
LeanStore: A High-Performance Storage Engine for NVMe SSDs
Viktor Leis

Technische Universität München
Germany

leis@in.tum.de

ABSTRACT
Neither traditional disk-based database systems nor modern in-
memory database systems are capable of fully exploiting modern
servers with multiple NVMe SSDs. LeanStore is a high-performance
OLTP storage engine specifically optimized for NVMe SSDs and
multi-core CPUs. The paper gives an overview of the architec-
ture of LeanStore and describes all major components, covering
caching, page replacement, I/O management, indexing, data struc-
ture synchronization, multi-version concurrency control, logging,
checkpoints, and recovery.We also discuss some of the low-level im-
plementation techniques necessary for achieving high performance
on modern hardware.

PVLDB Reference Format:
Viktor Leis. LeanStore: A High-Performance Storage Engine for NVMe
SSDs. PVLDB, 17(12): 4536-4545, 2024.
doi:10.14778/3685800.3685915

1 INTRODUCTION
DRAM Stagnation. Following Stonebraker’s call to action [26, 64],
main-memory database systems have been the focal point of re-
search on high-performance database systems for more than a
decade. Academically, this research program has been a tremendous
success, introducing innovative systems and achieving unprece-
dented performance results. Surprisingly, however, the real-world
adoption of pure in-memory transactional database systems has
been limited. We believe it is fair to say that even the most suc-
cessful in-memory systems remain niche products. The focus on
main-memory systems was fueled by rapidly shrinking DRAM
prices: from 2000 to 2012, the price/byte for DRAM dropped by
about 300× [23]. For the first time, this made it feasible to keep
databases of non-trivial size entirely in main memory. Since around
2012, however, DRAM prices have been decreasing at a much slower
pace, which has limited the adoption of main-memory database sys-
tems. Consequently, general-purpose transaction processing is still
dominated by traditional database systems optimized for secondary
storage.
Flash to the Rescue. In contrast to DRAM, flash-based solid state
drives (SSDs) have seen dramatic price reductions during the last
10 years. Whereas DRAM and flash cost per byte was comparable

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685915

Figure 1: DRAM, SSD, and disk prices from 2013 to 2023.
data source: https://jcmit.net/memoryprice.htm

in 2005, today flash is about 20–50× cheaper1 than DRAM [23].
As Figure 1 shows, SSDs are even closing the cost gap to disk.
SSDs have not just become cheap, they have also become very
fast. Internally, an SSD consists of many flash chips that can be
accessed in parallel, which is why SSD bandwidth has historically
been limited by the interface to the host system. The transition
from SATA 3 (0.5 GB/s) to the NVMe/PCIe interface changed this
by allowing users to exploit the quickly improving interconnect
speeds of PCIe 3.0 (4 GB/s), PCIe 4.0 (8 GB/s), and PCIe 5.0 (16
GB/s). Thus, from 2017 to 2023, SSD bandwidth increased by 30
times – while price per byte dropped by one order of magnitude.
With support for 10 or more SSDs in a single server, this means
that a server with tens of millions of I/O operations per second and
an aggregated bandwidth rivaling DRAM is not just possible – but
affordable and readily available [24].
SSD-Optimized Systems. The LeanStore [45] project was moti-
vated by the observation that neither in-memory nor disk-based
systems come even close to being able to exploit the capabilities
of modern SSDs. Many of the design decisions of in-memory sys-
tems such as the avoidance of a buffer pool and small index nodes
are problematic for storage on flash, and augmenting in-memory
architectures with out-of-memory support may result in overly
complicated systems. Existing disk-based systems, on the other
hand, appear more promising due to buffer pools and page-based
storage, but were developed when storage was several orders of
magnitude slower. As a result, with NVMe SSDs, a system like
PostgreSQL is completely CPU-bound on out-of-memory OLTP
workloads [23]. Even though they are often treated that way, SSDs

1In contrast, the price of Intel’s persistent memory offering Optane remained close
to DRAM – which is probably the main reason why the technology failed to achieve
commercial success and was discontinued.

4536

https://doi.org/10.14778/3685800.3685915
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685915
https://jcmit.net/memoryprice.htm


are not just faster disks – good performance requires novel DBMS
designs.
LeanStore. The goal of LeanStore [45] is to build a storage engine
that rivals the performance of in-memory systems without having
to keep all data in main memory. To achieve this requires combining
many of the modern in-memory optimizations (e.g., lightweight
synchronization, CPU and cache efficiency) with techniques from
disk-based systems (e.g., B-trees, paged storage, physiological log-
ging, fuzzy checkpoints). The most important technical challenge
is managing hardware parallelism at both the CPU and SSD level.
Paper Overview. The LeanStore project started in 2017 and many
of the important components have been described in a series of
papers [2–4, 24, 27, 28, 43, 45, 46, 58, 67]. These papers describe a
particular component in isolation and are snapshots of our under-
standing at particular points in time. Since the start of the project,
its goals stayed the same, but we revisited almost all ideas and tech-
niques, leading to significant changes in the design. These changes
have been motivated not just by trying to achieve ever higher
performance, but also by the desire for simplicity, more perfor-
mance robustness, and fewer configuration parameters. This paper
discusses the key ideas behind all major LeanStore components,
provides the underlying motivation behind our design decisions,
and tries to distill what we learned over the history of the project.

2 LEANSTORE
Functionality and Scope. LeanStore is a storage engine optimized
for NVMe SSDs and multi-core CPUs. Similar to other storage
engines such as RocksDB [18], WiredTiger [55], Shore-MT [31],
FASTER [13], and LMDB [65], it provides indexing and transactions,
but no support for SQL or high-level query processing capabilities.
LeanStore is an embeddable C++ library [2] offering APIs for index
access (insert, update, delete, point lookup, range scan) and trans-
action management (begin, commit, rollback). Keys and payloads
are opaque arrays of bytes, so it is up to the application to interpret
the data appropriately [2].

