
EncChain: Enhancing Large Language Model Applications with
Advanced Privacy Preservation Techniques

Zhe Fu
Alibaba Cloud

jeff.fz@alibaba-inc.com

Mo Sha
Alibaba Cloud

shamo.sm@alibaba-inc.com

Yiran Li
Alibaba Cloud

yiranli.lyr@alibaba-inc.com

Huorong Li
Alibaba Cloud

huorong.lhr@alibaba-inc.com

Yubing Ma
Alibaba Cloud

yubing.myb@alibaba-inc.com

Sheng Wang
Alibaba Cloud

sh.wang@alibaba-inc.com

Feifei Li
Alibaba Cloud

lifeifei@alibaba-inc.com

ABSTRACT
In response to escalating concerns about data privacy in the Large
Language Model (LLM) domain, we demonstrate EncChain, a pi-
oneering solution designed to bolster data security in LLM ap-
plications. EncChain presents an all-encompassing approach to
data protection, encrypting both the knowledge bases and user
interactions. It empowers confidential computing and implements
stringent access controls, offering a significant leap in securing
LLM usage. Designed as an accessible Python package, EncChain
ensures straightforward integration into existing systems, bolstered
by its operation within secure environments and the utilization of
remote attestation technologies to verify its security measures. The
effectiveness of EncChain in fortifying data privacy and security
in LLM technologies underscores its importance, positioning it as a
critical advancement for the secure and private utilization of LLMs.

PVLDB Reference Format:
Zhe Fu, Mo Sha, Yiran Li, Huorong Li, Yubing Ma, Sheng Wang, and Feifei
Li. EncChain: Enhancing Large Language Model Applications with
Advanced Privacy Preservation Techniques. PVLDB, 17(12): 4413 - 4416,
2024.
doi:10.14778/3685800.3685888

1 INTRODUCTION
Since late 2022, interest in Large Language Models (LLMs) [1] has
surged dramatically. ChatGPT, for instance, amassed over 100 mil-
lion active users within just two months of its launch, representing
an unprecedented technological uptake. The profound capabilities
of LLMs across diverse domains have catalyzed their widespread
adoption, integration efforts in various use cases, and demonstrated
substantial benefits in augmenting productivity and efficiency.

However, the rapid advancement of LLMs has highlighted sig-
nificant data security and privacy issues. These concerns are not
merely theoretical. In March 2023, the Italian Data Protection Au-
thority banned ChatGPT due to privacy concerns. In April, Samsung
was accused of leaking sensitive semiconductor data to ChatGPT
in three incidents over 20 days. By November, Microsoft prohib-
ited employees from using ChatGPT at work, blocking related AI

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685888

tools on company devices. These instances indicate a shift from
initial enthusiasm to a more measured approach, recognizing the
pronounced issues with LLMs in practical applications.

The aggregation of extensive knowledge bases and user queries,
often containing sensitive data, introduces substantial security vul-
nerabilities when processed by LLMs. Typical LLM applications,
such as third-party tailored domain-specific APIs, require signifi-
cant computational resources and specialized hardware, often fa-
voring cloud deployments. This setup introduces various security
threats, including data exposure due to negligence or malicious
service providers, multi-tenant architecture risks, and the potential
misuse of sensitive user data for model refinement. The lack of the-
oretical tools to mitigate the risk of LLMs inadvertently revealing
sensitive content further complicates the issue. As technological
applications deepen, data security emerges as a pivotal constraint
to the advancement of LLM technologies.

