
SEER: An End-to-End Toolkit for Benchmarking Time Series
Database Systems in Monitoring Applications

Luca Althaus
University of Fribourg

Switzerland
luca.althaus@unifr.ch

Mourad Khayati
University of Fribourg

Switzerland
mourad.khayati@unifr.ch

Abdelouahab Khelifati
University of Fribourg

Switzerland
abdelouahab.khelifati@unifr.ch

Anton Dignös
Free University of Bozen-Bolzano

Italy
anton.dignoes@unibz.it

Djellel Difallah
NYU Abu Dhabi

United Arab Emirates
djellel@nyu.edu

Philippe Cudré-Mauroux
University of Fribourg

Switzerland
pcm@unifr.ch

ABSTRACT
Time series database systems (TSDBs) are prevalent in many ap-
plications ranging from monitoring and IoT devices to scientific
research. Those systems are specifically designed to efficiently man-
age data indexed by time. Because of the variety of workloads, the
diversity of time series features, and the sophistication of existing
TSDBs, there is no clear way to pick the most suitable system.

In this demo, we introduce SEER, an automated, configurable,
and interactive toolkit to evaluate TSDBs. SEER is based on TSM-
Bench, a benchmark tailored for time series database systems used
in monitoring applications. It implements an end-to-end pipeline
for database benchmarking from data generation and feature con-
tamination to workload evaluation. Users can define their portfolios
by configuring and parameterizing custom queries, specifying their
frequencies, controlling the type and level of data features, and
indicating the type of workloads. Moreover, they can deploy new
systems and/or reconfigure the pre-installed ones. SEER would pro-
cess users’ requests and gracefully recommend the best system on
a use-case basis.

PVLDB Reference Format:
Luca Althaus, Mourad Khayati, Abdelouahab Khelifati, Anton Dignös,
Djellel Difallah, and Philippe Cudré-Mauroux. SEER: An End-to-End
Toolkit for Benchmarking Time Series Database Systems in Monitoring
Applications. PVLDB, 17(12): 4361 - 4364, 2024.
doi:10.14778/3685800.3685875

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/eXascaleInfolab/seer.

1 INTRODUCTION
Time series database systems (TSDBs) have become a foundational
componentwithin a datamanagement landscape increasingly driven
by real-time analytics and data-intensive applications. The grow-
ing demand for stream processing and monitoring capabilities has

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685875

spurred significant research into developing TSDBs that can pro-
cess, compress, and store time series data effectively. However, the
diversity and complexity of these systems pose a challenge for
end users in selecting the most suitable TSDB for their specific re-
quirements, especially in scenarios involving real-time monitoring
applications. With the current state of affairs, a new comprehensive
benchmarking solution has become necessary to understand and
compare the capabilities of various TSDBs under modern use cases.

To address this need, we recently introduced TSM-Bench [5], a
comprehensive time series benchmark for time series monitoring
applications. TSM-Bench builds upon previous TSDB benchmark-
ing efforts [2, 4, 10] to assess novel facets such as query latency,
throughput, data ingestion rate, compression, and scalability. It
implements a suite of performance assessment tools, which include
online execution, diverse query variations, and the generation of
realistic data. The data generation relies on a novel method that
efficiently augments seed real-world time series datasets. Further-
more, TSM-Bench provides insights through a detailed examination
of seven TSDB systems, alongside practical recommendations for
navigating their architectural designs.

In this paper, we demonstrate our TSM-Bench benchmark with
SEER, a graphical tool allowing users to compare and evaluate var-
ious TSDBs through an interactive dashboard. SEER serves two
main purposes. (1) TSM-Bench Results Navigator: we publish
the results of hundreds of experiments we obtained while studying
seven TSDB systems, using all TSM-Bench queries across a wide
range of query parameters. (2) Custom Benchmarking with
User Configuration: we enable the users to benchmark their own
TSDB systems with custom configurations and to compare and
store their results. Moreover, SEER introduces new functionalities,
such as synthetic data augmentation to mimic real-world data sce-
narios and parameterizable and composable TSM-Bench queries
for mixed workload benchmarking. We make SEER available as an
open-source toolkit, as well as a pre-deployed website preloaded
with extensive results from several TSDBs.

