
Mach: Firefighting Time-Critical Issues in Complex Systems
Using High-Frequency Telemetry

Franco Solleza
Brown University

franco_solleza@brown.edu

Shihang Li
University of Washington
shli@cs.washington.edu

William Sun
Brown University

william_sun@brown.edu

Richard Tang
Brown University

richard_tang@brown.edu

Malte Schwarzkopf
Brown University

malte@cs.brown.edu

Nesime Tatbul
Intel Labs and MIT
tatbul@csail.mit.edu

Andrew Crotty
Northwestern University

andrew.crotty@northwestern.edu

David Cohen
Intel

david.e.cohen@intel.com

Stan Zdonik
Brown University
sbz@cs.brown.edu

ABSTRACT
To understand the complex interactions in modern software, engi-
neers often rely on high-frequency telemetry (HFT) data generated
via tools like eBPF. However, today’s database systems are too slow
for HFT’s rate and volume and cannot process HFT within the
limited resources available on individual host machines.

Mach is a new storage engine for collecting and querying HFT.
Key to Mach is the Temporal Skip Log (TSL)—a lightweight, write-
optimized, log-based data structure specialized for HFT. Mach sup-
ports high ingest rates andmakes data immediately queryable while
operating within a limited on-host resource envelope.

Our demo shows how Mach helps engineers collect and query
HFT in near real-time when diagnosing performance problems.
In contrast, current systems and data reduction techniques fail to
keep up. While a widely used time series database (InfluxDB) drops
much of the HFT, the audience will see how Mach loses no data
and allows them to interactively explore HFT from application and
kernel events as they arrive.

PVLDB Reference Format:
Franco Solleza, Shihang Li, William Sun, Richard Tang, Malte Schwarzkopf,
Nesime Tatbul, Andrew Crotty, David Cohen, and Stan Zdonik. Mach:
Firefighting Time-Critical Issues in Complex Systems Using
High-Frequency Telemetry. PVLDB, 17(12): 4425 - 4428, 2024.
doi:10.14778/3685800.3685891

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fsolleza/mach-vldb.

1 INTRODUCTION
When managing system deployments, engineers frequently need to
“firefight” in deployment scenarios like system outages, bug reports,
and performance regressions. Because deployments are complex,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685891

many scenarios involve subtle interactions between components
across different layers in the stack. For example, this demo covers
one such issue where processes interfere due to OS scheduling
decisions. During these firefighting scenarios, engineers go through
a data-centric, iterative, human-in-the-loop process to reason about
the system’s state. They rely on their knowledge of the system
infrastructure to formulate hypotheses and then verify them by
correlating available data in real-time while iteratively drilling
down to the issue’s root cause.

In real-world settings, engineers typically face two main chal-
lenges. First, monitoring, logging, and tracing data—collectively
referred to as “telemetry”—available from telemetry collection tools
are often insufficient to characterize complex interactions. Typi-
cal telemetry collection tools rely on coarse-grained sampling or
aggregation techniques to keep up with the vast amount of teleme-
try that the system generates. Although aggregate and sampled
data provide a high-level overview of system state, they are less
useful for diagnosing specific issues. Second, to address the lack of
fine-grained data, engineers usually begin collecting high-frequency
telemetry (HFT) using tools like perf, tcpdump, or bpftrace after
learning of an issue. In modern systems, HFT is ubiquitous: an
in-memory key-value store can generate millions of operations per
second; multi-threaded applications cause millions of systems calls
per second; and fine-grained hardware event sampling (e.g., branch
mispredictions) is common in tools like perf and VTune.

In this demo, we show that even a basic key-value store appli-
cation already generates as many as 1M events per second, with
the Linux kernel adding another 150K scheduler events per second.
By design, current HFT collection tools specialize to capture and
summarize HFT from a single, specific source. Some tools build
in analyses to keep up with HFT: most bpftrace tools output his-
tograms of the needed telemetry, discarding data afterward. Other
tools take a record-then-analyze approach: an engineer might run
perf record for some time and then use perf report to analyze
the captured data. However, this approach leaves the engineer in
the dark about whether they actually captured any relevant data
from a potentially intermittent event.