In this paper, we demonstrate the proposed EncChain—a novel
privacy preservation solution tailored for LLM applications, under-
pinned by confidential data handling practices. The strategic appli-
cation of EncChain significantly enhances data security measures
within LLM frameworks, diminishing the likelihood of unautho-
rized data access and exploitation. More specifically, EncChain
exhibits the following key attributes:
• Encrypted Knowledge Base and User Interactions: All knowl-
edge base and interaction records are encrypted using distinct keys
before leaving the secure perimeter, which ensures that information
remains perpetually in ciphered form, thereby precluding access to
its unencrypted counterpart, even for application architects.
•Confidential DataComputingCapability:EncChain provides
a suite of core functionalities, including confidential knowledge
base loading, confidential similarity search, confidential prompt
generation, and confidential large model inference. These capabili-
ties enable developers to handle and process encrypted data without
accessing plaintext, meeting the requirements for constructing busi-
ness logic while protecting data privacy and security.
• Fine-grained Access Control: Through rigorous access control,
EncChain enforces precise user permissions for knowledge bases.
By defining roles like “questioner” and “knowledge base owner”
and assigning access based on unique identifiers for these roles, it
mitigates unauthorized data access and potential exfiltration.
• Streamlined Integration and Application: As a Python pack-
age, EncChain offers straightforward integration into third-party
applications, facilitating adoption by allowing developers to easily
incorporate its features. This ease of use, combined with support

4413

mailto:jeff.fz@alibaba-inc.com
mailto:shamo.sm@alibaba-inc.com
mailto:yiranli.lyr@alibaba-inc.com
mailto:huorong.lhr@alibaba-inc.com
mailto:yubing.myb@alibaba-inc.com
mailto:sh.wang@alibaba-inc.com
mailto:lifeifei@alibaba-inc.com
https://doi.org/10.14778/3685800.3685888
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685888


for both encrypted and plaintext queries, significantly reduces the
complexity for developers new to the system.
•Execution Safety in Trusted Environments: EncChain and its
associated LLMs are deployable within trusted execution environ-
ments, leveraging advanced hardware security features to safeguard
virtual machine memory privacy and integrity. This setup ensures
that sensitive data is shielded from both the host operating system
and the virtual machine manager, enhancing operational security.
• Remote Attestation for Enhanced Trust: EncChain enables
the use of remote attestation technologies to confirm the security
and trustworthiness of the execution environments for itself and
the deployed LLM, providing users with additional confidence in
the security measures of LLM applications.

2 PRELIMINARIES
Retrieval Augmented Generation. RAG [3] architecture rep-
resents a significant advancement in addressing the challenge of
hallucination in LLMs, emerging as a dominant pattern in devel-
oping LLM applications, particularly enhancing logical reasoning
and data comprehension from private knowledge bases to augment
question-answering (QA) capabilities. It is pivotal in scenarios like
knowledge-based questioning and intelligent assistance. The RAG
framework involves segmenting private knowledge into embedding
vectors stored in a database. Upon receiving a question, the system
converts it into a vector, retrieves the most relevant knowledge via
vector similarity search, and merges this with the question to form
a comprehensive prompt for LLMs.
Trusted Execution Environment. TEEs [4, 5] provide a corner-
stone technology by offering secure and isolated execution spaces
within processors, enhancing the security of data and code against
potential threats from compromised operating systems or hypervi-
sors in the complex landscape of cybersecurity and data privacy.
Within this spectrum, Intel’s Trust Domain Extensions [2] (TDX)
serve as an evolved form of TEEs, tailored to bring their benefits
into the realm of virtualization. TDX introduces the concept of
trusted domains, in which virtual machines operate in isolation
with hardware-level protections. This innovation directly addresses
the intricate challenges of maintaining data privacy and security in
environments such as cloud computing and data centers.

3 EncChain SOLUTION
3.1 Threat Model
The RAG architecture in QA leads to two primary threats: unautho-
rized access and data exfiltration. Firstly, its reliance on plaintext
storage of knowledge bases and user queries permits developers un-
fettered access, creating a vector for data leaks in cases of malicious
intent or system compromise. Secondly, the architecture lacks rigor-
ous access controls, enabling users to potentially retrieve sensitive
information beyond their clearance through intentionally designed
queries. These threats collectively jeopardize data integrity and
confidentiality, necessitating an immediate implementation of en-
hanced security protocols to mitigate the risks of unauthorized
access and ensure the privacy protection of LLM applications.

3.2 Architecture Overview
The EncChain architecture, delineated in Figure 1 for LLM appli-
cation deployment, emphasizes security and operational integrity.

Web Browser

Confidential VM

EncChain
Service

LLM
Service

Guest OS

3rd-party
Application

Legacy VM

Guest OS

Firmware

Other
Hardware

Intel TDX
CPU

Hypervisor

Host OS

Client Terminal

GPT-4

Chatbot

Figure 1: The architecture of the EncChain demonstration.

