
DB-MAGS: Multi-Anomaly Data Generation System for
Transactional Databases

Yiqi Shen
East China Normal University

yqshen@stu.ecnu.edu.cn

Sijia Li
East China Normal University

sjli@stu.ecnu.edu.cn

Miaodong Shen
East China Normal University

mdshen@stu.ecnu.edu.cn

Peng Cai
East China Normal University

pcai@dase.ecnu.edu.cn

Weiyuan Xu
Meituan

xuweiyuan02@meituan.com

Kai Li
Meituan

likai44@meituan.com

Jinlong Cai
Meituan

jinlong.cai@meituan.com

ABSTRACT

Existing database performance anomaly datasets have the problems

of comprehensiveness in anomaly types, coarse-grained root causes,

and unrealistic simulation for reproducing concurrent anomalies. To

address these issues, we propose a data generation system tailored

for Multi-Anomaly Reproduction in Databases (DB-MAGS). DB-

MAGS guarantees uni�ed, authentic, and comprehensive data gen-

eration, while also providing �ne-grained root causes. In the case of

only a single anomaly occurred in the database, we categorize the

factors a�ecting database performance anomalies, select �ve major

categories of anomalies, and further subdivide each category into

eighteen minor categories. This �ner granularity of anomaly classi-

�cation facilitates more speci�c and targeted anomaly remediation.

For multiple anomalies simultaneously occurred in a database sys-

tem, we categorize the relationships between anomalies into causal

and concurrent, and enumerate di�erent combinations of multiple

anomalies, making the simulation of multiple anomaly scenarios

more comprehensive and enhancing the diversity of generated data.

PVLDB Reference Format:

Yiqi Shen, Sijia Li, Miaodong Shen, Peng Cai, Weiyuan Xu, Kai Li,

and Jinlong Cai. DB-MAGS: Multi-Anomaly Data Generation System for

Transactional Databases. PVLDB, 17(12): 4497 - 4500, 2024.

doi:10.14778/3685800.3685909

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/qifeng1128/DB-MAGS.

1 INTRODUCTION

In modern database systems, performance anomalies are a preva-

lent and intricate issue. They often result from various factors

like resource bottlenecks and lock con�icts instigated by problem-

atic SQL, and usually don’t occur in isolation. This phenomenon,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685909

known as multi-anomaly, can be concurrent or causal, where one

anomaly triggers another, creating a cause-and-e�ect anomaly. The

relationship between anomalies and their root causes adds to the

complexity. Typically, a single anomaly corresponds to a single root

cause. However, in multi-anomalies, if there’s a cause-and-e�ect

relationship, the root cause of the cause anomaly is considered

most crucial. Concurrent anomalies, however, suggest multiple

root causes. These unexpected anomalies can signi�cantly disrupt

database services, potentially leading to service crashes. Thus, ac-

curately identifying and resolving these root causes is critical for

stable database operation.

Data-driven root cause diagnosis methods, such as DBSherlock

[4] and BALANCE [1], are constrained by the availability of training

data. A uni�ed, comprehensive, and real performance anomaly

dataset would allow for a more accurate evaluation of di�erent

root cause diagnosis algorithms, driving further advancements in

this �eld. However, there’s a shortage of publicly available datasets,

both in industry and academia. Therefore, creating a system capable

of generating comprehensive and realistic database performance

anomaly data is urgently needed.

Limitations of Existing Performance Anomaly Dataset. Al-

though transactional database systems serve for mission-critical

applications, to the best of our knowledge, there is only one per-

formance anomaly benchmark (i.e. DBPA [2]) released publicly.

However, it inadequately covers the breadth of anomaly categories.

For single anomaly, one major category may include various sub-

types, and the healing methods for di�erent subtypes are distinct.

DBPA has no detailed classi�cations for these subtypes. For multi-

ple anomalies, existing benchmarks typically assume independence

among them, overlooking their potential dependencies. Simulating

real-world multiple anomalies is also challenging. DBPA [2] has not

successfully injected multiple anomalies into the running database

system, instead synthesizing data generated by single anomaly in-

jection. Authentic data, not arti�cially generated, is essential for

accurately evaluating root cause localization techniques. Further-

more, DBPA falls short in providing corresponding anomaly types

and root causes, including detailed root cause SQLs. Di�erent diag-

nosis techniques vary in the granularity of root cause localization.

For instance, DBSherlock localizes to the type of anomaly, while

BALANCE and PINSQL [3] localize to the detailed root cause SQLs.