Thus, using the specialized, siloed HFT tooling available to them
today, engineers cannot easily identify complex correlations across

4425

https://doi.org/10.14778/3685800.3685891
https://github.com/fsolleza/mach-vldb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685891
https://www.acm.org/publications/policies/artifact-review-and-badging-current

components in real-time. Instead, they rely on fuzzy mental map-
ping to perform these time-based correlations.Wouldn’t it be nice to
store HFT from various sources in a single location that an engineer
could then query to quickly diagnose the issue?

Mach [8] is a storage system for fine-grained HFT collected from
across the entire system stack. It targets time-critical deployment
scenarios where current systems fall short, keeping up with HFT
generating millions of events per second and responding to queries
about newly arrived data at interactive speeds. Mach empowers
engineers to freely add arbitrary HFT sources, read HFT in near real-
time when firefighting, and write custom analyses on top of Mach’s
API primitives. Using Mach makes it simple to temporally correlate
HFT across layers of the stack, accelerating the human-in-the-loop,
iterative hypothesis-testing process.

This demo shows Mach in action through a realistic firefighting
scenario. In our scenario, an engineer needs to urgently understand
the root cause of an intermittent performance regression in a key-
value store application caused by subtle resource contention with
a CPU-intensive machine learning (ML) workload. To drill down
to the root cause, the engineer collects and queries HFT from the
application and the kernel. As Mach is designed to ingest and query
HFT under limited resources in deployment environments, the
engineer can interact with HFT in near real-time, guiding them
to the root cause of a problem without having to rely on data
aggregation or sampling that may mask the underlying issue.

2 RELATED WORK
Time series databases (TSDBs) like InfluxDB [2] target general
time-oriented data processing tasks and usually assume a separate
deployment with dedicated resources, rather than operating on-
host within a limited resource footprint.

Ingest-optimized systems like FasterLog [1] focus on the actual
ingestion and storage of data, assuming that analytical queries occur
offline. To support fast ingest, they avoid organizing the ingested
data for fast querying. Mach, on the other hand, enables real-time
querying via a lightweight indexing scheme.

Several near real-time systems support specific, specialized use
cases. IoTDB is designed for ingesting numeric sensor measure-
ments from many sources [10]. FishStore scales out indexing predi-
cates on JSON data via multi-threading [4]. Its design is ill-suited
for low-resource settings like on-host telemetry processing. In the
HFT use case, predicate indexing is an unnecessary cost: engineers
add exactly the HFT they wish to observe. Other systems leverage
telemetry to address database monitoring use cases: Sentinel [6] ex-
tracts information from logging libraries to help users reason about
system behavior, without storing these logs for further drill-downs;
and Dendrite [7] extracts metrics from logs, libc, and the OS to
help define heuristics for self-driving database systems.

Unlike these systems,Mach focuses on ingesting large volumes of
ad hoc HFT to be queried quickly and with high resource-efficiency.

3 MACH
Deployments of Mach link it as a library within a monitoring dae-
mon (Figure 1). The monitoring daemon is a telemetry endpoint like
OpenTelemetry Collector [3] that receives data from user-space

Temporal Skip
Log(s)

HFT Sources

Mach
LibraryIngress

Queries

Host Machine
Monitoring Daemon

Storage

Figure 1: Mach is a library within a monitoring daemon run-
ning on a host. HFT sources send data to the monitoring
daemon, which invokes Mach to store data. Querying clients
use Mach’s API to request data for a time range.

In memory
MMB

Full
block

TSL File N

A
B

Sources

Persisted
C

Figure 2: At A○, a TSL writes a record into a main memory
block (MMB), which contains records from multiple sources.
A storage thread persists a full MMB into a fixed-sized TSL
file (B○). Each record contains an address of its source’s prior
record, so queries can skip records from other sources (C○).

applications instrumented by developers, kernel probes (e.g., a pro-
cess collecting eBPF events), or hardware events (e.g., via perf).
The daemon calls Mach’s API to write HFT records into Mach.
Mach writes these records into the Temporal Skip Log (TSL; §3.2),
which organizes and persists data locally on the host or remotely
in off-host storage (e.g., HDFS, Kafka). A user then queries Mach
for records in a time range across multiple sources using Mach’s
align query primitive.

