
Pyneapple-G: Scalable Spatial GroupingQueries
Laila Abdelhafeez

Department of Computer Science and Engineering
University of California, Riverside

labde005@ucr.edu

Andres Calderon-Romero
Department of Computer Science and Engineering

University of California, Riverside
acald013@ucr.edu

Amr Magdy
Department of Computer Science and Engineering

University of California, Riverside
amr@cs.ucr.edu

Vassilis J. Tsotras
Department of Computer Science and Engineering

University of California, Riverside
tsotras@cs.ucr.edu

ABSTRACT
This paper demonstrates Pynapple-G, an open-source library for
scalable spatial grouping queries based on Apache Sedona (for-
merly known as GeoSpark). We demonstrate two modules, namely,
SGPAC and DDCEL, that support grouping points, grouping lines,
and polygon overlays. The SGPAC module provides a large-scale
grouping of spatial points by highly complex polygon boundaries.
The grouping results aggregate the number of spatial points within
the boundaries of each polygon. The DDCEL module provides the
first parallelized algorithm to group spatial lines into a DCEL data
structure and discovers planar polygons from scattered line seg-
ments. Exploiting the scalable DCEL, we support scalable overlay
operations over multiple polygon layers to compute the layers’ in-
tersection, union, or difference. To showcase Pyneapple-G, we have
developed a frontend web application that enables users to interact
with these modules, select their data layers or data points, and view
results on an interactive map. We also provide interactive note-
books demonstrating the superiority and simplicity of Pyneapple-G
to help social scientists and developers explore its full potential.

PVLDB Reference Format:
Laila Abdelhafeez, Andres Calderon-Romero, Amr Magdy, and Vassilis J.
Tsotras. Pyneapple-G: Scalable Spatial Grouping Queries. PVLDB, 17(12):
4469 - 4472, 2024.
doi:10.14778/3685800.3685902

1 INTRODUCTION
Grouping spatial units, such as points, line segments, and polygons,
are widely used in different spatial analysis operations, e.g., polygo-
nization, overlay, or counting-based spatial statistics. These queries
typically involve very large dataset sizes, pushing the boundaries
of the traditional processing frameworks and demanding novel,
highly parallelized, and large-scale frameworks.

Through collaborations with social scientists and domain ex-
perts, we have identified emerging challenges in different grouping
queries, particularly regarding their performance scalability. The
need for this research has been triggered during a collaboration

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685902

with social scientists [4] to perform large-scale analysis on user-
generated social media data at the world scale. In that study, we
analyzed one billion tweets through location quotients and spatial
Markov analysis over complex spatial polygons. The fundamental
operations for this analysis are discovering polygons out of spatial
road networks, aggregating counts of spatial points within each
polygon, and comparing changes in polygons at different points
in time. Due to the prohibitive cost of performing such aggrega-
tions, our study was limited to a small number of polygons and a
portion of the available Twitter datasets. For example, running a
single counting query using traditional filter-refine techniques on
100 million points over only 255 country borders takes 83 minutes,
using a twelve-node Apache Spark cluster with a total memory
of 1TB. In addition, a traditional polygon extraction process from
the USA road network (152 million line segments) processes only
20 Million segments, i.e., 13% of the dataset, in four hours using
PostGIS on a 64GB RAM machine with 1.8TB disk space, and then
breaks down. Such inefficient runtime limits spatial data scientists
from performing large-scale analysis on modern spatial datasets. To
enable social scientists to perform large-scale studies of world-scale
data, it is pivotal to efficiently support such fundamental opera-
tions on modern large-scale datasets for real complex polygons and
multiple spatial scales.

This paper demonstrates Pyneapple-G, an open-source library
for scalable spatial grouping queries. Pyneapple-G builds upon our
research [1–3, 5] on scaling up grouping spatial points, grouping
lines, and polygon extraction through the Doubly-Connected Edge
List (DCEL) data structure, in addition to scalable polygon overlays.
These three queries are heavily used in various spatial statistical
analysis applications, such as spatial regionalization, spatial har-
monization, segregation analysis, join-count analysis, hot-spot and
cold-spot analysis, and spatial autocorrelation analysis. The DCEL
is a popular data structure used to represent planar subdivisions
in a wide variety of applications, such as Voronoi diagrams, planar
graphs, polyhedron, and TIN data. It is further utilized in graph
simplification, triangulation, subdivision traversal, and topology
manipulation. Thus, supporting such operations efficiently at scale
empowers many applications that are currently limited to exploit
large spatial datasets.