2.1 Caching
Hash-Table-Based Buffer Management. Disk-based database
systems cache pages from secondary storage in a buffer pool, which
is usually implemented using a hash table that maps page identi-
fiers to cached pages. For workloads where most page accesses
are hits, this implementation can incur a significant performance
overhead [26]. This has been one of the main motivations for main-
memory database systems, most of which avoid the overhead by
not implementing a buffer manager at all. Supporting larger-than-
memory workloads without a buffer manager requires additional,
fairly complicated, mechanisms [15, 17] for distinguishing hot and
cold tuples. One major downside of these mechanisms is that they
only deal with tuples, but cannot evict index structures. The con-
ceptual beauty of a buffer manager is that it can transparently
manage arbitrary data structures using a single replacement algo-
rithm. Given the increasing performance and decreasing cost of
NVMe storage, we argue that any modern database system requires
a buffer manager.
Pointer Swizzling. The original impetus for LeanStore came from
the insight that a buffer manager with nearly zero overhead can

P5 P4 P3

P5 P4 P3

page
table

foo

foo

P5 P4 P3

P0 P1 P2 P3 P4 P5

foobardog cat fish

bar

bar

virtual
memory

physical
memory

Figure 2: Virtual-memory assisted buffer management.
Cached pages are mapped into virtual memory at locations
corresponding to offsets on SSD. In contrast to a file-backed
memory mapping approach, the DBMS controls eviction and
replacement.

be implemented using pointer swizzling. Instead of translating the
page identifier to a pointer on every page access, the main idea
behind pointer swizzling is to change the reference to the pointer.
In other words, a page reference can either be a pointer into the
buffer pool or an offset on secondary storage. Pointer swizzling
is an old idea that was heavily used in object-oriented database
systems [35] and was later adapted to relational storage engines
with page-based storage [22, 39, 56].
Pointer Swizzling Downsides. Although pointer swizzling is
very fast, it also has significant downsides. First, it is an invasive
technique that is not as transparent as a hash-table-based buffer
manager. For example, before evicting a page, it is necessary to
ensure that all references stored on that page are storage offsets
rather than pointers [22]. To some extent, this requires the buffer
manager to understand the content of buffer-managed pages. Sec-
ond, pointer swizzling makes it difficult to support graph (non-tree)
data structures. The reason is that before a page can be evicted,
all incoming references to that page need to be unswizzled. Prac-
tical implementations therefore restrict themselves to tree data
structures. Third, our experience shows that implementing pointer
swizzling is subtle and challenging, particularly in terms of correct
synchronization.
Can We Make Translation Efficient? Even though pointer swiz-
zling was the foundational idea of the LeanStore project, its down-
sides led us to rethink our buffer manager design. Fundamentally,
the problems of pointer swizzling stem from getting rid of the indi-
rection between logical page identifier and pointer to cached mem-
ory. In other words, the traditional hash table indirection makes
buffer managers flexible and simple, but comes at the cost of ineffi-
cient page access. One may wonder whether, instead of getting rid
of the indirection table, there is a way to make translation efficient.
Indeed, every modern CPU has hardware support (page walking
in hardware, TLB) for translating virtual to physical memory ad-
dresses.
Virtual-Memory-Assisted Buffer Management.Why can the
DBMS not just use the virtual memory hardware instead to make
buffer managers both flexible and efficient? This question led us
to the development of vmcache, a virtual-memory assisted buffer
manager [43]. As Figure 2 illustrates, vmcache maps cached pages
into virtual memory such that the virtual memory addresses cor-
respond to the locations on disk. The virtual memory page table
serves a similar indirection purpose as the hash table of traditional

4537



buffer managers. The result shown in Figure 2 could be achieved
by mapping the storage device into virtual memory using the mmap
system call in Unix. However, this would mean the operating sys-
tem (OS) controls paging and eviction, causing major semantical
and performance issues for database systems [14].
The DBMS Is In Control. Instead, in the vmcache design, the
DBMS takes control using three widely-supported OS primitives:

• Lazy allocation of virtual memory:
mmap(NULL, ssdSize, ..., MAP_ANONYMOUS ...)

• Page miss:
pread(fd, &virtMem[pid], pageSize, pid*pageSize)

• Eviction:
madvise(&virtMem[pid], pageSize, MADV_DONTNEED)

On startup, vmcache allocates a large amount of anonymous vir-
tual memory, with its size corresponding to the total storage size
(ssdSize in the code fragment). When a cache miss occurs for a
page with the page identifier pid, the I/O system call (pread in
the code fragment) uses the corresponding virtual memory ad-
dress as the destination for the page. Before the physical memory
capacity is exhausted, vmcache explicitly selects pages for evic-
tion and then communicates this decision to the operating system
(madvise(...,MADV_DONTNEED) in code fragment).
Discussion. The basic vmcache design offers fast (TLB-assisted)
cache hits, works across all major operating systems, is fairly easy to
implement, supports arbitrary graphs, and simplifies variable-size
pages2. However, it is not without downsides. vmcache relies heav-
ily on manipulating virtual memory through system calls: in steady
state, every page miss will lead to one page fault and one page evic-
tion. It turns out that today’s storage devices are faster than today’s
OS virtual memory operations [43]. Unfortunately, fully exploiting
fast storage devices therefore requires novel fast and scalable vir-
tual memory primitives that can be implemented as a Linux kernel
module [43] or within specialized unikernels [44]. Nevertheless,
we believe that the qualitative benefits of virtual-memory assisted
buffer management outweigh this downside, which is why we are
in the process of transitioning LeanStore’s buffer manager from
pointer swizzling to the vmcache design.

2.2 Page Replacement
Efficient Page Replacement. Buffer managers need some algo-
rithm for deciding which page to evict. Many disk-based systems
rely on approximations of Least Recently Used (LRU) like Second
Chance, often in conjunction with special handling for large table
scans. The original LeanStore replacement algorithm [45] combines
random candidate selection with a FIFO-based algorithm. Random
pages are selected as candidates for eviction by unswizzling them
and moving them to a FIFO list, which comprises a fixed percentage
of the overall buffer pool (e.g., 10%). This gives candidate pages
a grace period during which they can be re-promoted back to a
swizzled page without incurring I/O. The motivation behind this
two-stage algorithm is that accessing hot (swizzled) pages incurs ab-
solutely no overhead, which is particularly beneficial for workloads
where the working set fits into the buffer pool fully.

2Larger database pages simply consist of multiple contiguous virtual memory pages
(usually 4KB). The page table prevents internal memory fragmentation by allowing
the use of arbitrary (non-contiguous) physical pages.