It treats the client terminal as secure, encrypting data before it ex-
its, protecting it during transmission. Third-party applications are
hosted on virtual machines (VMs), establishing a clear operational
divide. EncChain and its models operate within secure virtual
environments utilizing advanced VM technologies like TDX for
enhanced runtime security. These environments are reinforced by
hardware security extensions, safeguarding virtual memory from
unauthorized access by the host OS and hypervisor. Third-party
applications leverage EncChain’s APIs for encrypted data interac-
tions and secure business logic development. Remote attestation
technology allows users to verify the security of EncChain and
LLM environments, adding a layer of trust. EncChain’s security
protocol includes data encryption at domain entry and exit, strict
access control, and the synergistic use of secure VMs and remote at-
testation, providing a robust framework for secure LLM application
deployment, addressing the critical need for data security.

3.3 Fine-grained Knowledge Control
EncChain enhances privacy attributes in LLM applications using
RAG-based private knowledge base inference through the key ac-
tion of leveraging fine-grained knowledge control. This innovation,
derived from Operon’s privacy-protected data management [6],
embodies the concept of the Behavior Control List (BCL). Specifi-
cally, EncChain allows “knowledge owners” to establish a binary
relationship between the “questioners” and the “knowledge bases.”
Upon the questioner posing a question, triggering the LLM’s infer-
ence, EncChain ensures that the search for relevant knowledge
vectors occurs exclusively within an authorized subset of vector
databases, generating answers based on this relationship. It solves
the issue traditionally addressed either by employing multiple dis-
tinguished LLM instances to segregate knowledge for privacy pro-
tection (sacrificing efficiency and increasing costs) or by utilizing
a single system but facing privacy risks. EncChain’s innovation
lies in its ability to protect privacy while optimizing the retrieval
and integration process of knowledge, thereby finding an effective
equilibrium between privacy security and knowledge utilization.

3.4 SystemWorkflow
We present the procedural workflow of EncChain through a spe-
cific example, as illustrated in Figure 2. In this scenario, we assume
four distinct roles: A knowledge base data owners; B question-
ers; C third-party software developers providing QA applications;
and D TEEs (e.g., cloud infrastructure) for deploying LLMs with
EncChain. We note that, in practical scenarios, A and B might
represent the same entity, or B could be a controlled party of A (for

4414



EncChain

1. Sam was born in … …

2. Sam graduated at … …

3. OpenAI was founded … …

'\x8229C… …F'

'\x311C6… …F'

'\x9298Z… …H'

Confidential Retrieval

Confidential Prompt 

Confidential Inference

encchain.retrieveFromDB('\x243')

encchain.generatePrompts(tmpl, '\x1C8')

encchain.getAnswserFromLLM('\x318')

encchain.addPermission('user_1', 'kb_1')

id content embedding

1 '\x8229C… …F' [\x43, \x62, …, \x8C]

2 '\x9298Z… …H' [\x72, \x44, …, \x5F]

3 … … … …

Trusted Env Untrusted Env

Ciphertext

Third Party LLM 
Application

'\x311C6… …F'

'\x8229C… …F'

'\x9298Z… …H'

Knowledge Permission

Knowledgebase

Plaintext
What is ChatGPT and OpenAI? 

LLM

1. Sam was born in … …

2. Sam graduated at … …

3. OpenAI was founded … …

1. Sam was born in … …

2. OpenAI was founded at … …

3. … … … …

User Query

Prompt: Answer the question

using the following pieces of context:

1. 

2. 

Vector DB for Cipher Embeddings

id user knowledgebase_id permission

1 Alice 498956a3-6d11 true

2 Alice c92ab7fe-ac6f false

3 … … … … … …

User-Knowledge Permissions

EncChain Core API

Confidential PromptB

A

C

D

1

7

2 5 6

8

4

9

3

Figure 2: An illustrative workflow of the EncChain. For simplicity, the figure omits 0 , which indicates the initialization phase.

instance, a sales Employee B of Company A authorized to inquire
about product information and receive answers, but not permitted
to ask questions related to the company’s finances). Similarly, C
and D could also be consolidated into a single entity, offering both
software applications and compute resources, depending on the
service model. Upon establishing the identities of the involved roles,
the workflow proceeds as follows:
0 : A first verifies the EncChain instance by utilizing TEE remote

attestation, ensuring that EncChain operates with confiden-
tiality and integrity. This enables the handing over of keys to
EncChain, allowing it to decrypt ciphertext within the TEE.

