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ABSTRACT
Federated Learning (FL) addresses the challenges posed by data
silos, which arise from privacy, security regulations, and owner-
ship concerns. Despite these barriers, FL enables these isolated
data repositories to participate in collaborative learning without
compromising privacy or security. Concurrently, the advancement
of blockchain technology and decentralized applications (DApps)
within Web 3.0 heralds a new era of transformative possibilities in
web development. As such, incorporating FL into Web 3.0 paves the
path for overcoming the limitations of data silos through collabora-
tive learning. However, given the transaction speed constraints of
core blockchains such as Ethereum (ETH) and the latency in smart
contracts, employing one-shot FL, which minimizes client-server
interactions in traditional FL to a single exchange, is considered
more apt for Web 3.0 environments. This paper presents a prac-
tical one-shot FL system for Web 3.0, termed OFL-W3. OFL-W3
capitalizes on blockchain technology by utilizing smart contracts
for managing transactions. Meanwhile, OFL-W3 utilizes the Inter-
Planetary File System (IPFS) coupled with Flask communication,
to facilitate backend server operations to use existing one-shot FL
algorithms. With the integration of the incentive mechanism, OFL-
W3 showcases an effective implementation of one-shot FL on Web
3.0, offering valuable insights and future directions for AI combined
with Web 3.0 studies.
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1 INTRODUCTION
Federated Learning (FL) [7] marks a pioneering shift in machine
learning, enabling collaborative model training directly within data
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silos. This innovative approach allows for the collaborative train-
ing of models across various data silos, safeguarding the privacy
of local data while simultaneously building robust global models.
Concurrently, the emergence of Web 3.0 revolutionizes our digi-
tal interactions and online value exchange mechanisms. Powered
by blockchain technology and decentralized applications (DApps),
Web 3.0 introduces significant breakthroughs in distributed video
platforms and cloud storage services. Therefore, merging FL with
Web 3.0 introduces novel pathways for data silos to practically en-
gage in the collaborative machine learning process with incentives.

Standard FL algorithm FedAvg [7] requires a multitude of com-
munication rounds for effective global model training, leading to
considerable communication overhead, increased privacy risks, and
a greater demand for fault tolerance. One-shot FL approaches [5, 6,
10], which streamline client-server communication into a solitary
round, offer a promising yet complex solution to mitigate these
challenges with a tolerable impact on global model quality. Addi-
tionally, within the context of Web 3.0 applications, the transaction
speed limitations of contemporary commercial blockchains such as
Ethereum (ETH) [9], coupled with the high transaction costs (e.g.,
gas fees) on Web 3.0, render one-shot FL a viable option.

The practical implementation of one-shot FL on Web 3.0 en-
counters two significant challenges. Firstly, given that Web 3.0
research is still in its nascent stages, the fusion of Web 3.0 and
FL, including the functionality and roles within this integration,
remains an ambiguous issue. Secondly, considering the substantial
gas fees [3] associated with transactions on ETH, it necessitates the
simplification of smart contract designs. In other words, complex
operations and the storage of models within smart contracts should
be minimized to manage costs effectively.

To solve these challenges, in this demonstration, we present OFL-
W3, a novel one-shot Federated Learning (FL) system optimized
for Web 3.0. OFL-W3 categorizes data silos into two roles: model
buyers, who lead the one-shot FL process and supply tokens for
robust models, and model owners, who use their private data to con-
tribute models to the one-shot FL process in exchange for tokens.
To address storage and smart contract complexity challenges on
Web 3.0, we leverage the Inter-Planetary File System (IPFS) [2] for
efficient model sharing. Furthermore, we employ PFNM [10] as the
one-shot FL algorithm and Leave-one-out as the incentive mecha-
nism for illustration. To showcase our system, OFL-W3 includes a
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distributed application (DApp) built with React for the front end
and Flask for backend services, integrated with the Google Chrome
browser and MetaMask wallet extension. This configuration en-
ables model owners to participate in the FL system and receive
token rewards with no prior blockchain or Web 3.0 knowledge,
while model buyers can access decentralized models to build robust
global models, while maintaining data privacy and security. Our
contribution can be summarized as follows.

