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ABSTRACT

By empowering domain experts to perform interactive exploration
of large time series datasets, sketch-based query interfaces have
revitalized interest in the well-studied problem of time series sim-
ilarity search. In this new interaction paradigm, recent similarity
algorithms (e.g., Qetch, Peax, LineNet) that attempt to capture per-
ceptually relevant features have supplanted older, more straight-
forward distance measures (e.g., Euclidean, DTW). However, the
downside of these algorithms is the resulting difficulty in design-
ing corresponding index structures to support efficient similarity
search over large datasets, thus necessitating brute-force search.

This demo will showcase Deep Time Series Similarity Search
(DTS3), our pluggable indexing pipeline for arbitrary distance mea-
sures. DTS3 can automatically train a foundation model for any cus-
tom, user-supplied distance measure with no strict constraints (e.g.,
differentiability), thus enabling fast retrieval via an off-the-shelf
vector DBMS. Using our DeepSketch web interface, participants
can compare DTS3 to the baseline brute-force versions of several
similarity algorithms to see that our approach can achieve much
lower latency without sacrificing accuracy when searching over
large, real-world time series datasets.
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1 INTRODUCTION

Time series similarity search is an extremely well-studied prob-
lem [4, 6, 7], with applications in a wide variety of domains from
finance to medicine. Sketch-based query interfaces [2, 8, 9, 11, 14–
16, 19–22, 25, 26] enable domain experts in these areas to interac-
tively query large time series datasets simply by drawing patterns
of interest, without requiring them to have any programming ex-
perience. As a concrete example, consider a stock analyst who
would like to search for technical patterns in a dataset containing
historical daily stock prices. The goal of technical analysis is to
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Figure 1: Daily candlestick chart for Apple stock (AAPL)

from Jan–Mar ’24. The pictured head-and-shoulders techni-

cal pattern can indicate a bullish-to-bearish trend reversal.

identify patterns in a stock chart that potentially predict future
price movements, such as the head-and-shoulders pattern shown
in Figure 1. After searching the dataset to find matches to the hand-
drawn query, the analyst can then review the results to formulate
a data-driven trading strategy.

Many existing approaches to time series similarity search rely
on widely used distance measures such as the relatively cheap Eu-
clidean distance (ED), the more expensive but better dynamic time
warping (DTW), or even combinations of the two [17, 18] to re-
duce search cost while still providing good matches. Unfortunately,
these distance measures often perform poorly in sketch-based inter-
faces due to difficulty with common characteristics of hand-drawn
queries (e.g., noise, local distortions) [14]. Several recent algorithms
(e.g., Qetch [14, 15], Peax [12], LineNet [13]) therefore attempt to
more accurately model how humans perceive visual matches.

However, unlike well-established distance measures like ED,
these newer algorithms usually lack index structures necessary for
efficient match retrieval, meaning they must resort to brute-force
search. Even approaches based on autoencoders, which generate
time series embeddings that a vector DBMS could index, require
training from scratch for each new dataset, sometimes with manual
data curation or labeling. Moreover, they typically do not generalize
well to drift in streaming data or queries that deviate too far from
the training set, which would again require expensive retraining in
order to adapt. As such, these algorithms generally cannot scale to
large datasets.
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Figure 2: Overview of the Deep Time Series Similarity Search (DTS3) pluggable indexing pipeline. Given an arbitrary user-

supplied distance measure, DTS3 automatically trains a foundationmodel capable of generating embeddings for storage in an

off-the-shelf vector DBMS. After optional fine-tuning, the user can query the indexed dataset stored in the vector DBMS.

To solve these problems, we propose a new pluggable indexing
pipeline called Deep Time Series Similarity Search (DTS3) that per-
mits efficient match retrieval without brute-force search. When a
user provides a custom distance measure, our DTS3 pipeline auto-
matically trains a foundation model capable of generating mean-
ingful embeddings for arbitrary time series datasets. Importantly,
DTS3 imposes no strict requirements on the distance measure (e.g.,
differentiability), and the resulting embeddings can be indexed by
an off-the-shelf vector DBMS.