The rest of this paper is organized as follows. Section 2 provides
an overview and necessary background on TSM-Bench. Then, in
Section 3, we present SEER, detailing its architecture and functional-
ities. Finally, in Section 4, we discuss four demonstration scenarios
enabled by SEER, highlighting how it can be used in different use
cases to evaluate TSDBs.

4361

https://doi.org/10.14778/3685800.3685875
https://github.com/eXascaleInfolab/seer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685875
https://www.acm.org/publications/policies/artifact-review-and-badging-current


2 TSM-BENCH OVERVIEW
TSM-Bench consists of three key components: a time series gener-
ator, an evaluation framework, and a time series feature injector.
We provide a summary of those components and emphasize the
benchmark pipeline. More details can be found in our paper [5].

Benchmarking Datasets. TSM-Bench’s datasets have been gen-
erated using real-world seed water quality time series. The data
was recorded in Swiss rivers using ten sensors from one station
over a period of five days, resulting into 430K datapoints. There
are two categories of time series. The first category includes water
temperature series containing duplicates and similar consecutive
values. The second category includes water level series, which are
erratic and contain abrupt changes.

As mentioned earlier, TSM-Bench aims to evaluate the scalability
of TSDBs. To do so, the seed dataset was augmented by generating
a larger number of long real-like time series. As a result, we obtain
two benchmarking datasets of 518M and 17.2B data points, respec-
tively. We devised and implemented a new generation technique
that augments the size of datasets in linear time. The generation
builds on recent advances in generative models [8] and Locality
Sensitive Hashing (LSH) [7]. Our generation is modular and exten-
sible, making it possible to augment multiple series as well as to
control the generation quality/efficiency trade-off.

Performance Evaluation Framework. TSM-Bench compares
seven popular TSDBs: ClickHouse, Druid, eXtremeDB, InfluxDB,
MonetDB, QuestDB, and TimescaleDB. It evaluates their compu-
tational and storage performance using standard metrics such as
query latency, throughput, data ingestion rate, and compression.

To compare the computational performance, TSM-Bench im-
plements two workload tiers that capture how much the query
complexity impacts the query latency of the systems. The offline
workload evaluates various temporal queries, assuming that query
execution and insertion are separate. Seven queries of increasing
level of complexity are implemented: Q1: Data Fetching, Q2: Data
Fetching with Filter, Q3: Data Aggregation, Q4: Downsampling, Q5:
Upsampling, Q6: Cross-sensor Average, and Q7: Correlation. The
online workload simulates concurrent operations and evaluates
those querying while increasing the data influx rate.

Data Encoding. Several recent works have studied the impact of
time series key properties—features—on encoding schemes [1, 9].
TSM-Bench builds on those works and implements a systematic way
to evaluate the impact of those features on the storage capabilities
of TSDBs. Three types of features are considered: (i) repeated values,
(ii) missing values, and (iii) consecutive values within a range. The
scale of the features is varied, and the systems are ranked based on
the storage size of the time series.

TSM-Bench packs all those components into a comprehensive
benchmark. However, manually parsing the benchmark’s results
remains tedious as the user needs to analyze a large number of
plots, i.e., around 68’482 results. To facilitate this effort, we propose
an easy-to-use exploration toolkit that implements all the compo-
nents of TSM-Bench in a few interactive plots. Moreover, we added
additional utilities, such as a customized frontend, to configure the
workloads, visualize their results on demand, deploy new systems,
and reconfigure the pre-installed ones.

Figure 1: SEER Architecture

3 SEER TOOLKIT
In this section, we outline the architecture of the SEER framework
and the features it offers. SEER is written in Python and JavaScript
for the backend and front-end functionalities. A demo version is
deployed on our web server1, offering TSDB connections. The
source code of SEER and the used datasets are publicly accessible
at: https://github.com/eXascaleInfolab/seer. Any other application
can easily embed our data generation and query composition, thus
acquiring the ability to perform automatic benchmarking.