Effective Page Replacement.Workloads with larger data sizes
and a non-trivial miss rate, on the other hand, benefit from algo-
rithms that invest more effort into selecting which page to evict. It
is well known that more sophisticated algorithms such as ARC [52]
and LRU-k [59] result in better hit rates for skewed, real-world
workloads. However, these high-quality algorithms have been de-
signed in a world where hardware looked very different than today,
and would be too slow for modern hardware. Modern servers have
in the order of one hundred CPU cores and support in the order of a
million I/O operations per second. Flash storage is also asymmetric
in the sense that writes are slower than reads. Therefore, modern
flash storage engines require a replacement algorithm that is effi-
ciently handling the high I/O rates, scales well with the number
of CPU cores, and is aware that writes are more expensive than
reads. This led us to develop the Write-Aware Timestamp Tracking
(WATT) algorithm [67].
Tracking Access History. The main intuition behind WATT is
that, to achieve a higher page hit rate, one needs to track more
information about the page access history. For example, the Second
Chance algorithm relies on a single bit per page, while LRU implic-
itly stores a rank for each page that is determined by the access
history. To improve upon LRU in terms of hit rates, one needs more
information about the page access history. One way to do that is to
remember the entire access history of each page, which could be
implemented by recording the timestamps of each page access. In
practice, one has to limit the number of timestamps tracked to a
small constant (e.g., 8).
Page Value Calculation. Given these timestamps, how does one
select a page for eviction? WATT relies on the notion of a page
value, and a page with a lower value is evicted more likely than
a page with a higher value. When a page has been accessed at
timestamps 8, 15, and 42, we get the following tracking history:

𝑖 1 2 3
𝑡𝑖 42 15 8

To compute the page value of a page at timestamp 𝑡now , we first
compute subfrequencies SF𝑖 := 𝑖

𝑡now−𝑡𝑖 . For 𝑡now = 50, we get the
following results:
𝑖 1 2 3
SF𝑖 1/(50 − 42) ≈ 0.13 2/(50 − 15) ≈ 0.06 3/(50 − 8) ≈ 0.07

Intuitively, the subfrequencies measure the average access fre-
quency at different points in time. For example, for the 𝑖 = 2
case, we know that we had 2 page accesses within a time frame of
50 − 15 = 35 time units, resulting in an average access frequency
of 2

35 ≈ 0.06. To obtain the page value, WATT simply selects the
largest subfrequency of that page: 𝑃𝑉 := max𝑖 SF𝑖 (𝑡now). Given
that the subfrequencies depend on the current time and there-
fore change constantly, it is not feasible to maintain accurate page
values over the entire buffer pool. Instead, WATT relies on sam-
pling: whenever free pages are needed, it computes page values for
randomly-selected eviction candidates and then evicts, e.g., the 10%
of pages with the lowest values.
Write Awareness. To make the algorithm write-aware, we track
read and write accesses separately (using 8 read timestamps, and
4 write timestamps per page) and compute separate page values
for reads and writes. These two page values are simply combined
with a weighted sum. The weight parameter allows configuring

4538



the relative cost of reads and writes, e.g., based on the hardware
specification of the storage device in use.
Optimizations. To make the timestamp tracking scalable on multi-
core CPUs it is important to minimize cache line invalidations by
avoiding to increment the timestamp counter too frequently. A good
way to do this is to couple the number of buffer pool page allocations
with the timestamp increments. In a buffer pool with 1,000,000
pages, for example, it would be enough to increment the timestamp
counter every 100,000 page allocations to distinguish cold from
hot pages. Another important practical consideration is to make
eviction efficient using memory prefetching during the sampling
phase and SIMD during page value calculation. This reduces the
overhead of computing the value of a random page to approximately
100 cycles. Together, these optimizations result in an algorithm that
not only achieves state-of-the-art replacement effectiveness [67],
but is also efficient, scalable, and write-aware.

2.3 I/O Management
Slow I/O, Fast I/O. In the past, when disks achieved at most several
thousands of I/O operations per second, what mattered for overall
performance was the number of I/O operations. Consequently, disk-
based database systems have been optimized for minimizing disk
I/O operations. The recent performance explosion of NVMe SSDs
has fundamentally changed these assumptions. The performance
of modern PCIe 5.0 SSDs is approaching 3 million I/O operations
per second (IOPS) for random 4KB reads. Servers have enough
PCIe lanes for ten or more such devices, which means that tens of
millions of IOPS have become feasible.
Tight CPU Budget. In the original LeanStore paper, we argued
that briefly acquiring a global lock before every I/O operation is not
problematic [45]. This may have been the case in 2018. However,
the assumption that any CPU work on the I/O path is negligible
because I/O is slow anyway, is not true anymore. Consider a server
with 100 cores at 3 GHz and 8 SSDs with 2.5M IOPS each, which is
similar to a server in our lab. Assuming very optimistically that all
CPU cores of the server can be used and that there is no overhead
from synchronization, this implies that for every I/O operation, we
have a budget of at most 15,000 CPU cycles. For out-of-memory
workloads, every transaction may very well cause a page miss and
therefore an I/O operation. For any storage engine that wants to
exploit the I/O capabilities, this means that it has a total of 15,000
cycles for the index lookup, concurrency control protocol, task
management, page replacement, and for actually performing the
I/O itself.
Optimizing the I/O Stack. Such a tight CPU budget implies that
all internal overhead on the I/O path must be carefully engineered
to be efficient and scale well. In LeanStore, we not only had to
get rid of the global I/O lock, but rewrite the entire I/O path, for
example, avoiding dynamic memory allocations for small objects
used internally to keep track of outstanding I/O operations [24].
The I/O stack of the operating system is also a major source of
overhead [24]. Another important key to unlocking the power
of modern flash hardware is exploiting its tremendous internal
parallelism. An SSD internally consists of many independent flash
chips. Achieving high throughput on transactional out-of-memory
workloads therefore requires scheduling and managing thousands

