
LakeCompass: An End-to-End System for Data Maintenance,
Search and Analysis in Data Lakes

Chengliang Chai∗
ccl@bit.edu.cn

Beijing Institute of
Technology

Yuhao Deng∗
dyh18@bit.edu.cn
Beijing Institute of

Technology

Yutong Zhan
zyt@bit.edu.cn

Beijing Institute of
Technology

Ziqi Cao
caoziqi@bit.edu.cn
Beijing Institute of

Technology

Yuanfang Zhang
zyuanfang@bit.edu.cn
Beijing Institute of

Technology

Lei Cao
lcao@csail.mit.edu

University of Arizona/MIT

Yuping Wang
wyp_cs@bit.edu.cn
Beijing Institute of

Technology

Zhiwei Zhang
zwzhang@bit.edu.cn
Beijing Institute of

Technology

Ye Yuan
yuan-ye@bit.edu.cn
Beijing Institute of

Technology

Guoren Wang
wanggr@bit.edu.cn
Beijing Institute of

Technology

Nan Tang
nantang@hkust-gz.edu.cn

HKUST (GZ)

ABSTRACT
Searching tables from poorly maintained data lakes has long been
recognized as a formidable challenge in the realm of data manage-
ment. There are three pivotal tasks: keyword-based, joinable and
unionable table search, which form the backbone of tasks that aim
to make sense of diverse datasets, such as machine learning. In this
demo, we propose LakeCompass, an end-to-end prototype system
that maintains abundant tabular data, supports all above search
tasks with high efficacy, and well serves downstream ML modeling.
To be specific, LakeCompass manages numerous real tables over
which diverse types of indexes are built to support efficient search
based on different user requirements. Particularly, LakeCompass
could automatically integrate these discovered tables to improve
the downstream model performance in an iterative approach. Fi-
nally, we provide both Python APIs and Web interface to facilitate
flexible user interaction.

PVLDB Reference Format:
Chengliang Chai, Yuhao Deng, Yutong Zhan, Ziqi Cao, Yuanfang Zhang,
Lei Cao, Yuping Wang, Zhiwei Zhang, Ye Yuan, Guoren Wang, and Nan
Tang. LakeCompass: An End-to-End System for Data Maintenance, Search
and Analysis in Data Lakes . PVLDB, 17(12): 4381 - 4384, 2024.
doi:10.14778/3685800.3685880

1 INTRODUCTION

Many organizations have acknowledged the importance of pro-
viding open access to their tabular data for the public good [14].
However, the large amount of tables are often poorly maintained

∗Both authors contributed equally to this research.
Ye Yuan is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685880

(𝑒.𝑔., lacking of index or schema information). To make sense of
this data, a key initial step for the data scientists is to search tables
relevant to the task at their hand. To this end, we propose to build
an end-to-end prototype system, LakeCompass that driven by the
need of the downstream analytics tasks, offers efficient and effective
table search over data lakes.

At a high level, LakeCompass features the following three key
functionalities.
Index building.We build various types of indexes over tables in
data lakes, such as inverted index, local sensitive hash (LSH) and the
hierarchical navigable small world (HNSW), which taking both text
similarities and semantic similarities into consideration, efficiently
and effectively support table search.
Table search. We support three typical categories of table search,
𝑖 .𝑒 ., keyword-based, joinable and unionable table search. The former
one returns relevant tables based on the given keywords. The latter
two take as input a query table, and discovering tables that can be
integrated with the query table.
Data Selection for Model analysis. LakeCompass offers a data
selection component that taking into consideration the specific need
of the downstream applications, 𝑖 .𝑒 ., the ML models, intelligently
selects the tuples and features from the table search result in a more
targeted manner.

Overall, LakeCompass has the following advantages.
[1. High efficiency.] Various types of indexes allow us to support
efficient search over different queries. In terms of the model analysis
module, we propose to use the online learning technique to improve
the efficiency of iterative model evaluation.
[2.High effectiveness.]Wemaintain the original data associated with
their semantic embeddings, together with various indexes, which
allow users to search highly relevant tables customized to their
needs. For the model analysis, we propose a multi-armed bandit
(MAB) technique to judiciously select beneficial tuples/features
among the returned relevant tables.
[3. User-friendly interaction.] We encapsulate the above function-
alities through flexible Python APIs, where the user can upload

4381

https://doi.org/10.14778/3685800.3685880
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685880


Join Union… … 

LSH Inv. Index HNSW

Column Modeling in Data Lake 

Index Construction

Table Query

Of
fl

in
e

On
li

ne

Top-K
Result

Top-K
Result

ML Model

LakeCompass

Keyword … 

Top-K
Result

Figure 1: Overall Architecture of LakeCompass.

