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ABSTRACT
Interfaces that rely on the Python programming language have be-
come a popular tool for data analysis and exploration. In particular,
the Pandas library allows users to query, manipulate, and visualize
data in an easy and intuitive manner. However, users who perform
such manipulations over the data in the exploratory process may
struggle to justify their results, or understand which part (if any) of
the obtained results is interesting and why. To handle such scenar-
ios we developed PD-Explain, a Python library that adapts multiple
prevalent query explanation approaches from the literature, and
makes them accessible to Pandas users. PD-Explain is seamlessly
integrated with Pandas and contains explanation functions that
users can employ to choose the explanation approach they wish
to use along with the necessary parameters in order to get the
explanation in the suitable form. PD-Explain further allows users
to automatically detect the interesting parts of a query result and
get a visualization of the explanation accompanied by a Natural
Language description. Our demonstration will include four differ-
ent types of query result explanations and three real-world datasets
with appropriate analysis tasks that will highlight the intuitive
nature and usefulness of PD-Explain in data exploration tasks.
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1 INTRODUCTION
Exploratory Data Analysis (EDA) is an essential process performed
by data scientists and analysts in order to examine a new dataset up-
close, better understand its nature and characteristics, and extract
insights from it. In recent years, many data analysts and scientists
choose to perform EDA processes using programmatic manipula-
tion of Dataframe objects (essentially, database tables and views),
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with libraries such as pandas [6]. Pandas offers a flexible, program-
matic interface in Python, used for querying and transforming
tabular data. When used in an interactive Python interface, such as
VSCode or a Jupyter notebook, users can execute analytical code,
generate new Dataframes, and add any form of text they wish.

However, one of the major challenges when analyzing a new
dataset is drawing conclusions from the results of analytical opera-
tions (e.g., filter, group-by-aggregate). This is often done manually,
by employing data visualization, adding a textual explanation, or
by subsequent operations employed in attempt to interpret the
results implicitly. All of these approaches depend heavily on the
understanding and skill level of the analyst performing the data
analysis, which can vary widely.

Numerous solutions for explaining query results have been sug-
gested in previous work, each addressing a different aspect of the
problem, such as outliers in aggregated queries [11], query results
interestingness [2], and quantifying the contribution of tuples to
the result [1]. Many of these solutions require a dedicated interface
or use an SQL engine to query the data. Hence, using them may
involve the process of exporting the data, and learning a specific
UI, tailored to the scenario covered by the solution.

We propose a demonstration of PD-Explain
1
, a unified framework

for in-situ Dataframe explanations. PD-Explain is a wrapper for
Python’s Pandas2, allowing users to obtain explanations for queries
over Dataframes without deferring to external tools. PD-Explain is
implemented as a Python package and can be easily called and used
by analysts to obtain different forms of explanations for their query
results. Our current implementation supports three approaches of
explanations inspired by prior work. In particular, the package al-
lows users to get explanations inspired by a recent work about EDA
explanations called FEDEX [2], a prominent work that suggests
explanations for outliers, called Scorpion [11], and a novel work on
query result explanations through Shapley values by Deutch et. al.
[1]. PD-Explain automatically presents the explanation according
to the appropriate format, in the form of a custom visualization
accompanied by a textual description.

Example 1. Figures 1 and 2 depict an example analytical workflow

using the Spotify dataset
3
, assisted by PD-Explain.

The user first loads the dataset using the Pandas read_csv() com-

mand and stores it in a DataFrame (songs_df) (Lines 1–3). To focus
on newer songs, a filter operation on ‘Year’ > 1990 is applied, resulting

1https://github.com/analysis-bots/pd-explain.
2https://github.com/pandas-dev/pandas.
3https://www.kaggle.com/mrmorj/dataset-of-songs-in-spotify.
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Figure 1: Example Exploration Workflow with PD-Explain The user loads the Spotify Songs dataset to a Dataframe, then filters
it according to ‘Year’ > 1990. The user then asks PD-Explain to display the top-3 ‘deviation’ explanations for the resulting Dataframe,
demonstrating interesting aspects in which the resulted Dataframe significantly deviates from the original one.

in a newDataFrame called new_songs_df (Line 4). The user then asks
PD-Explain to explain “what is interesting” in the resulting DataFrame

by using the FEDEX [2] explainer (Line 5). PD-Explain detects three

useful explanations, showing that newer songs (in new_songs_df)
are louder, less acoustic, and more popular compared to all songs

(songs_df). Each plot is accompanied by a caption that highlights

the interesting phenomenon.