3.1 SEER Architecture
SEER is implemented as a web application based on a client-server
architecture (cf. Figure 1). On the client side A , users can select
a target dataset, configure and execute queries from TSM-Bench,
or generate mixtures of such queries. B The results, either gener-
ated or retrieved from the backend, are streamed to the dashboard
for inspection and comparison across systems. C The backend
server processes client requests to execute actions such as running
real-time queries against a preconfigured TSDB connection, test-
ing the impact of different systems through feature injection, or
saving/loading the results of past experiments. Lastly, D the data
catalog enables the selection of built-in seed datasets and allows
for their augmentation with our data generation algorithm.

The system is optimized for interactivity, ensuring quick re-
sponse times for a better user experience. The bulk of the workload
results and feature impact are derived and interpolated from a repos-
itory of prior experimental results. Additionally, new executions
on TSDBs are recorded in the experiments log.
1http://srv.exascale.info:12007/

4362

https://github.com/eXascaleInfolab/seer
http://srv.exascale.info:12007/


Figure 2: SEER provides a GUI that enables (1) visualizing seed time series at different granularity and generating new series
by augmenting the seed series’ length and/or number. Users can (2) inject various features in the generated time series while
specifying their type and frequency and measuring their impact on the storage of TSDBs. They can also compose their own
query workloads and compute the performance of TSDBs in two ways: (3) ’offline’ where query execution is separate from
insertion, and (4) ’online’ that simulates concurrent operations. The tool also allows (5) to deploy and reconfigure new TSDBs
while comparing their performance against the stored results of pre-installed systems.

3.2 Functionalities
SEER exposes three core functionalities to the user: data generation,
feature injection, and system evaluation. The main functionalities
are illustrated in Figure 2.

Time Series Generator. SEER allows the generation of synthetic
data with real-like properties 1 . It uses Generative Adversarial
Network (GAN) [3, 6] to build a pre-trained model, which takes
as input seed time series segments and learns to imitate them by
playing an adversarial game between two networks: a generator
and a discriminator. The former is trained to map random noise to
synthetic segments, while the latter is trained to distinguish the
real segments from the fake ones (cf. Figure 1 – D ).

We devise a novel Locality-SensitiveHashing (LSH)-basedmethod
to concatenate the GAN-generated segments. The hashing is ap-
plied to index each synthetic segment into the hashing tables while
ensuring that similar segments are more likely to be stored in the
same bucket. Once the hashing tables are constructed, the codes for
original segments are extracted and looked up in the hash tables
to obtain the most similar synthetic segments. From these, one
segment is selected and appended to the generated time series after
applying a fitting function.

The quality of the generation depends on multiple parameters,
including the number of hash tables (# hashtables), the number
of top candidates representing real segments (nb top), and the

size of the hash code for a time series segment (length hash %).
Tuning those parameters helps achieve a high similarity between
the generated and original segments while making room for novelty
in the generation. When generating the data, the visualization in
SEER provides an interactive exploration of the parameter tuning
impact by displaying both the generated and original seed series.

Feature Injector. SEER also allows inspecting how particular fea-
tures in the data affect the storage requirements of the different
TSDB systems that exploit vastly different strategies for data com-
pression 2 . It does so by contaminating time series data with
missing values, repeated consecutive values, outliers, and a spe-
cific delta between consecutive data points. The severity level of
the injected contamination can be selected for each contamination.
By applying the contamination, SEER visualizes the time series,
where the applied contamination is indicated using dotted lines,
and shows how, in terms of storage costs, the compression of the
different TSDBs reacts to the injected feature.

TSDBs Evaluator. SEER’s evaluator compares the query perfor-
mance of different systems from three perspectives. In all cases,
queries are based on TSM-Bench queries, ranging from simple data
fetching to the computation of correlations (cf. Section 2), and can
be conveniently formulated using SQL templates.