4497

https://doi.org/10.14778/3685800.3685909
https://github.com/qifeng1128/DB-MAGS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685909
https://www.acm.org/publications/policies/artifact-review-and-badging-current

In this paper, we propose a data generation system tailored for

Multi-Anomaly Reproduction in Databases. We make following key

contributions:

" Our data generation system incorporates comprehensive sin-

gle and multiple anomaly injection combinations. For single

anomaly types, we encompass a variety of principal anomaly cat-

egories and their respective subtypes. In terms of multi-anomaly

injections, we consider combinations with both causal and con-

current relationships. This design enables our testing framework

to thoroughly cover common database performance anomaly

types, ful�lling a comprehensive performance anomaly dataset.

" Our demo includes a database performance anomaly injection

and metric collection system. Users can recreate corresponding

anomaly scenarios in the database system by inputting single or

multiple anomaly types as per their requirements. The metric

collection system can gather database performance anomaly data

upon the occurrence of anomalies, thereby providing substan-

tial data support for subsequent anomaly analysis and database

healing stages.

" The dataset generated by DB-MAGS encompasses various single

andmultiple anomaly scenarios, along with corresponding anom-

aly types and root cause SQL. The construction of this dataset

not only provides abundant experimental data for the study of

database performance anomalies but also serves as empirical evi-

dence for the localization and recovery of database performance

anomalies.

2 DESIGN OF DATA GENERATION SYSTEM

Anomalies in database performance can manifest as a decrease

in throughput or an increase in latency. We categorize database

performance anomalies into single anomaly andmultiple anomalies,

and construct an anomaly reproduction framework to simulate the

occurrence of database performance anomalies.

2.1 Anomaly Reproduction Framework

The architecture of Anomaly Reproduction Framework, as depicted

in Figure 1, comprises four layers: User Interaction Layer, Anomaly

Design Layer, Workload & Injection Layer, and Server Layer.

Figure 1: The architecture of Anomaly Reproduction Frame-

work.

The User Interaction Layer serves as an interactive platform

that facilitates user input, selection, and operation of various func-

tionalities. In this layer, we design an intuitive user interface and

develop a fault injection scheduling system to e�ciently manage

and monitor the fault injection process with a open-source tool,

Grafana1, creating a result display system to view the results and

impacts of fault injection.

The Anomaly Design Layer’s primary function is to generate

speci�c operations for anomaly creation based on the anomaly

type parameters provided by the user design layer. Initially, the

framework breaks the anomaly type into single anomaly and causal

anomaly which are in concurrent relations. Subsequently, based on

the customized operation sets, it calls the backend interface and

generates respective injection SQLs and instructions.

The Workload & Injection Layer mainly combines the injection

SQLs and instructions obtained from the design layer into cause and

e�ect anomaly operation set. It �rst runs the background workload

(e.g. TPC-C, JOB, TATP, etc.). Subsequently, it initiates a connection

to the database system in the server layer and injects the cause

anomaly customized operation set. If there exists an e�ect anomaly

customized operation set, it will be injected afterwards, thereby

implementingmultiple anomaly injections. This customizedmodule

ensures the system’s high scalability and adaptability, capable of

simulating diverse workloads and anomaly types e�ectively.

In the Server layer, the database system accepts connections ini-

tiated by the client and executes transactions passed from the back-

ground workload & injection layer. Chaosblade2 receives instruc-

tions for resource bottleneck anomalies and injects these anomalies

into the server. Additionally, the Prometheus3 tool is responsible for

collecting metric data, which includes the internal database status,

performance metrics, types of anomalies, and root cause SQL, and

stores them for further analysis.

2.2 Single Anomaly

The single anomaly classi�cation are shown in Table 1, which cate-

gorizes anomalies into �ve major types: lock con�icts, tra�c surges,

slow SQLs, resource bottlenecks, and database table backups.

Simulating single anomaly typically involves three approaches:

query injection, parameter tuning, and utilizing the Chaosblade

tool. For instance, lock con�ict anomalies are generated by inject-

ing SQLs with locking on various objects such as table-level, meta-

data and row-level. Slow SQL anomalies are triggered by queries

that operate on tables without indexes or with excessive indexes,

as well as complex joins involving multiple tables, among oth-

ers. Database backup anomalies are simulated using SQL injections

with mysqldump4 commands. Adjusting the concurrency of injected

SQLs allows us to generate the surge in tra�c caused by individual

SQL queries. Moreover, by modifying the maximum number of

threads connected to the database and the delay after task submis-

sion, we generate tra�c surges across the entire workload. Lastly,

utilizing Chaosblade, a tool designed to stress the fundamental re-

sources of an operating system, we reproduce resource bottleneck

anomalies such as CPU and network surges.