Next, as depicted in Figure 2, the user employs a group-by operation

on the new songs to examine the mean popularity by decade. Learning

that newer songs tend to be more popular, the user is surprised to see

that the average popularity of songs produced in the current decade

is significantly lower than that of songs from 1990 to 2020. To ex-

plain this outlier, PD-Explain is used again, now asking for an outlier

explanation (generated based on [11]). PD-Explain detects that the

predicate ‘Explicit’ = 0 (i.e., songs that do not contain explicit lyrics)

can explain the outlier, since when omitted, the mean popularity of

2020s songs (and even more so, 2010s songs) is on par with the other

decades. The underlying conclusion here is that non-explicit songs are

significantly less popular than explicit ones in recent decades, thus

pulling down the popularity mean.

PD-Explain features twomore explanation types, for high-variance
group-by-and-aggregate queries and for Boolean queries. We fur-
ther plan to add more explanation approaches to PD-Explain, mak-
ing it a universal platform for Dataframe query explanations.

PD-Explain “wraps” the pandas Dataframe objects in order to
record the queries performed by the user, as well as to allow the user
to obtain explanations from within the Dataframes – without inter-
fering with Pandas functionality. Specifically, PD-Explain has two
main components: the Dataframe Wrapper and the State Manager.
The former component carefully integrates with Pandas by creat-
ing a new class called ‘ExpDataframe’. The new class overloads all
necessary data operations in the original ‘Dataframe’ class, and
effectively adapts to its various data load and create functions. Our
Wrapper also successfully handles group-by operations, in which
Pandas creates an additional, intermediate object before return-
ing the aggregated results. Second, the State Manager component
tracks the user’s queries in the Dataframes. Rather than naively

Figure 2: Example Outlier Explanation in PD-Explain

keeping all previous Dataframes and queries, the State Manager
efficiently stores only the required data to generate explanations:
the query details, attributes, and pointers to the input Dataframes.
Related Work. A plethora of explanation tools are suggested in
previous work, e.g., [1, 2, 7–9, 11]. However, most assume an SQL
interface, rather than interactive Dataframe exploration in Python.
LUX [5] is a prominent, recent system for Dataframe visualization.
PD-Explain complements LUX by focusing on query explanations,
which require additional constructs for tracing the origin of resulted
Dataframes. Closer to this demonstration our previous works [2,
3] focus on explanations in EDA notebooks, yet not particularly
suited for pandas Dataframes. PD-Explain generalizes these works
by introducing a unified, seamless framework for multiple query
explanation types, adapted to the use-case of Dataframe exploration
in one interface.
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2 THE PD-EXPLAIN FRAMEWORK
We next describe our general approach and the manner in which it
is adapted to different explanation approaches.

2.1 Dataframe Explanation Framework
We begin by describing our model for Dataframe exploration, then
the abstract components required to generate query explanations
using various Explainers implemented in PD-Explain.
Amodel for Dataframe Exploration workflows. An interactive
EDA process using a Python Dataframe interface is modelled as
follows. First, the user loads one or more data tables from external
sources (i.e., a CSV file, a spreadsheet, or an SQL query from a data-
base server) into an interactive Python interface such as VSCode
or a Jupyter notebook. Each loaded table is then represented as a
Dataframe object, denoted 𝐷 , a two-dimensional tabular structure
comprising of a multi-set of rows R(𝐷) over a schema A(𝐷).

Then, in each step in the Dataframe exploration process, the user
performs a data manipulation step𝑄 = (D𝑖𝑛, 𝑞, 𝐷𝑜𝑢𝑡 ): Employing a
data manipulation procedure 𝑞, on one or more Dataframes, D𝑖𝑛 =

{𝐷1
𝑖𝑛
, 𝐷2

𝑖𝑛
, . . . , 𝐷𝑘

𝑖𝑛
}, which generates an output Dataframe 𝐷𝑜𝑢𝑡 .

Importantly, an operation 𝑞 can be employed on any set of output
Dataframes {𝐷 𝑗

𝑜𝑢𝑡 | 𝑗 < 𝑖} generated in previous steps. For example,
in Figure 1 (Line 4), the user employs a Pandas filter operation on
the Dataframe songs_df, which generates the output Dataframe
new_songs_df, containing songs produced after 1990.