of concurrent I/O operations [24]. This is challenging because the
degree of parallelism that is beneficial for flash is higher than the
number of hardware threads, requiring careful orchestration of
asynchronous I/O interfaces and user-level tasks [24, 30]. Finally,
achieving high I/O rates also requires disabling the OS page cache,
the file system, and any software RAID [23, 24]. Even the remaining
low-level block device layer of Linux can be a bottleneck, which can
be avoided with user-space I/O NVMe stacks such as SPDK [24].
Task Management. In addition to the actual transaction work, a
buffer managed system has additional tasks that have to be per-
formed. For example, it is necessary to find eviction candidates,
write back dirty pages, and perform polling for I/O operations. Ear-
lier versions of LeanStore relied on separate background threads
for these tasks [45]. Unfortunately, given the performance of mod-
ern I/O devices, a single thread for each of these tasks may not
be sufficient. To avoid users having to configure the number of
threads, we therefore switched [24] to an approach where we start
exactly as many worker threads as there are hardware threads and
where each worker thread is responsible for all tasks. We rely on a
lightweight context switching mechanism, to switch between tasks
at appropriate points, e.g., a page miss. Note that this effectively
re-implements many of the I/O and scheduling responsibilities op-
erating systems are supposed to handle, but is currently necessary
to achieve the performance goals.
What is the Best Page Size? One thing disk and flash have in com-
mon is that they are both block devices with a relatively large access
granularity. Typical database page sizes are 4 KB (DB2), 8 KB (Post-
greSQL, SQL Server, Shore), 16 KB (MySQL), 32 KB (WiredTiger),
and 64KB (Umbra). In LeanStore, we originally used 16KB [45],
but later switched to 4KB. 4 KB I/O operations not only have the
lowest latency [24], but they also reduce I/O amplification for ran-
dom workloads. Because enables higher I/O rates, a smaller page
size also increases the performance pressure on many components
of the DBMS. Nevertheless, we believe that the I/O amplification
benefits are worth the engineering effort.
Random vs. Sequential I/O. For disk there is tremendous benefit
from performing sequential rather than random I/O. Through a
concept often called segments, disk-based systems therefore try
to maintain spatial locality for related pages on disk, e.g., to allow
table scans to result in sequential I/O. For flash, the benefit of
sequential accesses is small, and placement decisions are under
the control of the SSD rather than the software anyway. Flash-
optimized storage engines can therefore avoid the complication of
maintaining segments, significantly reducing complexity.

2.4 Indexing
B-trees. Disk-based database systems have historically relied on
B-trees [20] as index structures, while in-memory systems use a
variety of diverse data structures optimized for in-memory perfor-
mance, such as tries [7, 47, 51]. While in-memory data structures
are typically faster than B-trees, their smaller (and often variable)
node sizes make them difficult to integrate into buffer-managed
systems and potentially inefficient in out-of-memory workloads.
For these reasons, LeanStore has always relied on B-trees. We sup-
port variable-size keys/payloads and employ a number of cache
optimizations [2] to the traditional B-tree node layout to close much

4539



Foster

Paxville

Kentsfield

Lynnfield

Beckton

Westmere

Sandy Bridge

Ivy Bridge

Broadwell Skylake

Naples

Rome

Genoa

Bergamo

1

2

4

8

16

32

64

128

2000 2004 2008 2012 2016 2020 2024

c
o

re
s 

[lo
g

 s
ca

le
]

Figure 3: Core count of the largest x86 server CPU over time.

of the gap between high-performance in-memory data structures
and B-trees.
Contention Management in B-trees. A downside of the rel-
atively large node size of buffer-managed B-trees is that it may
cause unnecessary lock contention when two or more frequently
updated tuples happen to physically reside on the same page. To
avoid unnecessary contention, we exploit a useful property that
B-trees have: the same keys can be stored in B-trees with different
node structures. Usually, this structure depends on the (accidental)
insertion order, but nothing stops us from reorganizing it, e.g., to
avoid contention. Specifically, the Contention Split [3] technique
probabilistically detects unnecessary contention, and then forces
a B-tree node split to spread the frequently accessed keys among
separate nodes with separate locks.
Space Management in B-trees. Contention Split can result in
underfull pages and therefore increase space consumption, which is
why it should be combined with the XMerge technique [3]. XMerge
optimizes memory consumption of B-trees by merging X neigh-
boring nodes into X-1 nodes. A typical value for the X parameter
is 5, with higher values resulting in more frequent merges and
therefore higher average fill factors [3]. In LeanStore, XMerge is
triggered during page replacement, i.e., when the system is about
to run out of free pages. After all, it is just as good to free a page
through merging as it is to evict a page. While XMerge is a useful
technique in isolation, it also nicely complements Contention Split
by preventing low space utilization, which could occur if the area
of contention is changing continuously.
Large Objects.Most database systems support storing arbitrary
data using the Binary Large OBject (BLOB) data type. Nevertheless,
application developers generally prefer to store large objects in the
file system. The split between database records describing the files
and the file content causes major downsides, for example in terms
of space management and the lack of transaction support. In recent
work [58], we therefore proposed a number of optimizations that
allow to manage large objects within the DBMS efficiently.

2.5 Low-Level Data Structure Synchronization
Many Cores. As Figure 3 shows, in the last two decades we went
from having x86 server CPUs with a single core to over 100 cores
– a growth rate of approximately 25% per year. High-end multi-
socket (NUMA) systems and simultaneous multithreading (“hyper-
threading” in Intel parlance) can bring the number of hardware
threads to over 1,000. Synchronization is particularly challenging
for transactional engines since transactions are often small (e.g.,
one single-tuple index lookup) and the synchronization overhead
cannot be easily amortized. Exploiting the computational power of
modern multi-core CPUs therefore requires efficient and scalable
synchronization techniques for all internal data structures (such as
index structures, work queues, database metadata).
Locking. The traditional way of synchronizing the internal data
structures of a database system is to use fine-grained locking3. For
example, each page in the buffer pool has a corresponding lock
that can be acquired either in exclusive (for writes) or shared (for
reads) mode on every page access. Unfortunately, locks do not scale
well on modern multi-core CPUs not just due to their inherent
pessimism, but also because each lock acquisition causes a physical
write to memory – even for a shared lock acquisition. For example,
consider the root node of a frequently accessed B-tree, which would
benefit from being cached on all CPU cores. In a multi-threaded
setting, each time the root is read, its lock needs to be acquired by
physically writing to the lock, which causes the invalidation of the
underlying cache line on all other cores.
Partitioning. Several synchronization approaches have been pro-
posed to avoid the scalability problems of locking. Some in-memory
systems, such as VoltDB and early versions of Hyper, physically
partition the database according to a user-specified key. The data
structures within a partition are completely independent, and dif-
ferent worker threads can be assigned to different partitions. As
long as a transaction stays within one partition, this approach el-
egantly sidesteps low-level synchronization problems altogether.
The downside of partitioning is that it makes cross-partition op-
erations expensive. For example, suppose the customer table is
partitioned by the customer identifier, and we have a secondary in-
dex on the customer name. A single logical lookup by name would
have to perform lookups within each of the partitions.
Lock-Free Data Structures. Given that locks often fail to scale,
it is natural to avoid locks altogether by relying on lock-free data
structures, such as the Bw-tree [49], a lock-free B-tree variant, or
the split-ordered list [63], a lock-free hash table. While lock-free
structures usually scale well, in particular for read-heavyworkloads,
they are not necessarily the fastest data structures. Fundamentally,
the problem is that lock-free data structures are based on a very
limited set of hardware primitives (atomic loads, atomic stores, and
compare-and-swap on 8-byte words). To implement a complex data
structure operation such as a B-tree split, this limitation makes
it necessary to introduce additional indirections such as mapping
tables and delta records. This can result in substantial additional
CPU overhead [69]. The synchronization protocols of lock-free data
structures are also extremely complicated and therefore bug-prone,