This demo will allow participants to evaluate DTS3 using our
DeepSketch web interface. After a brief tutorial, they will have
the opportunity to freely explore different time series datasets to
see how DTS3 performs relative to brute-force search for various
similarity algorithms in terms of both speed and match quality.

2 DTS3

The goal of time series similarity search is to find the top-𝑘 most
similar matches for a given query. As a proxy for the similarity
between two time series 𝑠1 and 𝑠2, the user selects a distance mea-
sure 𝑑 (𝑠1, 𝑠2) where lower distance values indicate higher similarity,
though the values returned by different distance measures are usu-
ally not directly comparable. When choosing a distance measure,
the user must carefully consider the specifics of the use case to
strike a balance between match accuracy and search speed.

The simplest distance measures perform pointwise calculations
on the two time series. For example, Euclidean distance (ED) com-
putes the sum of the differences between 𝑠1 and 𝑠2. Although
straightforward and cheap to calculate, ED has several shortcom-
ings that make it a poor fit for sketch-based query interfaces, in-
cluding high sensitivity to noise and local misalignment.

Better distance measures like dynamic time warping (DTW)
address the misalignment issue by first finding an optimal align-
ment between 𝑠1 and 𝑠2, yielding higher-quality matches but also
increasing the computational cost. To solve this problem, some
approaches [17, 18] have combined DTW with ED to accelerate the
distance calculation by leveraging the triangle inequality between
the two (i.e., a low ED distance implies a low DTW distance, but
the inverse is not necessarily true). Yet, despite their widespread

use, traditional distance measures like ED and DTW were not de-
signed for hand-drawn queries and frequently miss visually similar
matches [8, 14].

Therefore, new similarity algorithms that explicitly target the
most salient visual features when identifyingmatches have emerged
in recent years. For example, Qetch [14, 15] is based on user study
results showing that hand-drawn sketches tend to exaggerate cer-
tain aspects (e.g., steepness of slopes, size of peaks/troughs), with
the overall shape being more important than minor variations in
the pattern. Due to their complexity, though, designing efficient
index structures for algorithms like Qetch can prove difficult, which
forces them to rely on brute-force search. Other approaches [12, 13]
in this category use autoencoders to generate embeddings that,
incidentally, are amenable to storage in a vector DBMS, but they
entail either manual data labeling or costly training for each new
dataset. In summary, all of these algorithms produce subjectively
better matches than the traditional alternatives but fundamentally
lack scalability.

Our approach, called Deep Time Series Similarity Search (DTS3),
seeks to overcome all of these challenges. DTS3 is not a new time
series similarity algorithm; rather, it serves as a pluggable indexing
pipeline for arbitrary distance measures. Figure 2 shows a high-
level overview of DTS3, which can be broken down into three main
parts: (1) training; (2) indexing; and (3) querying.

2.1 Training

The DTS3 pipeline begins by training an autoencoder to approxi-
mate the user-supplied distance measure 𝑑 (𝑠1, 𝑠2). Prior work (e.g.,
Peax [12], SEAnet [23, 24], LineNet [13]) has also used autoen-
coders to embed time series for similarity search, as well as for
other time series use cases (e.g., semantic compression [10], outlier
detection [1]). Specifically, we use a topological autoencoder with
a manifold learning module as a regularizer [5] to support custom
similarity algorithms without strict constraints (e.g., a differentiable
loss function). We feed each training batch separately to the autoen-
coder, which attempts to minimize the reconstruction error, and
the manifold learning module, which attempts to preserve the topo-
logical structure of the dataset relative to the distance measure in
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the embedding space. The loss function combines these two terms
using a weighted MSE, allowing us to leverage the generalizability
of autoencoders while also retaining the most important features
for the distance measure in the embeddings.

As mentioned, existing approaches that use autoencoders typi-
cally train on the data to be indexed, leading to substantial upfront
costs for every new dataset. This requirement presents even more
issues for evolving datasets and out-of-distribution queries. Instead,
we propose to train a single foundation model for a distance mea-
sure that the user can reuse across a range of diverse datasets. DTS3
utilizes a large corpus of real-world time series data that we com-
piled from an assortment of publicly available datasets and further
augmented (e.g., adding noise, random subsampling). Although the
resulting foundation models can already generalize well to arbi-
trary datasets, we also provide an optional step for lightweight
fine-tuning to improve accuracy on the target dataset.