3.1 Mach’s API
Mach exposes two key API calls: push adds a new record, and align
queries one or more sources by time range.

Mach::push(source, timestamp, bytes) pushes a record from
source into Mach. timestamp indicates the record’s timestamp and
bytes correspond to the data pushed. Arrival timestamps must be
monotonically increasing for append-only writes. The monitoring
daemon adds sources dynamically: it may choose to push applica-
tion request latency first, and start pushing system call events later.
To create a new source, the caller pushes the source’s first record.

Mach::align([sources], time_range) returns an iterator over
records from the set of sources within the time_range. It aligns
the records by timestamp, iterating over them in descending or-
der. The telemetry collector uses this iterator to perform custom
correlations and analyses. align differs from temporal joins [5]
in TSDBs, which match tuples in the same temporal interval from
different temporal relations. In contrast, Mach’s align is more akin
to taking the union of two temporal relations and sorting the result
by timestamp, interleaving data from different sources into a single
timeline. Mach’s align—as opposed to a join operator—makes it
possible to optimize Mach’s internals for HFT, although temporal
joins can still be implemented atop the align primitive.

4426

3.2 Temporal Skip Log (TSL)
The TSL is an append-only log that organizes time series from mul-
tiple sources (Figure 2). Records added to a source receive unique
addresses in the TSL and link to older records via their addresses,
creating a reverse chronological view.

The TSL is arranged as a sequence of fixed-size blocks. It holds
two blocks of recent data in memory (MMBs) while the remaining
blocks reside sequentially in index files in persistent storage. The
address of a newly inserted record is its position in the current
block, plus the combined size of the previous blocks. The TSL can
therefore efficiently identify the block for any record using only the
record’s address. Mach maintains one or more TSLs and manages
their addresses internally. The client application interacts with the
data in the TSLs using Mach’s align and push APIs.

Efficient Writes. To operate within resource limits, the TSL
needs to maintain a fixed memory footprint and perform constant
work for each record pushed. To achieve this, the TSL uses fixed-size
MMBs and amortizes the cost of flushes to persistent storage.

On construction, the TSL allocates two empty MMBs, selects one
as the current MMB, and starts a background thread that flushes
full MMBs to persistent storage. When a client pushes a record,
Mach appends it to the TSL’s current MMB after a 32-byte header
(A○ in Figure 2). This operation is efficient, since it simply copies
the record into the MMB.

If there is insufficient room in the current MMB, the TSL passes
the current MMB to the background flushing thread and writes
to the second MMB. The background thread flushes full MMBs in
parallel (B○ in Figure 2).

For CPU-bound workloads, the background thread will finish
flushing a MMB before the ingest thread fills the other MMB, and
ingestion proceeds normally. If the workload is I/O-bound, the in-
gest thread blocks waiting for one of the two MMBs to be persisted.
In other words, the TSL applies backpressure when I/O falls be-
hind, which avoids Mach wasting cycles on retries. This design also
simplifies coordination between the pushing and flushing threads,
requiring only a simple update of a shared pointer.

Efficient Reads. Internally, Mach maintains the address of the
latest record for each source. It uses the TSL to iterate over a source’s
records in reverse insertion order when reading. This provides two
key advantages. First, it prioritizes access to the most recently
inserted records, enabling low-latency querying. Second, it allows
Mach to skip records more flexibly and at a finer granularity than
with data partitioning or zone maps.

To iterate over records for a source,Mach returns the latest record
and then iteratively reads the previous record’s address to traverse
the TSL (illustrated in C○ in Figure 2). The client library stops
iteration using a higher-order criterion (like a minimum timestamp)
or when the source has no more records.

Mach interleaves records from multiple sources in the same TSL
block. Knowing the previous address allows the iterator to skip
irrelevant records and blocks, which speeds up queries and reduces
CPU footprint (inspiring the Temporal Skip Log name). This design
yields benefits in Mach’s target workloads that mix data from high-
rate and low-rate sources [9].