3Following standard Computer Science terminology, we use the term lock for a low-
level primitive providing mutual exclusion that the traditional database literature calls
latch.

4540



which is why we chose not to rely on lock-free data structures in
LeanStore.
Optimistic, Versioned Locks. A less radical alternative to lock-
free synchronization is to associate each lock with a version counter
that is incremented on every data structure update. This version
counter can be used by read operations to proceed optimistically
and validate that a read is correct without physically acquiring any
locks. We call such a lock, including a version counter, optimistic
lock. Optimistic locks allow implementing lock-based data struc-
tures that scale just as well as lock-free data structures, while being
faster and less complex. The idea was first proposed for synchroniz-
ing B-trees [12] and later used to synchronize the trie/B-tree hybrid
Masstree [51] that became the index structure for the in-memory
Silo system [66]. Based on optimistic locking, both data structures
implement custom data-structure-specific synchronization proto-
cols.
Optimistic Lock Coupling. The first LeanStore prototype used a
custom protocol [12] to synchronize its B-tree indexes using opti-
mistic versions. However, we quickly switched to an even simpler
protocol, which we call Optimistic Lock Coupling (OLC) [46, 48].
We believe that the idea was first used in the context of a more
complicated protocol for binary search trees [11]. As the name
implies, the key idea behind Optimistic Lock Coupling is to com-
bine Bayer and Schkolnick’s [6] classic lock coupling idea with
optimistic locks [12] by interleaving version validations. This idea
radically simplifies the design of scalable, efficient, and correct data
structures. OLC is used within LeanStore for synchronizing the B-
tree indexes. LeanStore provides three locking modes for accessing
buffer pool pages: exclusive, shared, and optimistic [2]. This is im-
plemented by combining version counters with OS locks [9]. These
synchronization abstractions are built into the buffer manager, and
make it easy to implement additional scalable data structures on
top [2].
Memory Reclamation. Lock-free and optimistic synchroniza-
tion protocols usually require additional mechanisms when freeing
memory. The problem is that unless all operations lock, an opera-
tion deleting a node from a data structure cannot be sure when it is
safe to reclaim that node’s memory for other purposes (because an
optimistic read might still be ongoing). Lock-free data structures
therefore generally have to be combined with techniques such as
hazard pointers [53] or an epoch-based approach [66] for delaying
memory reclamation. The original version of LeanStore relied on
epoch-based memory reclamation. Surprisingly, we later found out
that for buffer-managed systems like LeanStore it is possible to
forgo a delayed memory reclamation mechanism altogether [27] as
long as two conditions are fulfilled: (1) the buffer manager never
returns memory to the operating system, and (2) version counters
always increase monotonically. Both conditions are easy to ensure
in LeanStore, which is why we were able to remove the code im-
plementing the epoch-based approach. This not only simplifies the
implementation, it also makes the system more robust because it
avoids the potential of misbehaving threads stopping system-wide
memory reclamation [27].

2.6 Multi-Version Concurrency Control
MVCC and Snapshot Isolation. Besides low-level data synchro-
nization, database systems also require a high-level concurrency
control mechanism to isolate concurrent transactions logically from
each other. Today, most widely-used systems rely on some vari-
ant of Multi-Version Concurrency Control (MVCC). In an MVCC
system, when a tuple is changed, a new version of the tuple is
created while the old version remains available. A key attraction
of MVCC is that it allows a long-running transaction to operate
on an older snapshot of the database without having to lock all tu-
ples and therefore without directly interfering with current updates.
MVCC therefore implicitly promises Hybrid Transaction/Analytical
Processing (HTAP) in one system.
MVCC Tradeoffs. Broadly, there are two major types of MVCC
designs: those for disk-based systems such as PostgreSQL and
MySQL/InnoDB, and those for in-memory systems such as Mi-
crosoft Hekaton [40] and Hyper [57]. Disk-optimized protocols
efficiently support transactions of arbitrary size (steal) at the cost
of expensive and unscalable snapshot creation and visibility checks
that do not scale well on many-core CPUs. Protocols optimized for
in-memory systems are generally more efficient, but require revis-
iting the entire write set on commit [4], which can be prohibitively
expensive for large, out-of-memory transactions.
Fast Commit and Fast Visibility Through OSIC. The Ordered
Snapshot Instant Commit (OSIC) [4] is a commit protocol that tries
to combine the best of both worlds. Like in-memory systems, OSIC
enables instant and scalable snapshot creation and fast visibility
checks, but avoids the need to revisit the write set on commit. The
key idea is to exploit a transitive commit invariant, which states that
if some transaction was committed at a particular timestamp on
some worker, then all transactions on that worker with an earlier
timestamp were also committed. Each worker maintains a commit
log, implemented as a fixed-size array, that is used during visibility
checks by other workers. The transitive commit invariant allows
each worker to cache the commit log entries from other workers,
which makes visibility checks incremental and efficient. Tuples are
annotated with a version and the worker identifier that created
that version. When a worker encounters a tuple written by another
worker, it will first check its own worker’s cache before consulting
(and caching) the commit log entry of the other worker.
LeanStore MVCC Overview. LeanStore implements snapshot
isolation using the OSIC commit protocol, which provides cheap
snapshot creation that scales with the number of workers and
enables transactions of arbitrary size. The implementation uses the
first-writer-wins rule, i.e., a transaction attempting to update a tuple
for which the most recent version is not visible is aborted [4]. This
results in recoverable schedules under snapshot isolation without
the need for a validation phase. Besides the commit protocol and
visibility checking logic, the efficiency and robustness of an MVCC
implementation depend on how versions are stored and indexed.
LeanStore chains tuple versions in newest-to-oldest order, favoring
OLTP over OLAP, and stores delta entries for updates rather than
creating a full copy of an updated tuple.