data, construct indexes, search tables and build ML models. We also
provide a Web interface to serve table search and analysis in a more
intuitive way.
Existing Works. There exist several prototypes of table search.
Aurum [6] takes as input keywords and returns relevant tables
based on their schema information. COCOA [5] focuses on search-
ing joinable tables; Auctus [1] supports both joinable and unionable
table search; Besides the above table search, Juneau [7] further sup-
ports feature extraction and data cleaning based on the returned
tables. Similarly, DIALITE [12] can also search tables that can be
integrated with the query table, and then conducts some data anal-
ysis like entity matching. Although the above prototypes supports
table search in data lakes, they do not consider the semantic in-
formation of columns/rows of tables, which is rather significant
in achieving high effectiveness. What’s more, they do not take the
machine learning task into consideration, which is the key applica-
tion for table search in data lakes. Although some works [3, 9] have
studied data augmentation for ML, they assume the relevant data
is discovered beforehand by another system, hence not offering an
end-to-end table search solution.

In summary, LakeCompass is an end-to-end system that is ade-
quate to demonstrate the efficiency and effectiveness of table search
for real-world applications.

2 SYSTEM OVERVIEW
At a high level, LakeCompass consists of the following modules:
data lake embedding, index construction, online table query pro-
cessing as well as the model analysis, as shown in Figure 1. The
former two modules are offline, which respectively encode the col-
umn/schema in the data lake into a vector and index these vectors.
Once an online query table arrives, we first encode its column(s)
and then use the index to retrieve relevant tables with the highest
relevance score from the data lake. If the query is a keyword, we
just encode the query and retrieve relevant tables.
Embedding Data Lake. Generally speaking, column representa-
tions are significant in table search. The columns of the original
tables in data lake are always represented as fixed-length vectors.
The vectors are mostly hash codes [6, 17] (𝑒.𝑔., generated by the
minhash function) or embeddings [8, 10] (𝑒.𝑔., generated by pre-
trained language models) that are effective in finding columns with

similar semantics or high overlaps, which are rather significant in
searching joinable/unionable tables. However, some methods like
Josie and InfoGather [15, 16] directly use the original cell values
of each column to search highly overlapping columns rather than
using vectors. Besides, we also maintain the metadata of data lake
tables (𝑒.𝑔., table name, caption and schema information, etc.) and
index them, which are also important in table search, especially for
keyword-based search.
Index Construction. Almost all table search methods rely on an
index to search large table repositories. Building upon the represen-
tations discussed above, several typical ANN indexes like LSH [17]
or HNSW [8] can be utilized to index all the embeddings. As an-
other option, inverted index [11, 15, 16] accelerates the process of
finding highly overlapping columns, where each cell value is linked
to the columns that contain the value. In this case, these colorful
circles represent Column IDs rather than vectors. All the types of
indexes are supported in LakeCompass.
Online Table Search. For keyword-based search, the user issues
the keywords, which are encoded as embeddings, and retrieve ta-
bles with similar embeddings on metadata or columns. For join-
able search, LakeCompass supports users in issuing a query table
through either user-uploaded files or the result of keyword-based
search. Once a user issues a table 𝑇𝐽 and a specific column 𝑐 for
search, LakeCompass first represents 𝑐 as a vector. It then uses the
index to quickly identify a of top-𝐾 columns (tables), denoted by
𝑅(𝑇𝐽 ), with high relevance scores. The unionable search follows
the same procedure. The only difference is that given a table 𝑇𝑈 , it
has to search over each attribute in 𝑇𝑈 and aggregate the results.
Specifically, for each column 𝑐𝑖 ∈ 𝑇𝑈 , similar to the join search, we
retrieve from the data lake a set of columns that have high rele-
vance scores with 𝑐𝑖 . Then, we compute the union of all retrieved
tables. For each table 𝑇 in the union set, we compute the relevance
score using techniques like maximum bipartite graph matching,
considering the column relevance between the 𝑇𝑈 and 𝑇 . Finally, a
set of top-𝐾 tables, denoted by 𝑅(𝑇𝑈 ) with the highest relevance
scores are returned. In LakeCompass, we have implemented various
joinable [15–17] and unionable search [8, 11, 15] algorithms.
Iterative Data Selection for Model Analysis.When the query
table serves as the train data, due to the data scarcity problem, we
expect to augment more tuples/features through unionable/joinable
table search. However, although all the returned tables 𝑅(𝑇𝐽 )/𝑅(𝑇𝑈 )
can be integrated into the query table, integrating all of them may
not improve the model performance. The reason is that they come
from heterogeneous sources in data lakes, some of which are in fact
noisy to the model. Therefore, we apply our proposed tuple/feature
augmentation techniques [2, 13] to judiciously select tuples/features
(from unionable/joinable tables), iteratively integrate to the query
table and evaluate the performance. Here, we summarize the high
level idea [2] of selecting tuples from unionable tables.
𝑖) . Clustering. Given all tables in 𝑅(𝑇𝑈 ), we first merge all tuples of
these tables, and then cluster these tuples based on their feature
similarities. Then tuples in each cluster can be seen as homogeneous.
Next, we use an iterative MAB solution to judiciously select tuples
that can benefit the model from these clusters.
𝑖𝑖). MAB-based data selection.We take each cluster as a bandit arm.
Each arm is assigned with an upper confidence bound (UCB) score,

