
Optimizing Distributed Tiered Data Storage Systems with DITIS
Sotiris Vasileiadis

Cyprus University of Technology
Limassol, Cyprus

sr.vasileiadis@edu.cut.ac.cy

Matthew Paraskeva
Cyprus University of Technology

Limassol, Cyprus
mp.paraskeva@edu.cut.ac.cy

George Savva
Cyprus University of Technology

Limassol, Cyprus
gec.savva@edu.cut.ac.cy

Andreas Efstathiou
Cyprus University of Technology

Limassol, Cyprus
andreasefstathiouudt@gmail.com

Edson Ramiro Lucas Filho
Cyprus University of Technology

Limassol, Cyprus
edson.lucas@cut.ac.cy

Jianqiang Shen
Huawei Technologies Co., Ltd.

Shenzhen, China
shenjianqiang@huawei.com

Lun Yang
Huawei Technologies Co., Ltd.

Shenzhen, China
yanglun12@huawei.com

Kebo Fu
Huawei Technologies Co., Ltd.

Shenzhen, China
fukebo@huawei.com

Herodotos Herodotou
Cyprus University of Technology

Limassol, Cyprus
herodotos.herodotou@cut.ac.cy

ABSTRACT
Modern data storage systems are characterized by a distributed
architecture as well as the presence of multiple storage tiers and
caches. Both system developers and operators are challenged with
the complexity of such systems as it is hard to evaluate how a con-
figuration change will impact the workload or system performance
and identify the best configuration to satisfy some performance
objective. DITIS is a new simulator that models the end-to-end
execution of file requests on distributed tiered storage systems that
addresses the aforementioned challenges efficiently without any
costly system redeployments. The demonstration will showcase
the key functionalities and benefits offered by DITIS, including
(i) analyzing workload traces to understand their characteristics
and the behavior of the underlying storage system; (ii) running
simulations with different configurations to evaluate their impact
on performance; and (iii) running optimizations over custom search
spaces to find the best configuration that satisfies a given objective.

PVLDB Reference Format:
Sotiris Vasileiadis, Matthew Paraskeva, George Savva, Andreas Efstathiou,
Edson Ramiro Lucas Filho, Jianqiang Shen, Lun Yang, Kebo Fu,
and Herodotos Herodotou. Optimizing Distributed Tiered Data Storage
Systems with DITIS. PVLDB, 17(12): 4393 - 4396, 2024.
doi:10.14778/3685800.3685883

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/cut-dicl/ditis-ui.

1 INTRODUCTION
Modern data storage systems exhibit considerable complexity due
to their distributed nature and the need to balance data and load

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685883

across the storage nodes [7]. In addition, these systems incorporate
multiple storage tiers, encompassing numerous HDDs and SSDs,
along with multiple cache levels of DRAM and NVRAM. Conse-
quently, new data management policies are required to optimize
performance and resource utilization. Furthermore, these systems
integrate diverse redundancy mechanisms, including replication
and erasure coding, to ensure data durability and fault tolerance.

The multifaceted architecture of modern data storage systems
necessitates sophisticated management strategies to harness their
full potential, for both system developers and operators. For devel-
opers, evaluating the impact of new policies for caching, tiering,
and other mechanisms is cumbersome and time-consuming as it
requires system redeployments. Hence, it is very difficult to explore
the design space for promoting changes in the system. For opera-
tors, it is challenging to evaluate how their workloads will behave
after a system reconfiguration or upgrade as well as determine the
best system configuration that will satisfy their objectives.

Simulation presents a logical approach to address the aforemen-
tioned challenges. Numerous simulators concentrate on modeling
particular aspects of storage systems, including caching and tier-
ing policies [6], scheduling [5], network communication [1], and
file system behavior [2]. Some simulators are also available for
simulating either single-node multi-tier storage systems [4, 10] or
distributed single-tier storage systems [8, 9]. However, none of
the current simulators can fully encompass the complexity and
nuances of contemporary storage systems that feature multiple
storage nodes, diverse storage tiers, and various cache levels.