Our system offers a user-friendly DApp that allows data silos to
participate in the one-shot FL learning system, either as model buy-
ers or model owners. Designed for simplicity and ease of use, OFL-
W3 enables anyone, regardless of their knowledge of blockchain or
Web 3.0, to share their models or obtain high-quality ML models.

2 RELATEDWORKS
One-shot Federated Learning. One-shot Federated Learning (FL)
represents a cutting-edge and promising avenue of research, dis-
tinguished by its notably low communication cost. The initial ex-
ploration into one-shot FL [6] presents a method that aggregates
local models into an ensemble to formulate the final global model,
followed by the application of knowledge distillation utilizing pub-
lic data. Researchers introduce PFNM [10], a Bayesian probabilistic
framework specifically tailored for multi-layer perceptrons. Lastly,
FedOV [5] ventures into tackling cases of label skew, marking an-
other step forward in the evolution of one-shot FL approaches.
Blockchain-enabled Federated Learning. Blockchain-enabled
Federated Learning (FL) has conventionally addressed the privacy
and security challenges inherent in FL frameworks. For instance,
Blockchain-based PPFL [1] leverages blockchain technology to
trace models and prevents tampering by unauthorized individuals.
BlockFlow [8] addresses concerns related to dishonest participants
by employing blockchain and consensus mechanisms.

These approaches to FL for Web 3.0 have certain limitations,
including their dependency on local blockchains, lack of public
code, which hinders system evaluation, and potentially inaccurate
estimated gas fees for contemporary commercial blockchains on
Web 3.0. The absence of DApps restricts engagement to Web 3.0
specialists. Additionally, sharing models directly on the blockchain,
as seen in several studies, increases numerical execution costs on
smart contracts, challenging their widespread adoption. Moreover,
relying on traditional FL algorithms introduces substantial overhead
from multi-round communication over the blockchain.

3 SYSTEM
3.1 System Overview
As shown in Fig. 1, OFL-W3 consists of the following two enti-
ties. Model Buyers. Model buyers have demands for high-quality
ML models. They aggregate the shared models on a one-shot FL
algorithm through OFL-W3 to improve model quality.
Model Owners.Model owners can participate in model aggrega-
tion via OFL-W3, which requires sufficient incentives. Note that the
models may come from the local training if the model owner also
performs as the data owner, or fine-tuned/transferred from existing
backbone models on their own techniques.

In our system, model buyers benefit from improved model qual-
ity via the one-shot FL paradigm, at the cost of spending digital

Figure 1: The System Overview of OFL-W3.

tokens, including transaction fees or gas fees. Model owners gain by
acquiring tokens, but face costs from training models with private
data or adapting existing models, in addition to gas fees.

1 pragma solidity ^0.8.7;

2 contract CidStorage {

3 uint256 public cidCount;

4 ...

5 function uploadCid(string memory cid) public {

6 cids[cidCount] = cid;

7 cidCount ++;

8 emit CidUploaded(cid);}

9 ...

10 function getCid(uint256 index) public view returns

(string memory) {

11 require(index < cidCount , "Invalid CID index");

12 return cids[index];

13 }

14 ...

15 }

16

Figure 2: The partial example solidity codes of smart contract.

(a) Model Owners (b) Model Buyers

Figure 3: Interfaces in OFL-W3.

3.2 Workflow
Step 1. Contract Design and Deploy.Model buyers design and
deploy a smart contract tailored to a specific one-shot FL algorithm
on the Sepolia ETH test network1, specifying ML tasks, model
structures, initial models, and necessary auxiliary information if
the one-shot FL algorithm requires. They outline the payment in
tokens and launch the contract on a commercial blockchain.
Step 2. Upload Models. Model owners find the smart contract
using its address, agree to participate in the one-shot FL system,
and prepare models according to the contract’s specifications, in-
cluding any necessary auxiliary information. They then upload
these prepared models to the IPFS, with or without additional data.