4382



Figure 2: A Code Segment for Index Building and Keyword-
based Search of LakeCompass.

which will be updated after each iteration of tuple selection. At the
beginning of each iteration, the arm with the highest UCB score
will be selected, then a small batch of tuples will be sampled from
the cluster and added to train. If the model performance is tested
to be improved on a validation set, a reward will be assigned. At
a high level, the UCB score is computed by the summation of an
exploration and an exploitation score. The less frequently a cluster
is picked, the higher the exploration score. The higher reward the
cluster has obtained, the higher the exploitation score. Hence, a
combination of the two scores used by MAB-based method can well
handle the exploration-exploitation trade-off. Specifically, for each
cluster 𝐶𝑖 , at iteration 𝑘 :

𝑈𝐶𝐵 (𝐶𝑖 , 𝑘 ) = 𝑅𝑘
𝑖 + 𝛼

√︃
2 ln𝑛𝑘/(𝑛𝑘

𝑖
+ 1) (1)

where 𝛼 is pre-defined, 𝑛𝑘
𝑖
is the total number of times that 𝐶𝑖 was

assigned non-zeros scores from iterations 1 to𝑘 , and𝑛𝑘 is the sum of
𝑛𝑘
𝑖
for all clusters at iteration 𝑘 . In Eq. 1, the former part (𝑅𝑘

𝑖
) refers

to the exploitation, which means to focus more on the cluster where
some tuples have resulted in much performance improvement. The

latter part (
√︃
2 ln𝑛𝑘/(𝑛𝑘

𝑖
+ 1)) refers to the exploration, 𝑖 .𝑒 ., focusing

more on the clusters that are rarely picked.
𝑖𝑖𝑖) . Iterative model evaluation.We iteratively apply theMAB-based
solution until the model performance does not increase within
several successive iterations. In order to accelerate the iterative
training, we can apply the online learning technique that only
trains over the added tuples.

Similarly, the MAB-based solution can also be extended to aug-
ment useful features from joinable tables [13].

3 DEMONSTRATION SCENARIOS
This section showcases our demonstration scenarios, which high-
light the main functionalities of LakeCompass. These scenarios
illustrate how LakeCompass identifies relevant tables within the
data lake to enrich tuples or features, thereby enhancing the per-
formance of downstream models. Users can utilize LakeCompass
functionalities via Python APIs or Web interfaces.
Datasets.We support index construction, table search and model
analysis over 1TB data collected in our benchmark [4] – 100X
larger than the data lakes used in existing works, and the num-
ber of columns is up to 100 million, on which we implemented
and evaluated multiple typical table union/join search methods.
Moreover, we also provided a sufficient number of labeled diverse

Figure 3: A Code Segment for Training Model based on the
Query Table.

Figure 4: A Code Segment for Unionable Table Search of
LakeCompass

queries (more than 10 thousand) – 10Xmore than any other works,
so as to test the algorithm performance. To this end, we organized
a team of 25 graduate students and spent more than 7,500 human
hours on labeling the queries.
(1) Index Building. LakeCompass enables the utilization of various
index types (including the LSH, HNSW, and inverted index.) to
support the typical three table search tasks. As shown in Figure 2,
the user builds the HNSW index over the metadata to support
keyword-based search. Note that we also support the users to build
their own data lakes and build indexes.
(2)Keyword-based Search.Users could obtain the training dataset
by keyword search. To be specific, as shown in Figure 2, The user
could use the Python APIs to set “education” as a keyword and
utilize the “keyword_search” function to retrieve relevant tables.
Then, tables related to education in different cities of different states
in the U.S. are retrieved from our data lake.
(3) Unionable Table Search. As shown in Figure 3, users have the
flexibility to either upload a query table or choose a table from the
keyword-based search as the query table. In such cases, the model
based on the solely query table tends to show poor performance.
Therefore, they can then employ the “union_search” function to
retrieve unionable tables based on semantic similarities. As depicted
in Figure 4, users select the “education_Des_Moines.csv” as the
query table. Subsequently, additional tables pertaining to educa-
tion in other cities within the state of Iowa are retrieved through
the union search. These retrieved tables share multiple semanti-
cally identical columns with the query table, enabling them to be
seamlessly unioned together.
(4) Joinable Table Search. Users could also interact with the Web