For any record address 𝑎, the TSL must support reading from
both persisted and in-memory blocks. Because index file sizes are

fixed (size𝑀), the TSL determines whether 𝑎 resides in memory or
in an index file by comparing 𝑎/𝑀 with the total index file count.
If the record is in a file, it can be read at offset 𝑎 mod𝑀 . Otherwise,
read attempts to read this record in a MMB.

Read-Write Coordination. Reading from MMBs requires care-
ful coordination because it may race with MMB reuse that occurs
when the TSL flushes MMBs and returns them to the ingest thread.
To safely read a record, the TSL performs a lightweight MMB snap-
shot. The TSL maintains 𝐶 , a version counter incremented during
reuse, and 𝑜 , the last inserted record’s offset in the head MMB. The
query thread reads the version counter𝐶’s value, then makes a copy
of the MMB’s contents up until offset 𝑜 plus the size of the record.
The reader reads 𝐶 again after copying the data and compares the
new value with the value loaded at the beginning of the read. If
the values differ, a concurrent MMB reuse occurred. MMB reuse
implies the record in question was persisted, so the query proceeds
to read from persistent storage.

4 DEMO DESCRIPTION
The demo scenario mimics a realistic deployment running a latency-
critical key-value store application and a compute-intensive ma-
chine learning (ML) workload on the same machine. An engineer
receives a notification that some clients are experiencing intermit-
tent drops in query throughput measured in queries per second
(QPS). The demo shows that quickly ingesting and querying HFT
is critical in diagnosing these complex scenarios and how Mach
plays a key role in the firefighting process. Since existing telemetry
collection tools and TSDBs either mask, hide, or fail to capture crit-
ical information for debugging, the audience sees how an engineer
using Mach can effectively diagnose these problems in real-time.

Audience members participate as if they are the engineer in the
firefighting scenario, viewing the collected HFT data via a web-
based UI served from a Rust backend that queries: (i) InfluxDB as
a representative baseline; and (ii) Mach. Since summary statistics
are ubiquitous and most systems easily support them, engineers
will often look first at a QPS summary visualization similar to 1○ in
Figure 3. The blue line indicates QPS over the past 30 seconds. We
annotated Figure 3 with points of interest (black arrows) that would
prompt further investigation from an engineer. In the aggregate
case 1○, however, it is quite difficult to tell these dips apart from
regular fluctuations in system performance. Therefore, the engineer
needs more fine-grained HFT data to diagnose the problem.

The demo then walks through the engineer’s steps to identify-
ing the root cause of these periodic throughput drops. The next
step involves collecting additional per-query application events
(e.g., latency, query runtime) and aggregated summary statistics,
which the audience can enable using the controls in 2○. This data
is high-volume (about 1M events per second) and must be collected
continuously, since the engineer does not know the next time that
the issue will occur (e.g., within a few seconds, a few minutes, or
a few hours). Collecting HFT and scanning the visualizations for
patterns allows the engineer to iteratively formulate a hypothesis
about the source of the intermittent decrease in QPS and validate
this hypothesis by aggregating the HFT in different ways. In our sce-
nario, the engineer eventually determines that the issue is localized
to two CPU cores (green and red lines, other cores in gray).

4427

Figure 3: In 1○, summary statistics fail to clearly show the performance regression. An engineer can add HFT sources via 2○.
When enabled, 3○ shows howmuch data is dropped: InfluxDB drops 90% of the data while Mach keeps up. As a result, InfluxDB’s
data does not have enough detail to characterize the performance regressions (4○). Using Mach (5○), HFT demonstrates the
issue: it occurs in two CPU cores (green and red lines) due to the same interfering application (orange triangles). InfluxDB
misses these rare events as fewer than 20 events in about 1M records cause the performance regressions.

The audience will also see how InfluxDB cannot keep up with
HFT data, potentially leading to erroneous conclusions. The drop
percentage visualization (3○ in Figure 3) shows that InfluxDB drops
nearly all of the HFT data it receives, while Mach drops none. Hence,
InfluxDB’s remaining data points are difficult to discern from noise
4○. At best, the engineer is left with no clear understanding; at
worst, it might lead to the assumption that the issue is “just noise”
in the system. The complete picture that Mach provides clearly
shows separate drops in QPS in individual CPUs 5○, annotated
with black arrows that correspond to the dips from the original
summary visualization 1○. This fine-grained breakdown fromMach
highlights two key points: (1) the initial aggregated visualization
partially masked the issue because it counted QPS over all CPU
cores; and (2) the clients only experience the issue when the OS
schedules the ML workload on the same core as the key-value store.