4541



Better Performance Robustness for Hybrid Workloads Using
Graveyard Index.MVCC implicitly promises that long-running
read transactions can coexist with update-heavy OLTP transac-
tions. Surprisingly, we found that OLTP performance collapses on
all tested MVCC systems in the presence of a single read-only snap-
shot [4]. The reason for this is fairly subtle: indexes accumulate
logically-deleted versions of frequently-updated tuples that cannot
be garbage collected due to the old snapshot. Note that even fully
precise garbage collection does not avoid this problem. The only
solution is to physically move these tuple versions out of the main
index into a separate data structure, which we call the graveyard
index. Latency-critical OLTP transactions thereby avoid the large
performance drop, while long-running snapshots can still retrieve
these old versions from the graveyard index.
Adaptive Storage and Garbage Collection. Another important
aspect of an efficient MVCC implementation is the question of
where versions are stored and how garbage is collected. For some
workloads, it is better to store old versions in a separate data struc-
ture (off-row storage). Other workloads benefit from older ver-
sions staying physically next to the newest one (in-row storage).
LeanStore implements both (off-row: Delta Index and in-row: Fat-
Tuple) and adaptively chooses between them depending on the per-
tuple access pattern [4]. By default, old versions are stored in the
Delta Index. The Delta Index makes cheap bulk garbage collection
possible by effectively serving as a per-thread garbage collection
todo list. The second format, FatTuple, is employed for frequently-
updated tuples, which reduces the risk of precise garbage collection
causing random I/O. We found that achieving performance robust-
ness for challenging hybrid workloads requires several kinds of
garbage collection (GC) [4]. In many situations, the Delta Index
allows very cheap GC through high watermarks and cheap range
deletes. Other cases require precise garbage collection, e.g., travers-
ing long version chains and checking for each one if it may safely
be garbage collected. Finally, LeanStore also performs GC when
evicting pages containing FatTuple entries, as these are not tracked
by the Delta Index.
Discussion. LeanStore’s MVCC implementation is efficient, scal-
able on multi-core CPUs, supports transactions of arbitrary size,
and provides robust performance for complex heterogeneous work-
loads. Arguably, the main downside of LeanStore’s approach is its
complexity. Most of this complexity (graveyard index, different
tuple storage layouts, several kinds of GC) stems from the desire
for performance robustness. The performance overhead of these
additional techniques is moderate, and we argue that the robust-
ness gains are certainly worth it. It is a compelling open question
whether these robustness goals can be achieved with a simpler
design.

2.7 Logging, Checkpoints, and Recovery
Logging in In-Memory Systems. The durability of committed
transactions is typically guaranteed using some form of write-ahead
logging. In-memory systems generally log only tuple changes but
do not log the index data structures themselves [16, 50]. Instead,
the recovery process rebuilds indexes from scratch using the re-
covered tuple data. This approach is simple and efficient as long as
index structures fit into main memory, but becomes infeasible for

larger-than-memory indexes. Unfortunately, indexes constitute a
significant fraction of the overall space consumption [73] in OLTP
use cases.
Logging in Disk-Based Systems. Most disk-based systems, in
contrast, log the changes to all pages, including the indexes, and
are therefore able to recover the entire database state. The classical
solution for disk-based systems is ARIES-style logging [54], which
supports incremental recovery and fuzzy checkpoints. ARIES re-
lies on a single centralized Write Ahead Log (WAL) that orders
all log records according to a single monotonically growing Log
Sequence Number (LSN). On multi-core CPUs, the centralized WAL
is a scalability bottleneck for write-intensive workloads. Thus, nei-
ther lightweight schemes nor ARIES satisfy all desired properties,
which means that SSD storage engines require a different approach.
Decentralized Logging. LeanStore’s logging approach [28], like
ARIES, is based on physiological logging: log entries reference phys-
ical page identifiers and contain logical per-page redo and undo
information. Unlike ARIES, LeanStore supports per-thread logs
using distributed clocks (or Lamport timestamps) [28, 68]. The ap-
proach relies on the Global Sequence Number (GSN) concept, which
is a decentralized way for maintaining a partial order between log
records. Every transaction, page, and log entry have an associated
GSN [28]. When two transactions access the same pages, an explicit
order between them is established through the GSN mechanism,
while transactions that access distinct sets of pages will remain
unordered and therefore unsynchronized [28].
Commit Acknowledgment. One challenge with decentralized
logging is knowing when it is safe to acknowledge that a commit-
ted transaction is durable. It is not enough to simply flush the log
containing the log records of one particular transaction, as that
transaction might depend on unflushed log records with lower
GSNs in other logs. One solution is to rely on a group commit pro-
cess that periodically flushes all logs, computes the minimum GSN
across these logs, and then acknowledges transactions above that
minimum GSN.While this approach can achieve very high through-
put, it can also lead to a high per-transaction commit latency. To
be able to flush logs independently and therefore optimize commit
latency requires a tracking mechanism at either (1) page granu-
larity, such as Remote Flush Avoidance [28], or (2) at transaction
granularity [2]. We currently employ transaction-level tracking [2],
which integrates with our MVCC algorithm and allows the use of
the Early Lock Release optimization [32].
Continuous Checkpointing and Parallel Bounded Recovery.
Our logging and recovery scheme supports fuzzy checkpoints and
bounds the recovery volume in terms of how much data has to be
recovered. Say, wewant to bound the recovery log volume to 100GB.
To achieve this, we perform incremental checkpoints: whenever
we accumulate a certain fraction (e.g., 1 GB) of log volume, we
checkpoint 1% of the buffer pool in a round-robin fashion. This
ensures that the entire buffer pool is periodically checkpointed in
a continuous manner without causing significant I/O spikes, and
that recovery log volume is bounded at the configured limit. The
recovery process is similar to ARIES with analysis, redo, and undo
phases, except that all phases can be parallelized [28]. Overall, this
results in a robust and scalable scheme for logging, checkpointing,
and recovery.