4383



1 2 3

Figure 5: The Web Interface of LakeCompass

Figure 6: A Code Segment for Model Analysis of LakeCompass

interface to conduct table search. For joinable search, in Figure 5 -
1○, users could specify the query table, query column, label column
to be predicted and the index type. Retrieved tables could be dis-
played in Figure 5 - 2○, allowing users to eliminate or keep tables
manually to improve the model performance. LakeCompass then
can select data from the kept ones to improve the model.
(4) Data Selection for Model Analysis. LakeCompass provides
an “auto_augment” function, which employs the MAB-based strat-
egy to intelligently select the most beneficial tuples/features for
the downstream model and returns the trained model. To be spe-
cific, as shown in Figure 6, the users could train the same models
with identical architectures and hyperparameters based on the set
of auto-augment unionable tables. This step could also be done
by users through interacting with the Web interface. As shown
in Figure 5 - 3○, LakeCompass presents the model performance
using visual aids, including a confusion matrix and an accuracy
graph. The results demonstrate the model trained on the table after
augmentation outperforms the model trained on the query table.

4 CONCLUSION
In this paper, we present LakeCompass, an end-to-end prototype
system offering index building, table search, and model analysis.
LakeCompass enhances the performance of downstream machine
learning tasks by iteratively integrating relevant tables. It offers a
user-friendly Web interface for flexible user interaction.

ACKNOWLEDGMENTS
This paper is supported by the NSFC (62102215, 62072035, 61932004,
62225203, U21A20516, U23A20297, U2001211, U23B2019), CCF-
Huawei Populus Grove Fund (CCF-HuaweiDB202306), the National
Key R&D Program of China(2022YFB2702100,2021YFB2700700), the
DITDP (JCKY2021211B017), and the Fundamental Research Funds
for the Central Universities. Lei Cao is supported by the NSF (DBI-
2327954) and Amazon Research Award.

REFERENCES
[1] Sonia Castelo and Rémi Rampin et al. 2021. Auctus: A Dataset Search Engine for

Data Discovery and Augmentation. Proc. VLDB Endow. 14, 12 (2021), 2791–2794.
[2] Chengliang Chai and Jiabin Liu et al. 2022. Selective Data Acquisition in the

Wild for Model Charging. Proc. VLDB Endow. 15, 7 (2022), 1466–1478.
[3] Nadiia Chepurko and Ryan Marcus et al. 2020. ARDA: Automatic Relational

Data Augmentation for Machine Learning. Proc. VLDB Endow. (2020).
[4] Yuhao Deng, Chengliang Chai, and Lei Cao et al. 2024. LakeBench: A Benchmark

for Discovering Joinable and Unionable Tables in Data Lakes. In VLDB 2024.
[5] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2021.

COCOA: COrrelation COefficient-Aware Data Augmentation. In EDBT 2021.
[6] Raul Castro Fernandez et al. 2018. Aurum: A Data Discovery System. In ICDE.
[7] Yi Zhang et al. 2019. Juneau: Data Lake Management for Jupyter. VLDB. (2019).
[8] Grace Fan and Jin Wang et al. 2023. Semantics-aware Dataset Discovery from

Data Lakes with Contextualized Column-based Representation Learning. PVLDB
(2023).

[9] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. Metam: Goal-
Oriented Data Discovery. In ICDE 2023.

[10] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In NAACL-HLT 2021.

[11] Aamod Khatiwada, Grace Fan, and Roee Shraga et al. 2022. SANTOS:
Relationship-based Semantic Table Union Search. CoRR abs/2209.13589 (2022).

[12] Aamod Khatiwada, Roee Shraga, and Renée J. Miller. 2023. DIALITE: Discover,
Align and Integrate Open Data Tables. In SIGMOD/PODS 2023.

[13] Jiabin Liu, Chengliang Chai, and Yuyu Luo et al. 2022. Feature Augmentation
with Reinforcement Learning. In ICDE 2022.

[14] Renée J. Miller and Fatemeh Nargesian et al. 2018. Making Open Data Transpar-
ent: Data Discovery on Open Data. IEEE Data Eng. Bull. 41, 2 (2018), 59–70.

[15] Mohamed Yakout and Kris Ganjam et al. 2012. InfoGather: entity augmentation
and attribute discovery by holistic matching with web tables. In SIGMOD 2012.

[16] Erkang Zhu and Dong Deng et al. 2019. JOSIE: Overlap Set Similarity Search for
Finding Joinable Tables in Data Lakes. In SIGMOD 2019.

[17] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016).

4384


	Abstract
	1 Introduction
	2 system overview
	3 demonstration scenarios
	4 Conclusion
	Acknowledgments
	References