1Note that the deployed contract can be directly transferred on the ETH mainnet
since they use the same standard. However, due to the high price of ETH, we mainly
show our system on SepoliaETH, one of ETH testnet. Now, 1 Sepolia ETH is around
$0.00006874 while 1 ETH is around $3, 466.
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Step 3. Receive CIDs. In the IPFS, a distributed file system, models
are assigned 32-byte Content Identifiers (CIDs) through crypto-
graphic hashes. This system ensures the unique accessibility and
integrity of uploaded content, allowing for efficient model retrieval.
Step 4. Send CIDs. After receiving CIDs from IPFS, model own-
ers submit these identifiers to the blockchain through the smart
contract. This method conserves on-chain space, with each model
occupying only 256 bits. As a comparison, at least Kb-level stor-
age is needed if directly saving the model on the blockchain [1, 4],
which proves to be impractical within the ETH network.
Step 5. Download CIDs. Model owners download the CIDs of all
models shared via the smart contract, involving a process free of
gas fees since it makes no data modification on the blockchain.
Step 6. Retrieve Models. After receiving the CIDs, the model
owners can retrieve models with/without any auxiliary information.
The retrieved models are used for the one-shot FL algorithm.
Step 7. Payment. The model buyers aggregate the retrieved model
using its own one-shot FL algorithm, as denoted in the smart con-
tract. The model buyers can adopt their own backend worksta-
tion/server to accelerate one-shot FL algorithm by using Flask to
interact with the backend workstation. In this demonstration, we
adopt PFNM [10] to aggregate the models. Then it assesses each
participant’s marginal contribution, like Leave-one-out (LOO), to
pay the calculated tokens.

For the Dapp, the buyer’s interface including Step 2 and Step 4
is illustrated in Fig. 3b, while the owner’s interface including Step
1,2,5,6 and 7 is illustrated in Fig. 3a. The simplicity of the interface
enables anyone with/without any knowledge of blockchain or Web
3.0 to use OFL-W3 by clicking buttons.

4 DEMONSTRATIONS AND EXPERIMENTS
In our demo, we simulate a scenario with ten model owners and a
model buyer using a server with two NVIDIA RTX A5000 GPUs to
run the PFNM one-shot FL algorithm, targeting to develop a high-
quality model with a total cost of 0.01 ETH (approximately $34).
The experiment utilizes the MNIST dataset and a neural network
with three multi-layer perceptron layers (784, 100, 10). To mimic
realistic non-IID data distributions, we use the data partitioning
techniques in PFNM [10]. The local model training settings include
a batch size of 64, a learning rate of 0.001, and 10 local epochs.

4.1 Model Performance
Figure 4 presents the quality of local models as evaluated by their
test performance. This highlights the issue where, if a model owner
is unable to effectively aggregate models from all participants, an
individually trained model suffers from inadequate training data,
leading to suboptimal performance. Conversely, the aggregated
model demonstrates a test accuracy of 93.87%, surpassing the least
effective single model by an impressive margin of 58.87%.

4.2 Transaction Costs
Our demonstrations outline critical interactions with the smart
contract during Steps 1, 4, and 7, each incurring specific gas fees.
Model owners deploy the smart contract by clicking the button,
which triggers MetaMask to authorize the deployment. Submitting
CIDs to the blockchain and transferring ETH to model owners are
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Figure 4: Single local model quality among 10 model owners.

(a) Signing (example) (b) Contract Deployment

(c) Contract Interaction (d) Payment

Figure 5: The transaction details shown on MetaMask.

also facilitated by MetaMask, with model buyers covering the gas
fees for these transactions.