DITIS [3] is a new comprehensive simulator that models the end-
to-end execution of file requests on distributed multi-tier storage
systems. The key novelties of DITIS include (i) an architecture based
on an adaptation of the actor model instead of the typical event-
oriented or process-oriented models; (ii) a machine learning-based
initialization process for placing data to the appropriate tier/cache
before the simulation begins; and (iii) fine-grained but efficient
performance cost models for HDD, SSD, NVRAM, DRAM, and net-
work communications. Moreover, DITIS is extremely configurable
with 131 configuration parameters touching all aspects of a storage
system (e.g., number of nodes/tiers/caches, device and network

4393

https://doi.org/10.14778/3685800.3685883
https://github.com/cut-dicl/ditis-ui
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685883
https://www.acm.org/publications/policies/artifact-review-and-badging-current


Storage NodeStorage Node

Access Layer

Persistence Layer

Workload Replay^*

Application
Application^

Workload Initializer^*

Trace ParserTrace Parser

File Home Layer

Persistence Module^

Redundancy
Policy*

Block
Balancer*

File Home Module^

Metadata
Manager

Storage Pool
Manager

Cold Storage Pool
SATA/NL-SAS SSDs or HDDs

Warm Storage Pool
SAS SSDs

Hot Storage Pool
NVMe SSDs

Access Module^

Metadata
Manager
Cache

Dataflow
Manager

Dataflow
Policies*

Dataflow
Manager

Dataflow
Policies*

Dataflow
Manager

Dataflow
Policies*

Cache
Manager

L2 Cache
Policies*

Cache
Manager

L0 Cache
Policies*

L0 Data
Cache

Cache
Manager

L1 Cache
Policies*

L1 Data
Cache

Tiering
Manager

Tiering
Policies*

L2 Data Cache

File Home
Module^

Access
Module^

Persistence
Module^

Application
Connector*

File
Balancer*

Figure 1: DITIS architecture. Components marked with ^ are
actors and with ∗ are pluggable policies.

characteristics, etc.) as well as extensible with 44 pluggable policies
controlling all aspects of data flow, caching, and tiering decisions.

This demonstration aims at showcasing the benefits to both
storage system developers and operators from using DITIS to:
• Understand workload characteristics and the behavior of the

underlying storage system;
• Evaluate the impact of different storage configuration setups and

policies to the workload performance; and
• Optimize the storage configuration to satisfy a workload or sys-

tem objective such as maximizing throughput or cache hit ratio.

2 DITIS SIMULATOR
DITIS is a simulator designed for distributed and tiered file-based
storage systems, capable of handling up to three storage tiers plus
three levels of caches. It allows for the configuration of various
storagemedia devices such as HDD, SSD, NVRAM, and DRAM, each
with specific performance characteristics. The simulator calculates
the duration of I/O requests for each tier, cache, and network using
detailed performance cost models for each device type.

2.1 System Architecture
DITIS requires two inputs to simulate a workload execution on
a storage system: (1) a text file containing a workload trace with
file requests containing details like process ID, timestamp, file op-
eration, offset, length, file size, and original duration; and (2) a
storage configuration that defines the storage system’s behavior
and structure, allowing for the customization of components of the
storage system, specifying their performance characteristics, and

determining which policies to use during the simulation. The main
system components of DITIS, shown in Figure 1, are:
• Workload Initializer: Sets up the initial state of the system

(e.g., creates pre-existing files) before the trace is executed.
• Workload Replay: Controls the order and timing of submitting

and simulating the file requests from the workload trace.
• Application: Represents external applications (processes) that

submit file requests to the storage system in parallel.
• Application Connector: Balances incoming application con-

nections to the available Access Modules.
• Access Module: Represents a storage system’s access compo-

nent running on a storage node or a system’s client.
• File Balancer: Distributes files and file requests to File Home