PD-Explain supports various native Pandas operations including
filter, join (merge), union, and group-by-and-aggregate. However,
each explainer instance supports a different set of DataFrame opera-
tions, as detailed in Section 3. Explainers require arguments—some
global, like 𝑘 , and some unique, such as the outlier’s deviation di-
rection. Users may select a specific explainer and provide some, all,
or none of its arguments; if not provided, PD-Explain will automat-
ically select the appropriate explainer and infer parameters based
on the operation type, results DataFrame, and additional metadata.
Problem definition (Intuitive). In essence, when a user employs
a Dataframe operation 𝑄 = (D𝑖𝑛, 𝑞, 𝐷𝑜𝑢𝑡 ), an Explainer detects
rows in the input Dataframe(s) D𝑖𝑛 that are highly influential with
regard to an interesting phenomenon in the output Dataframe 𝐷𝑜𝑢𝑡 .
These Explainers can identify influential rows that cause, e.g., a sig-
nificant deviation between an input and output Dataframe, presence
of outliers, high variance, and suggest reasons for why a certain
tuple of interest appears in 𝐷𝑜𝑢𝑡 . PD-Explain currently implements
explanation approaches that are inspired by a subset of the wide
variety of existing approaches (e.g., [1, 2, 7–9, 11]) and we plan to
implement more approaches in the future.

Each Explainer in PD-Explain implements a specific (1) notion
for determining the interestingness of 𝑄 , and (2) notion for mea-
suring the contribution of rows (and sets of rows) to the interest-
ingness. PD-Explain then provides a unified manner for obtaining
semantically-connected sets of rows, used with all Explainers, as
described below. For a compelling presentation, each explainer
also implements a visualization and description templates (See Sec-
tion 2.3).

Interestingness measurement for 𝐷𝑜𝑢𝑡 . Each Explainer in PD-
Explain implements a function that quantifies an interesting phe-
nomenon in the results data, used both for detecting such phenom-
ena and for assessing the contribution of rows to it, as described
next. PD-Explain supports both an overall assessment of inter-
est 𝐼 (𝑄) as well as a column-level assessment 𝐼𝐴 (𝑄), since not
all columns in the resulting Dataframe may showcase interesting
phenomena. A plethora of interestingness measures exist in the
literature (see [4] for a survey). For example, our Outliers Explainer
uses the maximal standardized distance in a column, and our De-
viation Explainer assesses the interestingness by measuring the
change in a column’s value distribution after employing a filter
operation (see Section 2.2).
Measuring contribution of sets of rows. Each Explainer contains
an additional method for assessing the contribution of rows 𝑅 in
an input Dataframe 𝐷𝑖𝑛 to the interestingness score 𝐼𝐴 (𝑄). Various
existing methods can be employed [1, 2, 7–9, 11] such as causality-
based influence and intervention notions, which examine the result
that would have been obtained had 𝑅 not been in the data, as well
as other approaches such as Shapley values [10].
Semantic partitioning of the input data. While any row or a
combination of rows can be used in producing query explanation,
PD-Explain focuses on detecting meaningful sets of rows that are
semantically related, as we have detailed in [2]. This allows users to
grasp high-level insights that characterize the examined operation,
as well as to significantly reduce the number of candidate sets of
rows when producing the explanations.

Given an input Dataframe 𝐷𝑖𝑛 ∈ D𝑖𝑛 , a row partition divides
𝐷𝑖𝑛 into 𝑝 disjoint sets of rows 𝐷𝑖𝑛 : R(𝐷𝑖𝑛) = {𝑅1, 𝑅2, . . . , 𝑅𝑝 }
such that for all 𝑅𝑖 , 𝑅 𝑗 ∈ R, ⋃𝑅𝑖 ∈R 𝑅𝑖 = 𝐷𝑖𝑛 . PD-Explain utilizes
attribute-level partition schemes R1,R2, . . . in which the rows are
divided according to an attribute 𝐴 ∈ 𝐷𝑖𝑛 (for all 𝐷𝑖𝑛 ∈ D𝑖𝑛)
as follows: PD-Explain first detects the data type of 𝐴, and then
employs all supported partitions. For instance, numeric attributes
are used to partition the rows using binning methods such as equi-
width, equi-height, and 1-d clustering. Date/Time columns divide
the input rows according to several temporal hierarchies (i.e., by
hour, week, month, etc.). PD-Explain features additional partition
schemes, and also supports custom ones, defined by the user.
Generating explanations. When an Explainer is called w.r.t. an
operation 𝑄 = (D𝑖𝑛, 𝑞, 𝐷𝑜𝑢𝑡 ) , PD-Explain first provides it with all
sets of rows from its partitioning schemes onD𝑖𝑛 . It then calculates
the contribution of each set of rows to the interestingness score of
𝐷𝑜𝑢𝑡 , and returns the top-𝑘 most influential sets of rows (𝑘 can be
set by the user). PD-Explain then generates a coherent, captioned
visualization that summarizes the explanation, as described below.