4542



0 M

0.2 M

0.4 M

0.6 M

0.8 M

1 M

1.2 M

1.4 M

1.6 M

1.8 M

Shore LeanStore

C
P

U
 I

n
st

ru
c
ti
o
n

s 
p

e
r 

T
ra

n
s
a
c
ti
o
n

logging

locking

latching

buffer manager

B-tree ineff.

useful work

Figure 4: Machine instructions (x86) per TPC-C Neworder
transaction (1 thread, in-memory). Shore is a traditional disk-
based storage engine.

2.8 Related Work
LeanStore is one of the few transactional systems from academia
specifically optimized for NVMe SSDs rather than persistent mem-
ory or DRAM. There is extensive work on optimizing disk-based
systems for SSDs [5, 41, 60] and managing several types of storage
technologies [25, 29, 75]. We were also somewhat influenced by
recent work on logging [21, 33, 34, 37, 62], MVCC [19, 71], and
garbage collection [10, 36, 38, 42, 61, 74].

3 DISCUSSION
Architecture. LeanStore shares many of the architectural features
of traditional disk-based systems, such as page-based storage, buffer
management, B-tree indexing, physiological redo/undo logging,
fuzzy checkpointing, and a concurrency control implementation
that supports arbitrarily-large transactions. A decade ago, this func-
tionality was thought to come at a high cost in terms of in-memory
CPU overhead. For example, Harizopoulos et al.’s [26] careful ex-
perimental study shows that in a traditional storage engine such
as Shore, the internal overhead for logging, concurrency control,
and buffer management dominates the overall CPU time. What
LeanStore shows is that these components can be implemented
efficiently such that useful work becomes dominant. CPU efficiency
and scalability is not just important for in-memory workloads but
also in out-of-memory situations [24].
OLTP Trough The Looking Glass Revisited. To compare Hari-
zopoulos et al.’s [26] results with LeanStore, we followed the same
methodology of removing as many components as possible while
running the TPC-C Neworder transaction in-memory using a single
thread [1]. Figure 4 shows the x86 instructions counts across these
two systems4. We see that in LeanStore, useful work, rather than
internal overhead, dominates the overall CPU time. As a result,
LeanStore’s in-memory performance is higher by one order of mag-
nitude. Also note that LeanStore scales much better across CPU
4Comparing instruction counts of similar CPU architectures (32-bit x86 vs. 64-bit x86)
allows for some abstraction from hardware differences, though not completely.

cores [4] and is capable of achieving similar performance in out-
of-memory workloads [24]. These performance gains are achieved
through careful optimization of all system components for highly
parallel hardware and techniques such as optimistic data structure
synchronization.
LeanStore Evolution. Over the course of the project, LeanStore
was rewritten from scratch several times. The first prototype was
developed by Michael Haubenschild and demonstrated that low-
overhead caching is possible [45]. The second version, which is
available as open source, was primarily implemented by Adnan Al-
homssi and added support formulti-version concurrency control [4].
We are happy that this version is used by other research groups as
a prototyping platform for novel ideas [72, 76]. A third implementa-
tion is under development and is based on virtual-memory-assisted
buffer management [43]. Each implementation benefited from the
experience of the previous one, and led to improvements and sim-
plifications. While re-writing the system several times may not be
the fastest way to a production-grade system, it allows for radical,
experience-based simplifications that, in the long run, result in a
much simpler design and implementation. Thus, we very much
agree with Wirth’s plea for lean software [70]:

“Reducing complexity and size must be the goal in
every step – in system specification, design, and in
detailed programming.” Niklaus Wirth

4 FUTUREWORK
The LeanStore project is ongoing and we are currently working
on several topics. One is making commit processing on SSDs more
efficient, in particular in terms of latency. Another topic, often
ignored by the database community, is the frontend of the system
thatmanages and schedules incoming network requests.We are also
working on optimizing SSD writes, both at the data structure and
I/O level, including the exploitation of novel SSD interfaces such
as ZNS [8] and FDP. Finally, let us mention that many of the low-
level I/O and scheduling optimizations we had to implement have
historically been thought of as the job of the operating system rather
than the DBMS. We are therefore also exploring opportunities for
DB/OS co-design, in particular in the context of unikernels [44].

ACKNOWLEDGMENTS
LeanStore is primarily the work of Michael Haubenschild, Adnan
Alhomssi, Gabriel Haas, Demian Vöhringer, Lam-Duy Nguyen, Mar-
cus Müller, and Bohyun Lee. I would also like to thank my mentors
and collaborators Thomas Neumann, Alfons Kemper, and Peter
Boncz for their longstanding and ongoing support. Michael Stone-
braker has been an inspiration and role model for how to do ambi-
tious and impactful systems research in academia. LeanStore was
funded by Technische Universität München, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Friedrich-Schiller-Universität Jena,
and Deutsche Forschungsgemeinschaft.

4543



REFERENCES
[1] AdnanAlhomssi. 2024. Concurrency Control for High-Performance Storage Engines.

Ph.D. Dissertation. University of Erlangen-Nuremberg, Germany.
[2] Adnan Alhomssi, Michael Haubenschild, and Viktor Leis. 2023. The Evolution

of LeanStore. In BTW (LNI), Vol. P-331. 259–281.
[3] Adnan Alhomssi and Viktor Leis. 2021. Contention and Space Management in

B-Trees. In CIDR.
[4] Adnan Alhomssi and Viktor Leis. 2023. Scalable and Robust Snapshot Isolation

for High-Performance Storage Engines. PVLDB 16, 6 (2023), 1426–1438.
[5] Mijin An, In-Yeong Song, Yong Ho Song, and Sang-Won Lee. 2022. Avoiding

Read Stalls on Flash Storage. In SIGMOD. 1404–1417.
[6] Rudolf Bayer andMario Schkolnick. 1977. Concurrency of Operations on B-Trees.

Acta Informatica 9 (1977).
[7] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2022.

Height Optimized Tries. ACM Trans. Database Syst. 47, 1 (2022), 3:1–3:46.
[8] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le

Moal, Gregory R. Ganger, and George Amvrosiadis. 2021. ZNS: Avoiding the
Block Interface Tax for Flash-based SSDs. In USENIX ATC. 689–703.

[9] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper.
2020. Scalable and robust latches for database systems. In DaMoN.

[10] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. PVLDB 13, 2 (2019), 128–141.

[11] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010.
A practical concurrent binary search tree. In PPoPP. 257–268.

[12] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-
Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. In VLDB. 181–190.