Figure 5 shows the transaction process via MetaMask, where
Figure 5a details the transaction confirmation phase. Figures 5b,
5c, and 5d illustrate the three different transaction types on the
blockchain, each with varying total gas fees. From Figures 5b, 5c,
and 5d, we can see deployment transactions carry the heaviest gas
fees (e.g., 0.002 ETH) due to the need to write all functions on the
blockchain. For our contract, gas fees for submitting 32-byte CIDs
are similar to payment transactions as both involve writing to the
blockchain. Downloading CIDs from the blockchain does not incur
gas fees since they don’t require data writing.

4.3 Payment
After retrieving the models, the model buyers aggregate them and
then utilize incentive functions to compute payments. Figure 6

4463



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9

T
es

t 
A

cc
u
ra

cy

Model

Aggregated Test Accuracy

Performance on LOO

Figure 6: The test accuracy on Leave-one-out (LOO).

shows the test accuracy while any model is dropped. Thus, high
test accuracy denoted on model 𝑖 means less contribution for the
model owner 𝑖 . From the figure, we can see that model 7 is the most
useless for the aggregated model.

Table 1: Payment Table

Wallet Address 2 Payment (ETH)

0xbC43368F3062Ba8605A17341d6054CFD649271dD 0.00162366
0x5fa7236e596193E2b2cC16b30255C1E7fF9d4957 0.00106922
0x5C892779A6DB3dA3716852Fa2e890B6A9626F159 0.00131720
0x7a305a674Fd11Ad96B56661A6CCe54266f7e2f56 0.00157930
0x0Ea87D03b7C394570000ed84777DeD7468A6Ad48 0.00139046
0xa3Df0eE2026f0448D309Cd8627a8b55Db20e814D 0.00122177
0x90341327A3B2Bbe2dDA305d6227d3e3ac6E363D0 0.00049194
0xED0F6C1A47F673A3D087016d48bc1FAf2b557d74 0.00046640
0xeB9865C6FAa7D146C8537005480BeC76d9AF1E03 0.00042876
0x981aDf746f0aF9717CF6f3f42Ad4Cef1b716cEe9 0.00041129

Table 1 shows the payment table computed from LOO payment
function for 10 model owners. In detail, we allocate the payment
based on each participant’s contribution, as measured by LOO.

4.4 Overhead Measurement
We assess the computation and communication overheads of the
entire process. Note that on the blockchain, 32-byte CIDs are trans-
mitted, with the models in our experiments occupying 317Kb.

(a) Model Owners (b) Model Buyers

Figure 7: Execution time distribution on owners and buyers.

The total time costs are evaluated from both the model own-
ers’ and buyers’ perspectives. For model owners, it comprises local
model training, model uploading, and sending CIDs to the contract.
2Note that all wallet addresses are real and can be tracked on the Sepolia Etherscan.
https://sepolia.etherscan.io/.

Model buyers’ total time involves contract deployment, CID down-
loading, model retrieval, and payment processing, where payment
calculation precedes the actual transaction.

Figure 7 presents the time distribution for bothmodel owners and
buyers within a unified campus area network, illustrating that the
bulk of time consumption is attributed to blockchain interactions.
While traditional FL systems may require at least 100 iterations,
resulting in significant overhead, our findings endorse that one-shot
FL is suitable for Web 3.0 applications.

5 CONCLUSION
In this paper, we introduce OFL-W3, a novel one-shot FL system
tailored forWeb 3.0 architecture, integrating blockchain technology
with smart contracts for efficient transaction management and uti-
lizing the IPFS for decentralized model sharing. Designed to bypass
the limitation of the transaction speed and smart contract latency
challenges prevalent in existing blockchain frameworks, OFL-W3
demonstrates a viable and innovative approach to implementing
one-shot FL in the Web 3.0 context, offering unique insights and
potential future directions. Our work not only showcases the prac-
ticality of FL applications in a new era of the internet but also sets
the stage for further exploration and development within the AI +
Web 3.0 domain, promising a transformative impact on both fields.
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