2.2 Supported Explainers
PD-Explain currently supports four types of query explanations. (1)
Outlier Explainer [11]. This Explainer supports group-by-and-
aggregate Dataframe operations. The user first specifies an outlier
tuple in 𝐷𝑜𝑢𝑡 , as depicted in Figure 2, then our Outlier Explainer
detects sets of rows in the input Dataframe, that when omitted –
the outlier’s deviation drops.The user is notified in case no such sets
were found. The interestingness 𝐼𝐴 (𝑄) is calculated as the maximal
standardized value, and rows contribution is measured using an
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influence assessment (See [11] for more details). (2) Deviation Ex-
plainer [2] This explainer supports filter (selection), join, and set
(e.g., union, difference) Dataframe operations. It then detects sets
of rows that highly contribute to deviation in value distributions
resulted from the applied operation (See Figure 1 for an example).
The column-level interestingness 𝐼𝐴 is quantified by the distribu-
tional distance between 𝐷𝑜𝑢𝑡 [𝐴] and its counterpart in an input
Dataframe 𝐷𝑖𝑛 [𝐴] (where 𝐴 ∈ A(𝐷𝑖𝑛)), using the two-sample
Kolmogorov–Smirnov (KS) test. The contribution is measured via
standardized influence, where the influence score of a given set
of rows is standardized w.r.t. other sets in the same partition. (3)
Boolean Query Explainer [1] This Explainer supports Boolean
filter, join, and union operations.

In a similar manner, we intend to incorporate more Explainers
in PD-Explain to further diversify its explanation abilities.

2.3 Library Implementation Details
PD-Explain is a Python library implemented as a transparent wrap-
per for pandas, allowing users to obtain query explanations using
an explain procedure that can be simply called from any output
Dataframe. To allow this seamless interface, PD-Explain introduces
the following components:
Dataframe Wrapper. PD-Explain extends the pandas Dataframe
object, overloading all of its existing methods. This is done us-
ing our ExpDataFrame class that contains modified versions of the
Dataframe internal methods (e.g., filter, join). The ExpDataFrame
object is initialized via any pandas ‘read’ function (e.g., read_csv),
and is automatically created for every pandas operation employed
by the user (thus, extending GroupByDataFrame and Series ob-
jects as well). The wrapper allows for executing the explain com-
mand from each Dataframe object, as well as for updating the State
Manager, as described next.
State Management. Since pandas Dataframes only store the re-
sult data (rows and columns), PD-Explain needs to track the origin
of the Dataframes, in order to provide the Explainers with the re-
quired meta-data needed to produce explanations. Therefore, our
overloaded pandas methods update the State Manager with the op-
eration type and parameters used to generate it, as well as pointers
to the input Dataframes. This enables PD-Explain to calculate the
contribution of sets of rows by simulating the Dataframe operation
again after varying the input data.
Explanation Visualization Generator. The results of each Ex-
plainer contain sets of rows alongside their contribution scores.
PD-Explain takes these results and generates a compelling data
visualization alongside a Natural Language (NL) caption. Each Ex-
plainer implements visualization and NL caption templates, which
are instantiated with concrete information at run time.

3 DEMO SCENARIO
VLDB participants are invited to employ PD-Explain on multiple
available datasets, queries, and explanations approaches.
A walk-through of PD-Explain. We will start the demonstration
by showing a pre-made Jupyter notebook containing an exploratory
data analysis session of the Spotify dataset (shown in Figures 1
and 2), which will include the necessary code lines for importing

the PD-Explain package, loading the dataset, performing queries,
and obtaining explanations. In particular, we will emphasize that,
because PD-Explain wraps the pandas_read function, we can sim-
ply use the pandas read_csv function to obtain an ExpDataframe
of the Spotify dataset. We will guide users through these new abili-
ties and show the different forms of supported explanations.Wewill
then show the obtained explanations for all the currently supported
approaches [1, 2, 11] and stress the differences between them.
An interactive exploration task. In the next stage of the demon-
stration, users will be invited to load one of the three datasets (or
use their own). We have prepared different exploration questions
for each dataset. An example question for the Spotify dataset can be:
“How are popular songs different from other songs in the dataset?”
Or for the Adults dataset: “What are the main characteristics of
high-income individuals?” We will allow users to explore the data
on their own and experiment with the different functions of PD-
Explain to answer the question while providing hints and guidance
as they go. We will encourage users to use the different explanation
functions to obtain necessary insights in order to make headway
in answering the questions.
Under the hood. We will demonstrate how PD-Explain adapts
prominent query result explanation approaches to the dataframe
setting. Additionally, we will show how dataframe queries are sim-
ulated and how PD-Explain detects and utilizes interesting parts of
their result sets in the explanation generation process.
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