Modules based on full file paths.
• FileHomeModule: Maintains a partition of the system’s names-

pace on a storage node.
• Block Balancer: Distributes data blocks and block requests to

Persistence Modules based on a block IDs (or addresses).
• Persistence Module: Stores and processes data blocks in tiered

storage pools on a storage node.
• Redundancy Policy: Controls the redundancy policy of blocks

(e.g., using erasure coding, replication, or RAID).
DITIS generates an output trace, accurately capturing the sequence
of file requests from the input trace but with a simulated duration
for each operation. Alongside, DITIS produces a detailed report
containing information and statistics about the workload execution
and the storage system (described in Section 3).

2.2 Simulation Process
Following the Actor Model, the key components of the system are
treated as actors (marked with ^ in Figure 1). These actors main-
tain their own private state, process messages received from other
actors, and send messages to other actors enabling asynchronous
message exchange, while respecting a simulation clock. This ap-
proach ensures the sequence and timing of events accurately reflect
those of a real distributed multi-threaded system. In DITIS, the
process for handling I/O requests begins when an Application con-
nects to an Access Module and sends a file request (e.g., a read
request) to the storage system. If the request can be served by the
Access Module (e.g., perform the read from the local cache), a re-
spond is sent back to the Application. Otherwise, the request is
forwarded to the appropriate File Home Module for processing.
The request can be completed there or forwarded as one or more
block requests to the appropriate Persistence Module(s). There, the
request is served from the appropriate storage pool and returned
upstream. While the requests are getting processed, all relevant
decisions are made by pluggable policies, such as cache admission,
eviction, and prefetching, tier migrations, block redundancy, etc.
At each step, the duration is calculated based on several pluggable
performance cost models, while taking into account the potential
concurrent execution of requests as well as resource contention.

2.3 Performance Cost Modeling
The performance cost models for all devices and network are de-
signed to be pluggable, thus making it easy to replace to accommo-
date different simulation needs or advancements in technology.

4394



Hard Disk Drive (HDD) modeling takes into account the seek
time, rotation time, and transfer time of the device as well as the
presence of a queue containing concurrent pending requests. In ad-
dition, it differentiates between sequential and random I/O requests
for more accurate cost modeling.

The Solid State Drive (SSD) model focuses on the steps involved
in processing data requests, including the decoding of I/O requests,
reading data from the flash array into the data register, and transfer-
ring this data to the I/O bus. It accounts for both single-page reads
and the handling of multiple pages. This model also considers the
queuing of requests and calculates wait times based on the current
load and pending operations.

Accessing data in DRAM involves multiple steps counted in clock
cycles. DRAM manufacturers specify the clock cycles needed for
these actions, including the number of clock cycles between getting
a request and having the data ready, the cycles to open a new row,
and the duration a row stays open for writing.

The network model accounts for network bandwidth for TCP
connections, considering packet losses due to network congestion.
It utilizes maximum segment size, round trip time, and packet
loss probability to determine transfer latency. In the presence of
concurrent transfers, the bandwidth is shared and the model adjusts
for the number of active connections to estimate data transfer rates.

3 DEMONSTRATION PLAN
The demonstration will showcase the key functionalities and bene-
fits offered by DITIS. The key functionalities include (i) uploading
and analyzing workload traces, (ii) creating storage and optimiza-
tion search space configurations, (iii) running simulations using
different storage configurations and traces, and getting extensive
reports about the simulation run, and (iv) running optimizations
using different storage configurations and custom search spaces
to find the best storage configuration that meets a given objective.
For the purposes of the demonstration, we will run DITIS on a
laptop, use production traces provided by Huawei Technologies,
and execute realistic scenarios as the ones described below.