Pyneapple-G consists of two modules; SGPAC [1, 3] and DD-
CEL [2, 5]. SGPAC efficiently supports grouping large-scale datasets
containing hundreds of millions of data points by real polygons
with very complex perimeter geometries (i.e., tens of thousands

4469

https://doi.org/10.14778/3685800.3685902
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685902


Figure 1: Pyneapple Overview

of perimeter points). DDCEL supports the polygonization of large-
scale datasets with hundreds of millions of lines of real complex
networks and scalable overlay operations on large-scale polygon
layers. Existing approaches face several challenges in efficiently han-
dling such operations on modern datasets. The first challenge arises
from the prohibitive computations of point-in-polygon checks on
real complex polygons due to the excessive number of points on the
polygon perimeter. The second challenge is the high skewness of
real spatial data due to skewed spatial distributions of the data gen-
erators, e.g., web users or city sensors. Due to load imbalance, such
skewness leads to prohibitive runtime costs in parallel algorithms.
The third challenge is reducing the communication overhead and
handling parallel dependencies coming from distributing DCEL
polygon extraction over multiple computing nodes.

Pyneapple-G overcomes these challenges and provides efficient
algorithms that smartly address the bottlenecks to significantly
reduce the runtime while ensuring the correctness of the output.
Using our techniques, counting points of a Twitter dataset contain-
ing 100 million geotagged tweets over the world countries’ polygon
layer with an average number of perimeter points of 1,345 took 30
seconds compared to 83 minutes for the distributed filter-refine ap-
proach. Moreover, extracting polygons from the USA road network
(152 million line segments) using DDCEL runs in under 2 minutes
compared to the breakdown of the previous approaches.

Attendees at our demonstration can acquaint themselves with
Pyneapple-G through a frontend application, which allows interac-
tive file selection and visualization of results. Additionally, interac-
tive Jupyter Notebooks for Python enthusiasts will showcase API
usage and the edge of our modules. Subsequent sections offer an
in-depth exploration of the Pyneapple-G library (Section 2) and the
demonstration scenarios (Section 3).

2 PYNEAPPLE-G OVERVIEW
Pyneapple-G is an integral sub-package of themore extensive Pyneap-
ple library [8], which is currently under active development with
more features being added. Figure 1 depicts an overview of Pyneap-
ple. The current version of Pyneapple comprises three main sub-
packages: Pyneapple-R for regionalization queries [6, 7], Pyneapple-
L for machine learning (ML) assisted analysis, and Pyneapple-G
(bolded in the figure) for group-by and overlay queries.

Pyneapple-G consists of two modules: (1) Spatial Groupby Poly-
gon Aggregate Counting (SGPAC) [1, 3]: a module that groups

pointswithin polygons of highly complex perimeters. (2) Distributed
Doubly-Connected Edge List (DDCEL) [2, 5]: a module that groups
line segments into polygons and overlay polygons at a large scale.
Each module in Pyneapple-G is equipped with thorough Python and
Java API documentation, facilitating a seamless integration into
the broader data science landscape. The rest of this section delves
deeper into the specifics of modules and queries housed within the
Pyneapple-G sub-package.