1 : A encrypts knowledge bases and uploads them to C , ensuring
that even a malicious C cannot comprehend the hosted info.

2 : C further hands over the uploaded knowledge bases into the
trusted domain via EncChain’s APIs.

3 : The uploaded knowledge bases are decrypted using the owners’
key, vectorized, and securely stored in the vector database.

4 : B poses a question that is encrypted with its own key before
being submitted to C . Similar to 0 , B also needs to submit
its key for EncChain to interpret its question upon attestation.

5 : C , unable to understand the question submitted in 4 , can only
retrieve relevant contextual knowledge through EncChain’s
Retrieve interface. Notably, at this stage, EncChain delineates
the appropriate subset of knowledge bases for B ’s query based
on User-Knowledge Permission. Knowledge vectors pertinent to
the question, retrieved by D , are returned to C encryptedly.

6 : C , following the desired business logic, constructs an appro-
priate prompt and requests EncChain for LLM inference.

7 : D decrypts the request’s ciphertext by the questioner’s key of
B within the TEE and carries out the LLM inference process.

8 : D returns the model inference output to C in encrypted form.
9 : C returns the encrypted response to B , who then uses its

own key to decrypt and obtain the answer to the question.

4 DEMONSTRATION
During the demonstration, wewill present to the audience a compre-
hensive, end-to-end framework for live deployments of LLM appli-
cations, emphasizing privacy safeguards for proprietary knowledge
bases and rigorous permission control, facilitated by EncChain.

1 from EncChain import OpenSourceApp
2 # Create a chatbot instance with built -in opensource LLM
3 app = OpenSourceApp(permissions=permissions.db, ...)
4
5 # Register a knowledage base owner with its owner 's key
6 owner_id = app.permissions.add_owner(owner_name , key)
7
8 # Insert a knowledge base into EncChain 's vector database
9 kb_id = app.add_kb(data_type , enc_knowledge_body)
10 # Designate the ownship of the hosted knowledge base
11 app.permissions.add_kb(owner_id , kb_id)
12
13 # Register a questioner with its user's key
14 user_id = app.permissions.add_user(user_name , key)
15 # Grant permissions to the user for the knowledage base
16 app.permissions.add_policy(user_id , kb_id , owner_sig)
17 # Answer the question encryptedly with the user's key
18 app.query(enc_question , user_id)

Figure 3: Usage examples of the EncChain Python Library.

4.1 Python Library
First, we elucidate the process by which backend developers can
adeptly and seamlessly initiate a hardware-secured LLM instance,
utilizing the Python library provided by EncChain, complemented
by illustrative code excerpts in Figure 3. EncChain offers a flex-
ible, modular design, while also allowing for the instantiation of
a confidential LLM instance in its default mode (line 3), which
constructs a built-in open-source model. Due to space constraints,
we omit a detailed discussion of additional construction parame-
ters, such as those based on an existing permission database. Data
owners should, under the assurance of instance trustworthiness,
submit their keys to the instance’s permission table (line 6). Sub-
sequently, data owners can host their privately held knowledge
on EncChain (line 9), encrypted with the owner’s key, for future
model inferences during QA sessions. Specifying the ownership of
knowledge bases is essential for EncChain to determine which key
to use for decrypting knowledge within the TEE for embedding
and further knowledge integration (line 11). Similarly, questioners,
upon verifying the instance’s credibility, should submit their unique
keys (line 14). These keys are utilized to decrypt their encrypted
queries and to encrypt answers to their questions. Before posing
questions, it is imperative to ensure that users are authorized to use
specific knowledge bases as context for generating answers, a pro-
cess that requires the owner’s signature for authorization (line 16).
Thereafter, users may encrypt their queries using the previously

4415



EncChain Help About🔒🔗

A B

C

D

E

Figure 4: Screenshot of a sample chatbot application using EncChain.

registered key, with the entire LLM inference process remaining
protected within the TEE (line 18). Answers are then encrypted
using the same key and returned to the user.