3.1 Workload Analysis
The first demonstration part will show how a user can use DITIS
to gain insights for a given workload. DITIS supports uploading
workload traces of different formats, including SNIA IOTTA file
traces [11] as well as a custom format used by Huawei Technologies.
Upon uploading a new trace, users are able to visualize a detailed
analysis of their workload (shown in Figure 2), comprising: (i) a
distribution of the request types (e.g., read, write) appearing in
the workload; (ii) important performance metrics such as IOPS,
throughput, and latency per request type; (iii) the interleaving and
duration of concurrent applications that appear in the workload;
and (iv) a histogram of file sizes for the files accessed in the trace.

3.2 Simulation Analysis
Motivated by the real needs of both developers and operations
teams, DITIS can be used to evaluate the impact of different storage
setups and policies to a workload. For example, developers often
need to study how different caching or tiering policies will affect

Figure 2: Workload trace analysis view in DITIS

Figure 3: Storage configuration form in DITIS

the performance of the system under different workloads in or-
der to enhance user experience. Conversely, operations teams are
urged to evaluate various system adjustments, such as incorporat-
ing additional SSDs or expanding the memory cache, to improve
the workload performance and scalability. By adjusting the storage
configuration, users can attain their desired objectives while also
exploring diverse scenarios, all without the requirement of phys-
ically possessing the hardware. This approach offers a versatile
and streamlined testing environment, enabling users to experiment
with different setups and fine-tune their systems effortlessly.

A user can configure the simulator to match an existing or hy-
pothetical storage system by using the configuration form of the
interface shown in Figure 3. The form includes 131 parameters
organized in 13 categories configuring all aspects of a storage sys-
tem such as the network (e.g., bandwidth of frontend and backend
network), caches (e.g., size, performance characteristics, cache poli-
cies), storage tiers (e.g., number of devices per tier, tiering policies),
storage devices (e.g., type, size, performance characteristics), and
redundancy (e.g., erasure coding, replication) among others. Con-
figurations can then be saved and used for running simulations
in order to understand how the workload and the system would
behave under those circumstances.

4395



Figure 4: Simulation analysis report in DITIS

Running a simulation yields a comprehensive analysis report,
presenting various types of analyses, views, and graphs (e.g., pie,
bar, sankey) to provide insights at different levels of granularity
as shown in Figure 4. An indicative (non-comprehensive) list of
insights presented in the simulation analysis includes:
• Operation statistics (e.g., count, bytes, and time per operation)

for the overall workload and for each application, storage layer,
storage node, and module.

• Performance metrics (e.g., latency, throughput, IOPS) for the
overall workload and for each storage layer, node, and module.

• Cache statistics (e.g., hit ratio, byte hit ratio, precision, recall) for
cache admission, eviction, and prefetching for each cache.

• Data migration statistics revealing the distribution of counts and
bytes among the different storage tiers.

• Runtimes for each application, the overall workload, and the
various simulation stages.

3.3 Optimization Analysis
The primary goal of optimization analysis is to find the best storage
configuration that satisfies a workload or system objective. This
objective may vary depending on the real needs of developers and
operators. From a developer’s perspective, for example, one aim
is to identify the best default migration up and down policies that
maximize system throughput. On the other hand, an operator might
be interested in finding the best combination of fault tolerance con-
figuration and number of drives to minimize read latency. Currently,
DITIS supports 15 optimization objectives including maximizing
throughput and IOPS or minimizing latency.

With DITIS, users have the ability to define their own custom
search space for the optimization process. In particular, users can
select which configuration parameters they would like to include
in the search space, and for each parameter, they can define either
a list of values (e.g., LRU, LFU, and EXD for cache eviction in
the Access Layer), an arithmetic sequence (e.g., {3, 5, 7} storage
nodes), or a geometric sequence of values (e.g., {4, 8, 16} SSDs in
the warm storage tier). DITIS will then enumerate the full search
space as the Cartesian product of all parameter values and will
use one of three available search algorithms to explore the space:
grid search, recursive random search, and genetic algorithm. Hence,

Figure 5: Optimization analysis results in DITIS

users have full flexibility on both how to define and how to search
the parameter space of their interest.