2.1 Point Group-byQueries (SGPAC Module)
The SGPAC [1, 3] query processing framework exploits partitioning
to significantly reduce the complexity of the perimeters of the
polygons through two-level clipping and distributing large volumes
of spatial points over several machines, contributing to reducing
computation overheads and scaling up processing. It facilitates a
global distributed spatial index to partition data points and query
polygons across distributed machines (worker nodes). Each worker
node 9 covers a specific spatial area represented with a minimum
bounding rectangle (MBR) � 9 . Then, on each worker node, the local
portion of data points is indexed with a local spatial index, which
does not necessarily have the same structure as the global index.
The local index further divides data into small chunks. Meanwhile,
when a new query polygon set ! arrives, each worker node receives
a subset !9 of query polygons that overlap with its partition MBR
� 9 ; that is, for all ;8 ∈ !9 , ;8 ∩ � 9 ≠ q . Each polygon ;8 ∈ !9 goes
through a Two-level Clipper module that significantly reduces the
complexity of its perimeter through two phases of polygon clipping.
The first phase is based on the global index partition boundaries � 9 .
This phase replaces ;8 with ;8 ∩� 9 , its intersection with the partition
MBR, as any part of the polygon outside � 9 will not produce any
results from the data points assigned to node 9 . The newly clipped
polygon ;8 is passed as an input to the second level of clipping,
which further clips ;8 based on the local index partitions to produce
multiple smaller polygons, each of them corresponding to one of
the local index partitions and clipped with its MBR boundaries.

After the two-level clipping of input polygons, the query input
turns into small crumbles of local data partitions and simple query
polygons fed to a multi-threaded Point-in-Polygon Refiner module.
This module takes pairs of data partitions and clipped query poly-
gons with overlapping boundaries, where each pair follows one of
two cases. The first case is that the boundaries of the local partition
and the clipped query polygon are the same. This means the local
partition is wholly contained inside the query polygon, and all data
points are counted in the result set without further refinement. The
second case is that the clipped query polygon intersects with part of
the local partition boundaries. In this case, the refinement module
iterates over all the points within the local partition. It uses the
standard point-in-polygon algorithms to filter out points outside
the polygon boundaries. Such point-in-polygon operation is much
less expensive on the clipped polygon than the original one, with
up to an order of magnitude cost reduction. Each thread maintains
a list of < ?>;~6>=83, 2>D=C > pairs that record the count of points
in each polygon. Lists of pairs from different threads and partitions
are forwarded to a shuffling phase that aggregates total counts of
each input polygon, based on polygon IDs, in a similar fashion to
the standard map-reduce word counting procedure.

4470



To support efficient performance on various query workloads,
we proposed a query optimization technique that distinguishes
query polygons that are simple enough for which a plain filter-
refine approach would suffice (i.e., SGPAC adds unneeded overhead).
Furthermore, our query processing and optimization techniques are
generalized for any underlying distributed spatial index structures.

2.2 Line Group-by Queries (DDCEL Module)
The Doubly-Connected Edge List (DCEL) is a popular data structure
used to represent planar subdivisions. Given an input spatial net-
work represented by a set of line segments, the DCEL constructor
generates and stores a record for each subdivision’s vertex, half-
edge, and face. A vertex in a subdivision is a node where two or
more line segments meet, corresponding to a graph vertex of the
spatial network. A half-edge is a line segment split along its length
and has a directional component: an origin vertex and a destination
vertex. Two opposite-direction half-edges (twin half-edges), where
the origin of the first is the destination of the second and vice versa,
represent each undirected line segment. So, each half-edge corre-
sponds to a directed graph edge of the spatial network. The face of
a subdivision is a polygonal region whose boundary is formed by
the subdivision’s vertices and half-edges with the same direction.

To generate a DCEL object representing an input spatial net-
work on distributed big-data systems, we face two main challenges:
(1) First, the extraction of vertices and half-edges depends on one
data record only, i.e., the line segment. The extraction process can
be distributed directly along with the data records. However, in the
case of the faces, one face depends on multiple data records, i.e.,
connected line segments. Such records do not necessarily end up
in the same data partition. (2) Second, to parallelize the polygoniza-
tion procedure, data partitions need means to share data. This data
communication severely affects performance, especially since these
data partitions do not necessarily reside in the same machine.

To overcome these challenges, we proposed a novel Distributed
DCEL (DDCEL) [2] data structure extending the well-known DCEL
to work in a scalable way. Like DCEL, the DDCEL data structure
consists of three collections that store the subdivision’s vertices,
half-edges, and faces in a distributed way. Given an input spatial
network, the DDCEL constructor aims to populate these collections.
To achieve this goal, the constructor undergoes a two-phase para-
digm: (1) Generate each partition DCEL (Gen Phase), in which the
vertices and the half-edges collections are fully populated, whereas
only a portion of the faces collection is generated. (2) Generate
the Remaining Faces (Rem Phase), in which the polygonization
procedure proceeds to generate the remaining faces.