2.2 Indexing

In terms of query execution, the benefits of DTS3 are twofold. First,
converting time series to an embedding space replaces a potentially
expensive distance measure with a much cheaper vector similarity
calculation, such as ED or cosine similarity. Second, embeddings
unlock the ability for any arbitrary distance measure to use an
off-the-shelf vector DBMS for indexing, thereby avoiding brute-
force search. Together, these two advantages can enable complex
similarity algorithms to scale to much larger datasets.

At the same time, indexing embeddings with a vector DBMS
incurs additional storage overhead compared to brute-force search,
and the extra space consumption can quickly become significant
depending on embedding dimensionality and dataset size. For ex-
ample, embeddings with the same size as the original time series
would effectively double the space consumption, but they would
also afford better retrieval accuracy than a lower-dimensional em-
bedding. The user can directly influence this trade-off by specifying
the desired embedding size when creating the foundation model.
Otherwise, DTS3 will choose sensible defaults in a best-effort at-
tempt to balance accuracy and space overhead.

2.3 Querying

To search for matches in the indexed dataset, the query (e.g., a
hand-drawn sketch) is first fed to the trained foundation model to
generate a corresponding embedding. Then, DTS3 retrieves the top-
𝑘 most similar matches to the query embedding from the vector
DBMS and returns them to the user. Note that DTS3 does not
require the user to specify query patterns a priori and can support
completely ad hoc querying.

3 DEEPSKETCH

Figure 3 shows the DeepSketch web interface, which we adapted
from Qetch [14, 15]. The tool consists of three main components:
(1) dataset browser; (2) sketch area; and (3) result panels.

3.1 Dataset Browser

After selecting an available dataset from the drop-down menu in
the top right, the user can immediately begin exploring it via the
dataset browser (top). This view is useful for forming a preliminary

understanding of the data and generating ideas for potential queries.
For example, a user interested in Apple stock (AAPL) can select it
from the search bar to get a larger, more detailed view, with time
displayed across the x-axis and price on the y-axis. The user can
also zoom in on specific time ranges, as well as overlay multiple
different time series to compare them side-by-side.

3.2 Sketch Area

The user can issue similarity search queries from the sketch area
(bottom right) by drawing a pattern of interest, such as the head-
and-shoulders example from Figure 1. The tool also provides a set
of predefined queries representing common patterns, as well as
a history of previously issued queries that the user may wish to
revisit. The user can additionally specify the following optional
parameters to further refine the query: (1) specific time series to
search; (2) time window granularity; (3) the distance measure to
use; and (4) a limit on the number of returned matches. In Figure 3,
the user is searching for a head-and-shoulders pattern in AAPL
closing prices at a monthly granularity using DTW as the similarity
measure, with a limit of 10 results.

3.3 Result Panels

Once the user has submitted a query, matches will begin to populate
the result panels (bottom left) in a streaming fashion as they arrive.
The panel on the left displays results from the brute-force version
of the chosen distance measure, and the panel on the right shows
matches retrieved from the vector DBMS using the DTS3 approach.
Selecting a match from one of the result panels will pull up a larger,
zoomable view with the match overlaid in the dataset browser.
The user can sort results by either computed distance or match
length, and the adjacent result panels facilitate a clear side-by-side
comparison of DTS3 with the brute-force approach. Lastly, each
result panel contains a wall clock timer in the top right so the user
can evaluate total query execution time.

4 DEMO EXPERIENCE

For the demo, participants can connect to the DeepSketch web
interface using either their own device or one of the provided
tablets for a pen-and-touch experience [3, 8]. To get a feel for the
tool, we will begin by walking them through the stock analysis
scenario described in this proposal. Then, wewill encourage them to
explore the available datasets at their leisure by interactively issuing
queries, examining the results, and comparing DTS3 to the brute-
force versions of the different similarity algorithms. Although our
description of DeepSketch has focused primarily on the technical
analysis of stock data, we will also include time series datasets from
a variety of other domains.
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