Running an optimization generates a detailed comparative report
as well as identifies the storage configuration that optimizes the
desired objective. The report contains a table with all the configu-
rations that were executed along with a long list of performance
metrics per run (e.g., latency, throughput, cache hit ratio). The
user can also perform a slice and dice analysis to examine the re-
sults from different viewpoints as shown in Figure 5. Several tables,
bar charts, and box plots are generated according to user-selected
parameters that summarize the performance metrics showing dis-
tribution of values, min/max values, as well as median and mean
values. This process enables users to understand the impact of the
various configuration parameter values on the performance of the
workload and storage system.

REFERENCES
[1] Kenenbek Arzymatov, Andrey Sapronov, Vladislav Belavin, Leonid Gremyachikh,

Maksim Karpov, et al. 2020. SANgo: A Storage Infrastructure Simulator with
Reinforcement Learning Support. PeerJ Computer Science 2020, 5 (2020), 1–16.

[2] Bo Feng, Ning Liu, Shuibing He, and Xian He Sun. 2014. HPIS3: Towards a
High-performance Simulator for Hybrid Parallel I/O and Storage Systems. In
Proc. of the 9th Parallel Data Storage Workshop. IEEE, 37–42.

[3] Edson Ramiro Lucas Filho, Lambros Odysseos, Lun Yang, Kebo Fu, and Herodotos
Herodotou. 2022. DITIS: A Distributed Tiered Storage Simulator. Infocommuni-
cations Journal 14, 4 (2022), 18–25.

[4] Sebastien Gougeaud, Soraya Zertal, Jacques Charles Lafoucriere, and Philippe
Deniel. 2016. A Generic and Open Simulation Tool for Large Multi-Tiered
Hierarchical Storage Systems. Simulation Series 48, 8 (2016), 91–98.

[5] Julien Monniot, François Tessier, Matthieu Robert, and Gabriel Antoniu. 2022.
StorAlloc: A Simulator for Job Scheduling on Heterogeneous Storage Resources.
In European Conference on Parallel Processing. Springer, 211–222.

[6] Louis Marie Nicolas, Luis Thomas, Yassine Hadjadj-Aoul, and Jalil Boukhobza.
2022. SLRL: A Simple Least Remaining Lifetime File Evicition Policy for HPC
Multi-tier Storage Systems. In Proc. of the Workshop on Challenges and Opportu-
nities of Efficient and Performant Storage Systems (CHEOPS). ACM, 33–39.

[7] Junpeng Niu, Jun Xu, and Lihua Xie. 2018. Hybrid Storage Systems: A Survey of
Architectures and Algorithms. IEEE Access 6 (2018), 13385–13406.

[8] Alberto Núñez, Javier Fernández, Jose D. Garcia, Laura Prada, and Jesús Carretero.
2008. SIMCAN: A Simulator Framework for Computer Architectures and Storage
Networks. In Proc. of the 1st Intl. Conf. on Simulation Tools and Techniques for
Communications, Networks and Systems & Workshops, SimuTools. ICST/ACM, 73.

[9] Ramya Prabhakar, Erik Kruus, Guanlin Lu, and Cristian Ungureanu. 2011. EEff-
Sim: A Discrete Event Simulator for Energy Efficiency in Large-scale Storage
Systems. In IEEE Intl. Conf. on Energy Aware Computing (ICEAC). IEEE, 1–6.

[10] Cesar San-Lucas and Cristina L. Abad. 2016. Towards a Fast Multi-tier Storage
System Simulator. In Ecuador Technical Chapters Meeting (ETCM). IEEE, 1–5.

[11] SNIA 2024. SNIA IOTTA Repository. http://iotta.snia.org/. Accessed: 2024-03-24.

4396

http://iotta.snia.org/

	Abstract
	1 Introduction
	2 DITIS Simulator
	2.1 System Architecture
	2.2 Simulation Process
	2.3 Performance Cost Modeling

	3 Demonstration Plan
	3.1 Workload Analysis
	3.2 Simulation Analysis
	3.3 Optimization Analysis

	References