With this more detailed view, the engineer can correctly deduce
that a CPU-intensive task is periodically scheduled on the same
core, and audience members can again use the controls 2○ to add
scheduler events from in-kernel instrumentation to verify this hy-
pothesis. Since systems like InfluxDB cannot keep up with the high
volume of HFT, engineers typically need to use another suite of
tools (e.g., perf, BPF, tcpdump) for collecting kernel-level data, but
splitting HFT collection across many different tools makes it dif-
ficult to correlate data from disparate sources to diagnose issues
in real-time. Specifically, the engineer in our scenario would like
to correlate scheduler events (about 150K events per second) with
the previously observed CPU behavior. Mach facilitates this type
of analysis by keeping up with both data sources and allowing the
engineer to query them from within a single system.

TheMach visualization 5○ in Figure 3 confirms the engineer’s hy-
pothesis: scheduler events for a process named matmul-workload
correspond to drops in QPS on specific CPU cores. Out of all the
collected HFT data (about 1.1M events), fewer than 20 such events

occurred during the relevant time period. These “needle-in-the-
haystack” issues are nearly impossible to identify with traditional
tools because rare events are lost by storage engines that rely on
sampling, pre-aggregation, or dropping data. As shown in 4○, In-
fluxDB fails to help the engineer diagnose the root cause because it
misses all of the rare events.

The engineer can now take actionable steps to address the issue.
In the short term, they can pin the key-value store application
to other CPU cores to avoid this contention. Longer term, they
can reach out to the team managing the interfering process to
coordinate better resource utilization of the shared machine.

ACKNOWLEDGMENTS
This work was supported by a gift from Intel and by a Microsoft
Grant for Customer Experience Innovation.

REFERENCES
[1] [n.d.]. FasterLog. https://microsoft.github.io/FASTER/docs/fasterlog-basics/
[2] [n.d.]. InfluxDB. https://www.influxdata.com/
[3] [n.d.]. OpenTelemetry Collector. https://opentelemetry.io/docs/collector/
[4] Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Kossmann. 2019. Fish-

Store: Fast Ingestion and Indexing of Raw Data. PVLDB 12, 12 (2019), 1922–1925.
[5] Dengfeng Gao, Christian S Jensen, Richard T Snodgrass, and Michael D Soo.

2005. Join Operations in Temporal Databases. VLDB J. 14 (2005), 2–29.
[6] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Daniel Vogel, and Jian

Zhao. 2020. Sentinel: Understanding Data Systems. In SIGMOD. 2729–2732.
[7] Brad Glasbergen, Fangyu Wu, and Khuzaima Daudjee. 2021. Dendrite: Bolt-on

Adaptivity for Data Systems. In SIGMOD. 2726–2730.
[8] Franco Solleza, Andrew Crotty, Suman Karumuri, Nesime Tatbul, and Stan

Zdonik. 2022. Mach: A Pluggable Metrics Storage Engine for the Age of Observ-
ability. In CIDR.

[9] Goutham V. 2017. How and Why Prometheus’ New Storage Engine Pushes
the Limits of Time Series Databases. https://youtu.be/C4YV-9CrawA?si=
S6poj7qBUu2LS3UR Talk at DockerCon EU 2017.

[10] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan,
Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series Database
for Internet of Things. PVLDB 13, 12 (2020), 2901–2904.

4428

https://microsoft.github.io/FASTER/docs/fasterlog-basics/
https://www.influxdata.com/
https://opentelemetry.io/docs/collector/
https://youtu.be/C4YV-9CrawA?si=S6poj7qBUu2LS3UR
https://youtu.be/C4YV-9CrawA?si=S6poj7qBUu2LS3UR

	Abstract
	1 Introduction
	2 Related Work
	3 Mach
	3.1 Mach's API
	3.2 Temporal Skip Log (TSL)

	4 Demo Description
	Acknowledgments
	References