2.3 Polygon OverlayQueries (DDCEL Module)
A primary usage of the DCEL is computing the overlay of two
polygon layers. Using DCELs for overlay operations offers the
advantage that the result is also a DCEL, which can be directly
used for subsequent operations. For example, creating an overlay
between the intersection of two layers with a third layer. Even
though the DCEL has essential advantages for implementing the
overlay operations, current approaches are sequential in nature and
do not scale for layers with thousands of polygons.

Figure 2: Counting Worldwide Tweets

Implementing a distributed overlay over DCELs creates novel
problems. First, there are potential challenges that are not present
in the sequential DCEL execution. For example, the implementa-
tion should consider features like holes that could lay on different
partitions. Such features must be connected with their components
residing in other partitions not to compromise the combinedDCEL’s
correctness. Secondly, once a distributed overlay DCEL has been
built, it must transparently support a set of binary overlay operators
(namely union, intersection, difference, and symmetric difference).
That is, such operators should take advantage of the scalability of
the overlay DCEL and be able to run in a parallel fashion. Addition-
ally, users should be able to apply the various operators multiple
times without rebuilding the overlay DCEL data structure.

To address these challenges, we proposed SDCEL [5] as a scal-
able and distributed approach to compute the overlay between
two DCEL layers. Given an input of two polygon layers, first, the
polygon layers are partitioned in a way that guarantees that each
partition collects the required data from each layer DCEL to work
independently to minimize duplication and transmission costs. We
then build local DCEL representations of them at each partition and
compute the overlay of the DCELs at each partition. In addition,
we present a merging procedure that collects all partition results
and consolidates them in the final combined DCEL.

3 DEMONSTRATION SCENARIOS
To demonstrate Pyneapple-G, we design different scenarios for
different groups of target audiences. Users will interact with the
Pyneapple-G library through user-friendly web applications and
Jupyter Notebooks, illustrating its ease of use and interactivity.
Attendees will be able to visualize the results on an interactive
map and gain a deep understanding of the potential applications of
Pyneapple-G in various domains.

3.1 Scenario 1: Counting Worldwide Tweets
This scenario, depicted in Figure 2, demonstrates the usage of
Pyneapple-G in a count-aggregate example. Assume a user is in-
terested in exploring the tweet count per country. The user will
click the Data Points button and choose the tweets CSV file. Then,
choose the shapefile of the world countries for the Polygon Layer
button. Upon pressing the Count button, the query is sent to the
backend, and the corresponding module (in this case, the SGPAC

4471



Figure 3: California Neighbourhood Extraction

module) performs the group-by and returns the region labels asso-
ciated with their counts. These countries’ boundaries are visualized
on the interactive map colored based on their tweet count. These
boundaries include data counts. The users can interact with the
visualization to view the count attribute values by clicking on the
country’s polygon. The resulting map (country and its count) can
be saved by clicking the Save Results button.

3.2 Scenario 2: Neighborhood Blocks Extraction
This scenario, depicted in Figure 3, demonstrates the usage of
Pyneapple-G in a polygonization example. Assume a user is in-
terested in generating all neighborhood blocks in California, using
its road network as an input, meaning generating all polygons cre-
ated by the road network. The user will choose the GeoJSON file for
the input road network for the first polygon layer. Upon pressing
the Polygonize button, the query is sent to the backend, and the
corresponding module (in this case, the DDCEL module) performs
the polygonization and returns the new polygon layer. On the in-
teractive map, users can see the input road network (displayed in
black) and the resultant polygons (displayed in random colors). The
result polygons can be saved into a GeoJSON file by clicking the
Save Result Button.

3.3 Scenario 3: Hot-Spot Exploration
This scenario demonstrates the usage of Pyneapple-G in integrating
polygonization and count-aggregate queries. Assume the user is
interested in exploring hot spots in California based on current
social media posts. The user has the California road network and
geo-tagged data traces available. Similar to the Scenario in 3.2,
Pyneapple-G extracts all California neighborhood blocks. Feeding
this output polygon set as an input to the count-aggregate query
along with the geo-tagged data similar to the Scenario in 3.1 pro-
duces a heat map that helps the user identify the hot spots.