1https://github.com/grafana/grafana
2https://github.com/chaosblade-io/chaosblade
3https://github.com/prometheus/prometheus
4https://dev.mysql.com/doc/refman/5.7/en/using-mysqldump.html

4498

https://github.com/grafana/grafana
https://github.com/chaosblade-io/chaosblade
https://github.com/prometheus/prometheus
https://dev.mysql.com/doc/refman/5.7/en/using-mysqldump.html

Table 1: Single Anomaly Classi�cation

Classi�cation Subtype Reproduction Method

Lock Con�ict

Record Lock

Query InjectionTable Lock

Metadata Lock

Tra�c Surge
Single SQL

Parameter Tuning
Overall Workload

Slow SQL

Missing Index

Query Injection

Excessive Index

Implicit Conversion

Multi-table Join

Order By

Group By

Large Table Scan

Resource Bottleneck

CPU

Chaosblade

I/O

Network

Memory

Disk

Database Backup Database Table Backup Query Injection

2.3 Relationship between Anomalies

The relationship between anomalies can primarily be categorized

into two types: Causal Relationship and Concurrent Relationship.

Identifying these relationships poses a signi�cant challenge for

database administrators (DBAs) in root cause detection process as

they often exhibit similar performance metrics.

Concurrent Relationship. The concurrent relationship de-

scribes the simultaneous occurrence of two or more anomalies,

but there is no direct causal relationship between these anomalies.

The occurrence of these anomalies is independent of each other

and needs to be triggered by separate anomaly injection processes.

Therefore, for concurrent relationship anomalies, each anomaly

needs to be independently located.

Causal Relationship. The causal relationship delineates an

intrinsic causality, that is, under speci�c workloads or system en-

vironments, the occurrence of one anomaly (cause anomaly) may

trigger another anomaly (e�ect anomaly). These two anomalies

have a sequential relationship, but they often appear to be simulta-

neous from the perspective of DBAs. The crux of this relationship

lies in the fact that without the triggering of cause anomaly, the

e�ect anomaly loses its conditions for occurrence. Therefore, for

causal relationship anomalies, the focus should be on locating and

handling the cause anomaly. Due to workload constraints, the cause

anomaly may can’t directly trigger the e�ect anomaly without ad-

ditional operations, such as constructing speci�c SQL injections.

Drawing upon the professional knowledge of DBAs and the

recommendations of our industry partners, we have compiled a list

of causal anomalies that are commonly encountered in production.

These are presented in Table 2.

For instance, table lock con�ict can extend SQL query execu-

tion time of SQL queries, particularly when executed on the same

table and should be injected as the e�ect SQL. Surges in overall

workload tra�c can lead to record lock con�icts or resource bot-

tleneck anomalies. This is due to the increased number of threads

per second requesting transaction processing from the database,

consequently escalating the transactions adding identical record

locks to the same table. Concurrently, the augmented number of

transaction processing threads can exhaust server resources, po-

tentially causing resource bottlenecks. CPU resource bottlenecks

can prolong the execution time of query SQL, potentially trigger-

ing slow query anomalies. Backups of Database table can induce

anomalies in record lock con�icts, as the employment of the mysql-

dump command-line utility for backing up tables implicated in the

background workload can obstruct SQL statements that are writing

to the identical table.

Table 2: Common Causal Anomaly Classi�cation

Cause Anomaly E�ect Anomaly E�ect SQL

Lock Con�ict (Table Lock) Slow SQL YES

Tra�c Surge (Overall Workload) Lock Con�ict (Record Lock) NO

Tra�c Surge (Overall Workload) Resource Bottleneck NO

Resource Bottleneck (CPU) Slow SQL NO

Database Table Backup Lock Con�ict (Record Lock) NO

2.4 Enumerating All Multi-Anomalies

To cover a broader spectrum of multi-anomaly scenarios, including

various single anomaly subtypes and diverse inter-anomaly rela-

tionships, we propose a methodology for enumerating all possible

combinations of anomalies across � anomaly classi�cations, where

each of these � classi�cations must be triggered.

Initially, we consider the condition where at least one subtype is

selected for each classi�cation. For anomaly subtype set A, set B, ...,

the total number of anomaly combinations is calculated as follows:

Number of Total Combinations = (2 |ý | 2 1) × (2 |þ | 2 1) × . . .

We denote these anomaly combinations as � . Each anomaly

combination in � may involve causal relationship, concurrent re-

lationship between single anomaly subtypes and anomalies with

causal relationship, and concurrent relationship between single

anomalies.

Due to the existence of causal relationships among anomalies,

the e�ect anomaly can be triggered by injecting the cause anomaly.

Consequently, for each pair of anomalies with causal relationships,

we inject only the cause anomaly, excluding the e�ect anomaly.

Therefore, for each anomaly combination + in � , we identify all

causal relationship pairs contained in + to form the set +'��) . We enu-

merate the non-empty subsets of +'��) , remove the e�ect anomalies

from + based on the non-empty subsets, and consider the resulting

+
2 as a new anomaly injection method. All unique +

2 constitute

the set � 2. Finally, the anomaly injection methods covering all �

anomaly classi�cations are the union of � and � 2.