SEER allows the construction of workloads from a sequence of
queries 3 . A workload consists of an arbitrary number of queries,

4363



and for each query, the relative frequency within the workload can
be specified. For each query, data access parameters, such as the
number of involved series (stations and sensors) and accessed time
range (minute, hour, day, etc.), can be specified. SEER will then
show, using a stacked bar chart, the runtime performance of the
different systems for the specified workload and individual queries
within the workload.

In addition to the offline setting, SEER allows the inspection of
the performance of queries in an online setting, i.e., when querying
and ingestion occur concurrently 4 . In this setting, a query and
an ingestion rate in insertions per second need to be selected, upon
which SEERwill then display the query performance in the presence
of concurrent data ingestion.

Another salient feature of SEER is the deployment and/or re-
configuration of systems 5 . A new system can be deployed by
specifying its installation, data loading, and configuration scripts.
Multiple instances of the same system can be launched by modify-
ing the configuration file. Once the system is deployed, SEER will
visualize the query result as provided by the system and a visual
summary of the variability of the runtime time in the form of a box
plot. This allows for the analysis of query execution times of a par-
ticular system over several runs. When changing query parameters
or the TSDB system, the box plot of previous executions remains
in the visualization, allowing runtimes and variability of different
queries and/or systems to be compared.

4 DEMONSTRATION SCENARIOS
In this section, we discuss the different scenarios for interacting
with the web interface. Users will be invited to assess the perfor-
mance of TSDB systems under various workload modes, query
configurations, and dataset sizes.

Scenario 1: Real-like Time Series Generation. In this scenario,
users can use a pre-trained GAN model from TSM-Bench to aug-
ment the size of the seed dataset with new time series. The first
step is to load a dataset from a list of three real-world water moni-
toring datasets: Temperature, Conductivity, and pH Accuracy. Each
dataset exhibits different properties, such as similar consecutive
values or abrupt changes. Should the user wish, other datasets can
also be uploaded. Data loading is followed by setting generation
hyperparameters, which include the hash function, number of hash
tables, and length of the hash binary code. Interested participants
will be invited to examine how those parameters affect the genera-
tion quality and time. Users can also set the size of the generated
dataset by varying the number and/or the length of the synthetic
time series. They can also augment the series’ length and/or number
of specific subsequences.

Scenario 2: Feature Encoding Evaluator. In this scenario, users
can alter the generated time series with synthetic features that
impact the compression of TSDBs. They can also control the occur-
rence rate of the feature. This step can be repeated multiple times
for different features and time series types. By clicking the “Run”
button, the compression result of each system is displayed. Users
can invoke different encoding schemes of the TSDB by adjusting the
feature level to a different value and clicking the “Update” button.

Scenario 3: Customized Query Analysis. In this scenario, users
will be able to simulate a common real-life task in which they design
a query portfolio tailored to their needs. Users will be invited to
compose their own personalized workload by choosing the opera-
tors from the Query Builder. They can also specify the configuration
of the temporal queries by controlling the number of stations, the
number of sensors, and the range. Another important feature of this
scenario is to allocate a frequency to the workload. The audience
will be then invited either to add a new query to their workload or
click on the “Run” button, which will rank the TSDBs according to
their weighted average performance on the selected queries. Fur-
thermore, we will provide users with two evaluation modes: offline
and online. Users shall observe how the query configuration, query
type, and dataset size impact the performance of TSDBs.

Scenario 4: Deployment of New Systems. SEER will provide a
more engaged experience with TSDBs. Attendees will be invited to
deploy and evaluate new systems not covered by the TSM-Bench
benchmark through the “Deploy” function. Upon clicking on the
“Evaluate” button, SEER will display the runtime of the deployed
system alongside the other systems’ pre-calculated results. Alter-
natively, users can re-deploy an existing system with a different
configuration of parameters (e.g., index, partitioning size, JIT com-
pilation, etc.). They shall observe the impact of those parameters
on the performance of TSDBs. Additionally, they can modify the
number of runs, and SEER will display the variance incurred by
the selected system across different query instances. This will help
TSDB practitioners scrutinize the robustness of their systems.