3.4 Scenario 4: Census Tracts Overlay
This scenario, depicted in Figure 4, demonstrates the usage of
Pyneapple-G in a map overlay example. Assume a user is inter-
ested in exploring the change in the same district over time. The
user chose the GeoJSON files for Census Tracts in Philadelphia in
the years 2000 and 2010. Upon pressing the Intersect button, the
query is sent to the backend, and the corresponding module (in

Figure 4: Philadelphia Census Tracts Change

this case, the DDCEL module) performs the overlay and returns
the intersection between the two input layers as a new polygon
layer. The result intersection is displayed on the interactive map.
Similarly, the user can find the union or the difference between
these two layers. The user can also save the newly created layer
using the Save Result Button.

3.5 Scenario 5: Building Applications
For social scientists working primarily in the Python environment,
Pyneapple-G encapsulates all low-level Java implementations as
black boxes and exposes just the essential functions as plug-and-
use modules. To demonstrate the simplicity of Pyneapple-G Python
APIs, we design Jupyter Notebooks for each of the modules. To get
started, we show that social scientists can install the Pyneapple-G
Python package through pip. All dependencies, including the JDK
and the configuration of the Java environment, are configured by
the script, and the users are unaware of the Java-Python bridge.
We adopt familiar, classic, or popular use cases to demonstrate the
usage of Pyneapple-G Python APIs.Through this demonstration, we
show users that their work is painlessly improved with Pyneapple-G
APIs while gaining huge benefits in scalability and expressiveness.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Founda-
tion, USA, under grants IIS-2237348 and CNS-2031418, the Google-
CAHSI research grant, and Microsoft unrestricted gift.

REFERENCES
[1] Laila Abdelhafeez, Amr Magdy, and Vassilis J Tsotras. Scalable Spatial GroupBy

Aggregations Over Complex Polygons. In SIGSPATIAL, 2020.
[2] Laila Abdelhafeez, Amr Magdy, and Vassilis J Tsotras. DDCEL: Efficient Dis-

tributed Doubly Connected Edge List for Large Spatial Networks. In MDM, 2023.
[3] Laila Abdelhafeez, Amr Magdy, and Vassilis J Tsotras. SGPAC: Generalized

Scalable Spatial GroupBy Aggregations over Complex Polygons. GeoInformatica,
2023.

[4] Abdulaziz Almaslukh, Amr Magdy, and Sergio J. Rey. Spatio-temporal Analysis of
Meta-data Semantics of Market Shares Over Large Public Geosocial Media Data.
Journal of Location Based Services, 2018.

[5] Andres Calderon-Romero, Vassilis J Tsotras, and Amr Magdy. Scalable Overlay
Operations over DCEL Polygon Layers. In SSTD, 2023.

[6] Yunfan Kang, Yongyi Liu, Hussah Alrashid, Akash Bilgi, Siddhant Purohit, Ahmed
Mahmood, Sergio Rey, and Amr Magdy. Pyneapple-R: Scalable and Expressive
Spatial Regionalization. In ICDE, 2024.

[7] Yongyi Liu, Ahmed Mahmood, Amr Magdy, and Sergio J. Rey. PRUC : P-regions
with user-defined constraint. VLDB Endowment, 15(3):491–503, 2021.

[8] MagdyLab. Pyneapple-r. https://github.com/MagdyLab/Pyneapple.

4472

https://github.com/MagdyLab/Pyneapple

	Abstract
	1 Introduction
	2 Pyneapple-G Overview
	2.1 Point Group-by Queries (SGPAC Module)
	2.2 Line Group-by Queries (DDCEL Module)
	2.3 Polygon Overlay Queries (DDCEL Module)

	3 Demonstration Scenarios
	3.1 Scenario 1: Counting Worldwide Tweets
	3.2 Scenario 2: Neighborhood Blocks Extraction
	3.3 Scenario 3: Hot-Spot Exploration
	3.4 Scenario 4: Census Tracts Overlay
	3.5 Scenario 5: Building Applications

	Acknowledgments
	References

