters are configured, the
user can click the "Start" button to start materialized view manage-
ment. Note that, the user can click the "Pause or Continue" button
to pause the process. The process is dynamic and purely automatic,
which includes four pipelined modules as detailed in Section 2, i.e.,
MV generation, cost estimation, MV recommend, and MV rewriting.
As shown in Figure 4(b), the detailed information is reported as logs
in real-time. The progress of the current execution is displayed on
the progress bar. After each stage, the user can obtain intermediate
results and download them, e.g., candidate materialized view. Fig-
ure 5 provides an example of candidate materialized view, which
can be downloaded for further analysis. At the same time, the user
can monitor the real-time changes in CPU and memory along with
the MV process. Finally, the user will get recommended views to
materialize when four modules have been executed.

MVResults Visualization. This result visualization can demon-
strate the difference in execution performance of querieswith/without
materialized views, so that users are able to understand better how
UniView improves the query performance. Queries will be rewritten
by the recommended MVs. We present the results in four aspects (as
depicted in Figure 4(c)) to help users understand the performance.
"Benefit" denotes the query time reduction ratio brought by the
recommended MVs and "Coverage" represents the proportion of
queries that can be rewritten by the recommended MVs. "Execu-
tion time and result" show the execution performance of queries
with/without materialized views. We visualize the query plan of the
query and its corresponding MV in "Query plan" using pev21. Users
can see the overall performance brought by MVs, as well as the
find-grained impact of each recommended MV. Besides, we have
1https://github.com/dalibo/pev2

deployed UniView in Huawei CBG and conducted the preliminary
experimental evaluation. The results show that UniView can reduce
query time by 85.22% with a coverage of 51.02%.

MV Results Evaluation. We also provide "MV Results Eval-
uation" page (as depicted in Figure 4(d)) to better manage MVs.
On this page, we will demonstrate the most recent view recom-
mendation results and past view recommendation results. On the
one hand, for the same query workload, users can easily know the
performance of the MVs under different parameter configurations
to choose the best parameter configuration. On the other hand,
queries sometimes change little in some scenarios, hence, users
can reuse existing MVs without any computational cost to improve
query performance.

4 CONCLUSION
In this demonstration, we present a unified autonomous materi-
alized view management system, termed as UniView. UniView is
able to provide views with high quality and help users to speed up
the query execution time. Compared with existing approaches, Uni-
View is more practical as it supports automatic MV management
on multiple database engines (including Spark SQL, PostgreSQL,
and ClickHouse). We also provide a cross-platform web UI, where
users can submit queries and get recommended views to material-
ize. UniView has been deployed in the Huawei Consumer Business
Group (CBG) to manage materialized views for query performance
improvement. In the future, it is interesting to enhance the incre-
mental materialized views using promising AI technology.

ACKNOWLEDGMENTS
This work was supported in part by the NSFC under Grants No.
(62102351, 62025206, U23A20296). Lu Chen is the corresponding
author of the work.

REFERENCES
[1] Rafi Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. 2020. Auto-

mated generation of materialized views in oracle. PVLDB 13, 12 (2020), 3046–
3058.

[2] Yue Han, Chengliang Chai, Jiabin Liu, Guoliang Li, Chuangxian Wei, and Chao-
qun Zhan. 2023. Dynamic Materialized View Management using Graph Neural
Network. In ICDE.

[3] YueHan, Guoliang Li, Haitao Yuan, and Ji Sun. 2021. An autonomousmaterialized
viewmanagement systemwith deep reinforcement learning. In ICDE. 2159–2164.

[4] Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. 2022. AutoView: An Autonomous
Materialized View Management System with Encoder-Reducer. TKDE (2022).

[5] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Se-
lecting subexpressions to materialize at datacenter scale. PVLDB 11, 7 (2018),
800–812.

[6] Xi Liang, Aaron J Elmore, and Sanjay Krishnan. 2019. Opportunistic view ma-
terialization with deep reinforcement learning. arXiv preprint arXiv:1903.01363
(2019).

[7] R Malinga Perera, Bastian Oetomo, Benjamin IP Rubinstein, and Renata Borovica-
Gajic. 2022. HMAB: self-driving hierarchy of bandits for integrated physical
database design tuning. PVLDB 16, 2 (2022), 216–229.

[8] Georgia Troullinou, Haridimos Kondylakis, Matteo Lissandrini, and Davide
Mottin. 2021. SOFOS: demonstrating the challenges ofmaterialized view selection
on knowledge graphs. In SIGMOD. 2789–2793.

[9] Sai Wu, Ying Li, Haoqi Zhu, Junbo Zhao, and Gang Chen. 2022. Dynamic Index
Construction with Deep Reinforcement Learning. Data Science and Engineering
7, 2 (2022), 87–101.

[10] Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. 2020. Automatic view
generation with deep learning and reinforcement learning. In ICDE. 1501–1512.

[11] Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Jianhua Feng,
Shifu Li, Tianqing Wang, Kun Li, and Luyang Liu. 2021. Dbmind: A self-driving
platform in opengauss. PVLDB 14, 12 (2021), 2743–2746.

4356

https://github.com/dalibo/pev2

	Abstract
	1 Introduction
	2 System Overview
	2.1 Preliminaries
	2.2 Workflow

	3 Demonstration Overview
	4 Conclusion
	Acknowledgments
	References