REFERENCES
[1] Davis W. Blalock, Samuel Madden, and John V. Guttag. 2018. Sprintz: Time

Series Compression for the Internet of Things. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 3 (2018), 93:1–93:23. https://doi.org/10.1145/3264903

[2] Peeyush Gupta, Michael J. Carey, Sharad Mehrotra, and Roberto Yus. 2020. Smart-
Bench: A Benchmark For Data Management In Smart Spaces. Proc. VLDB Endow.
13, 11 (2020), 1807–1820. http://www.vldb.org/pvldb/vol13/p1807-gupta.pdf

[3] Geon Heo, Yuji Roh, Seonghyeon Hwang, Dayun Lee, and Steven Whang. 2020.
Inspector Gadget: A Data Programming-based Labeling System for Industrial
Images. Proc. VLDB Endow. 14, 1 (2020), 28–36. https://doi.org/10.14778/3421424.
3421429

[4] Mostafa Jalal, Sara Wehbi, Suren Chilingaryan, and Andreas Kopmann. 2022.
SciTS: A Benchmark for Time-Series Databases in Scientific Experiments and
Industrial Internet of Things. (2022), 12:1–12:11. https://doi.org/10.1145/3538712.
3538723

[5] Abdelouahab Khelifati, Mourad Khayati, Anton Dignös, Djellel Eddine Difallah,
and Philippe Cudré-Mauroux. 2023. TSM-Bench: Benchmarking Time Series
Database Systems for Monitoring Applications. Proc. VLDB Endow. 16, 11 (2023),
3363–3376.

[6] Jinfeng Peng, Derong Shen, Nan Tang, Tieying Liu, Yue Kou, Tiezheng Nie, Hang
Cui, and Ge Yu. 2022. Self-supervised and Interpretable Data Cleaning with
Sequence Generative Adversarial Networks. Proc. VLDB Endow. 16, 3 (2022),
433–446. https://www.vldb.org/pvldb/vol16/p433-peng.pdf

[7] Kexin Rong, Clara E. Yoon, Karianne J. Bergen, Hashem Elezabi, Peter Bailis,
Philip Alexander Levis, and Gregory C. Beroza. 2018. Locality-Sensitive Hashing
for Earthquake Detection: A Case Study Scaling Data-Driven Science. Proc. VLDB
Endow. 11, 11 (2018), 1674–1687. https://doi.org/10.14778/3236187.3236214

[8] Yong Wang, Guoliang Li, Kaiyu Li, and Haitao Yuan. 2022. A Deep Generative
Model for Trajectory Modeling and Utilization. Proc. VLDB Endow. 16, 4 (2022),
973–985. https://doi.org/10.14778/3574245.3574277

[9] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong Huang,
and Jianmin Wang. 2022. Time Series Data Encoding for Efficient Storage: A
Comparative Analysis in Apache IoTDB. Proc. VLDB Endow. 15, 10 (2022), 2148–
2160. https://doi.org/10.14778/3547305.3547319

[10] Hao Yuanzhe, Qin Xiongpai, Chen Yueguo, Li Yaru, Sun Xiaoguang, Tao Yu,
Zhang Xiao, and Du Xiaoyong. 2021. TS-Benchmark: A Benchmark for Time
Series Databases. 2021 IEEE 37th International Conference on Data Engineering
(ICDE) (2021).

4364

https://doi.org/10.1145/3264903
http://www.vldb.org/pvldb/vol13/p1807-gupta.pdf
https://doi.org/10.14778/3421424.3421429
https://doi.org/10.14778/3421424.3421429
https://doi.org/10.1145/3538712.3538723
https://doi.org/10.1145/3538712.3538723
https://www.vldb.org/pvldb/vol16/p433-peng.pdf
https://doi.org/10.14778/3236187.3236214
https://doi.org/10.14778/3574245.3574277
https://doi.org/10.14778/3547305.3547319

	Abstract
	1 Introduction
	2 TSM-Bench Overview
	3 SEER Toolkit
	3.1 SEER Architecture
	3.2 Functionalities

	4 Demonstration Scenarios
	References