4.2 Web User Interface
Second, we will display a browser-based user interface for end-
users, as depicted in Figure 4, which focuses on the secure inte-
gration of private knowledge bases into the encrypted LLM in-
ference processes, ensuring a trusted deployment environment.
Similar to Section 4.1, initiating QA sessions via the web interface
necessitates completing essential preliminary steps, including A
connecting to the service instance and performing remote authen-
tication, B creating user roles, C uploading knowledge bases, and
D granting permissions for users’ access to specific knowledge
bases. Following these preparatory activities, users can engage with
E for privacy-protected third-party QA applications. The interface
reveals that both queries and their corresponding responses are en-
crypted throughout the entire data pipeline, effectively eliminating
the possibility of privacy breaches, with decryption to plaintext
occurring only on the user’s client side. Of course, this explicit
encryption and decryption on the client side is for demonstration
purposes and could be transparent to users.

4.3 Implementation Details
The demonstration encompasses approximately 2000 lines of Python
code, utilizing the LangChain framework1 for optimized data seg-
mentation and retrieval. It also incorporates Chroma DB2 for text
vectorization and enhanced similarity search capabilities, GPT4All3
for local open-source LLM inference, and Gradio4 for the web in-
terface. The deployment infrastructure for this demonstration is
hosted on Alibaba Cloud, utilizing both regular ECS instances and
TDX-enhanced confidential VM instances. Regarding performance,

1https://github.com/langchain-ai/langchain
2https://github.com/chroma-core/chroma
3https://github.com/nomic-ai/gpt4all
4https://github.com/gradio-app/gradio

the end-to-end latency experiences a 0.3%-1.5% increase, which
mainly results from the data encryption/decryption and module-to-
module data transmission within EncChain. This amalgamation
of technologies and methodologies signifies a holistic strategy in
constructing a secure, efficient, and scalable infrastructure for so-
phisticated data processing and analytical endeavors.

5 CONCLUSION
EncChain emerges as a vital enhancement in addressing privacy
concerns within LLM applications, especially tailored for RAG-
based private knowledge deployment scenarios. It uniquely com-
bines high-quality model inference, flexible delegated computation,
robust privacy protection, and ease of use into a cohesive solution.
This innovation not only strengthens the privacy framework for
LLM applications but also facilitates their scalable and secure inte-
gration into clouds. Thereby, it enables organizations to leverage
advanced AI capabilities without compromising data security.

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, et al. 2020.
Language Models are Few-Shot Learners. In NeurIPS, Vol. 33. 1877–1901.

[2] Intel. 2023. White Paper: Intel Trust Domain Extensions. https://www.intel.com/
content/www/us/en/developer/tools/trust-domain-extensions/overview.html.

[3] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. In NeurIPS, Vol. 33. 9459–9474.

[4] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted Execution Environment: What It is, and What It is Not. In TrustCom/Big-
DataSE/ISPA (1). IEEE, 57–64.

[5] Mo Sha, Jialin Li, Sheng Wang, Feifei Li, and Kian-Lee Tan. 2023. TEE-based
General-purpose Computational Backend for Secure Delegated Data Processing.
Proc. ACM Manag. Data 1, 4 (2023), 263:1–263:28.

[6] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan
Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, Xuntao Cheng, Xiaolong Xie, and
Yu Zou. 2022. Operon: An Encrypted Database for Ownership-Preserving Data
Management. Proc. VLDB Endow. 15, 12 (2022), 3332–3345.

4416

https://github.com/langchain-ai/langchain
https://github.com/chroma-core/chroma
https://github.com/nomic-ai/gpt4all
https://github.com/gradio-app/gradio
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 EncChain Solution
	3.1 Threat Model
	3.2 Architecture Overview
	3.3 Fine-grained Knowledge Control
	3.4 System Workflow

	4 Demonstration
	4.1 Python Library
	4.2 Web User Interface
	4.3 Implementation Details

	5 Conclusion
	References