2.5 Monitored Performance Metrics

We utilized an open-source tool, Prometheus, to collect metrics of

the operating system and database. For operating system metrics,

our primary focus lies in monitoring the usage of CPU, memory,

disk, network bandwidth and the time spent on doing I/Os. Re-

garding database metrics, our major emphasis is on monitoring the

thread count, connection count, questions, slow queries count and

table lock count.

4499

3 DATA ANALYSIS

3.1 Data Di�erences

We illustrate the di�erences between real data from DB-MAGS

and synthetic data from DBPA, demonstrating DBPA’s inability to

accurately re�ect performance metrics.

Figure 2 shows the changes in CPU User and Com Commit met-

rics for DBPA and DB-MAGS under missing indexes and lock con-

�icts anomaly. The CPU User metric in DB-MAGS sharply increases,

while DBPA shows stable trends, indicating that their trends are

di�erent. Similarly, the Com Commit metric declines in DB-MAGS

but signi�cantly rises in DBPA. Theoretically, CPU User should rise

and Com Commit should decrease under multiple anomaly.

3.2 Inauthenticity of DBPA Data

The multi-anomaly data generated by DBPA model training shows

inconsistency in the time of anomaly indicator changes. This incon-

sistency arises primarily from the varied indicator change points

of di�erent single anomalies. For example, Figures 3 and 4 show

that memory usage and active thread indicators for lock con�ict

anomalies change at the 40th second, while those for missing index

anomalies change at the 7th second. These change points between

di�erent single anomalies do not align. In Figure 5, memory us-

age indicators for lock con�ict and missing index anomalies show

signi�cant changes at the 25th second, aligning with the missing

index trend, while active thread indicators change at the 45th sec-

ond, aligning with the lock con�ict trend. Theoretically, active

thread indicators should rise at the 25th second due to missing

index anomalies, but the synthesized data remains stable. Thus, the

di�erent change points make the model-generated multi-anomaly

data unreliable and unrealistic.

Figure 2: CPU User and Com

Commit of DBPA and DB-

MAGS under multiple anom-

aly.

Figure 3: Used Memory and

Active Thread of DBPA under

lock waits anomaly.

4 DEMONSTRATION

In this demo, we will illustrate how to inject custom database per-

formance anomalies, encompassing single and multiple anomaly

scenarios, and collect the corresponding monitoring metric data.

Prior to anomaly injection, as depicted in Figure 6, system collects

the inputted parameters for anomaly injection. Users specify the

anomaly categories and combinations to custom anomaly type and

Figure 4: Used Memory and

Active Thread of DBPA under

missing indexes anomaly.

Figure 5: Used Memory and

Active Thread of DBPA under

multiple anomaly.

concurrency of injecting root cause to determine anomaly severity.

Throughout anomaly injection, as shown in Figure 7, users can

click the button of "View Metric Changes" and jump to the visual-

ization page to monitor trends in operating system and database

metrics. Post to anomaly injection, the system will trigger the tool,

Prometheus, to collect and store metrics in user-speci�ed paths.

Figure 6: User Interface. Figure 7: Metrics Dashboard.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural

Science Foundation of China (U22B2020) and Meituan. Peng Cai is

the corresponding author.

REFERENCES
[1] Chaoyu Chen, Hang Yu, Zhichao Lei, Jianguo Li, Shaokang Ren, Tingkai Zhang,

Silin Hu, Jianchao Wang, and Wenhui Shi. 2023. BALANCE: Bayesian Linear
Attribution for Root Cause Localization. Proc. ACM Manag. Data 1, 1 (2023),
95:1–95:26.

[2] Shiyue Huang, Ziwei Wang, Xinyi Zhang, Yaofeng Tu, Zhongliang Li, and Bin Cui.
2023. DBPA: A Benchmark for Transactional Database Performance Anomalies.
Proc. ACM Manag. Data 1, 1 (2023), 72:1–72:26.

[3] Xiaoze Liu, Zheng Yin, Chao Zhao, Congcong Ge, Lu Chen, Yunjun Gao, Dimeng
Li, Ziting Wang, Gaozhong Liang, Jian Tan, and Feifei Li. 2022. PinSQL: Pinpoint
Root Cause SQLs to Resolve Performance Issues in Cloud Databases. In 2022 IEEE
38th International Conference on Data Engineering (ICDE). 2549–2561.

[4] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. DBSherlock: A Perfor-
mance Diagnostic Tool for Transactional Databases. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016. ACM,
1599–1614.

4500

	Abstract
	1 Introduction
	2 Design of data generation system
	2.1 Anomaly Reproduction Framework
	2.2 Single Anomaly
	2.3 Relationship between Anomalies
	2.4 Enumerating All Multi-Anomalies
	2.5 Monitored Performance Metrics

	3 Data Analysis
	3.1 Data Differences
	3.2 Inauthenticity of DBPA Data

	4 Demonstration
	Acknowledgments
	References