[13] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: An Embedded Concurrent
Key-Value Store for State Management. PVLDB 11, 12 (2018), 1930–1933.

[14] Andrew Crotty, Viktor Leis, and Andrew Pavlo. 2022. Are You Sure You Want to
Use MMAP in Your Database Management System?. In CIDR.

[15] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stanley B.
Zdonik. 2013. Anti-Caching: A New Approach to Database Management System
Architecture. PVLDB 6, 14 (2013).

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD. 1243–1254.

[17] Ahmed Eldawy, Justin J. Levandoski, and Per-Åke Larson. 2014. Trekking
Through Siberia: Managing Cold Data in a Memory-Optimized Database. PVLDB
7, 11 (2014).

[18] Facebook. 2024. RocksDB | A persistent key-value store. http://rocksdb.org/.
[19] Michael J. Freitag, Alfons Kemper, and Thomas Neumann. 2022. Memory-

Optimized Multi-Version Concurrency Control for Disk-Based Database Systems.
PVLDB 15, 11 (2022), 2797–2810.

[20] Goetz Graefe. 2011. Modern B-Tree Techniques. Foundations and Trends in
Databases 3, 4 (2011), 203–402.

[21] Goetz Graefe, Wey Guy, and Caetano Sauer. 2014. Instant Recovery with Write-
Ahead Logging: Page Repair, System Restart, and Media Restore. Morgan & Clay-
pool Publishers.

[22] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph Tucek, Mark
Lillibridge, and Alistair C. Veitch. 2014. In-Memory Performance for Big Data.
PVLDB 8, 1 (2014), 37–48.

[23] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR.

[24] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, And
How To Exploit It: High-Performance I/O for High-Performance Storage Engines.
PVLDB 16, 9 (2023), 2090–2102.

[25] Xiangpeng Hao, Xinjing Zhou, Xiangyao Yu, and Michael Stonebraker. 2024.
Towards Buffer Management with Tiered Main Memory. PACMMOD 2, 1 (2024),
31:1–31:26.

[26] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the looking glass, and what we found there. In SIGMOD.

[27] Michael Haubenschild and Viktor Leis. 2023. Lock-Free Buffer Managers Do Not
Require Delayed Memory Reclamation. In SiMoD@SIGMOD. 1–3.

[28] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.
Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In SIGMOD. 877–892.

[29] Kaisong Huang, Darien Imai, Tianzheng Wang, and Dong Xie. 2022. SSDs
Striking Back: The Storage Jungle and Its Implications to Persistent Indexes. In
CIDR.

[30] Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023.
The Art of Latency Hiding in Modern Database Engines. PVLDB 17, 3 (2023),
577–590.

[31] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and
Babak Falsafi. 2009. Shore-MT: a scalable storage manager for the multicore era.
In EDBT. 24–35.

[32] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-
tasia Ailamaki. 2010. Aether: A Scalable Approach to Logging. PVLDB 3, 1
(2010).

[33] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-
tasia Ailamaki. 2012. Scalability of write-ahead logging on multicore and multi-
socket hardware. VLDB Journal 21, 2 (2012).

[34] Hyungsoo Jung, Hyuck Han, and Sooyong Kang. 2017. Scalable Database Logging
for Multicores. PVLDB 11, 2 (2017).

[35] Alfons Kemper and Donald Kossmann. 1995. Adaptable Pointer Swizzling Strate-
gies in Object Bases: Design, Realization, and Quantitative Analysis. VLDB
Journal 4, 3 (1995).

[36] Jong-Bin Kim, Hyunsoo Cho, Kihwang Kim, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2020. Long-lived Transactions Made Less Harmful. In SIGMOD.

[37] Jong-Bin Kim, Hyeongwon Jang, Seohui Son, Hyuck Han, Sooyong Kang, and
Hyungsoo Jung. 2019. Border-Collie: A Wait-free, Read-optimal Algorithm for
Database Logging on Multicore Hardware. In SIGMOD.

[38] Jong-Bin Kim, Kihwang Kim, Hyunsoo Cho, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2021. Rethink the Scan in MVCC Databases. In SIGMOD.

[39] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores andNVRAM.
In SIGMOD. 691–706.

[40] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298–309.

[41] Bo-Hyun Lee, Mijin An, and Sang-Won Lee. 2023. LRU-C: Parallelizing Database
I/Os for Flash SSDs. PVLDB 16, 9 (2023), 2364–2376.

[42] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh,
Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. 2016. Hybrid Garbage
Collection for Multi-Version Concurrency Control in SAP HANA. In SIGMOD.

[43] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. PACMMOD 1, 1
(2023), 7:1–7:25.

[44] Viktor Leis and Christian Dietrich. 2024. Cloud-Native Database Systems and
Unikernels: Reimagining OS Abstractions for Modern Hardware. PVLDB 17, 8
(2024), 2115–2122.

[45] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. 185–
196.

[46] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[47] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In ICDE. 38–49.

[48] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN.

[49] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In ICDE. 302–313.

[50] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking main memory OLTP recovery. In ICDE.

[51] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In EuroSys. 183–196.

[52] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In FAST.

[53] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Trans. Parallel Distrib. Syst. 15, 6 (2004).

[54] C. Mohan, DonHaderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM TODS (1992).

[55] MongoDB. 2024. WiredTiger Storage Engine. https://docs.mongodb.com/manual/
core/wiredtiger/.

[56] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR.

[57] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD.

[58] Lam-Duy Nguyen and Viktor Leis. 2024. Why Files If You Have a DBMS?. In
ICDE.

[59] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
Page Replacement Algorithm for Database Disk Buffering. In SIGMOD. 297–306.

[60] Tarikul Islam Papon and Manos Athanassoulis. 2023. ACEing the Bufferpool
Management Paradigm for Modern Storage Devices. In ICDE. 1326–1339.

[61] Aunn Raza, Periklis Chrysogelos, Angelos-Christos G. Anadiotis, and Anastasia
Ailamaki. 2023. One-shot Garbage Collection for In-memory OLTP through
Temporality-aware Version Storage. PACMMOD 1, 1 (2023), 19:1–19:25.

[62] Caetano Sauer, Goetz Graefe, and Theo Härder. 2018. FineLine: log-structured
transactional storage and recovery. PVLDB 11, 13 (2018), 2249–2262.

[63] Ori Shalev and Nir Shavit. 2003. Split-ordered lists: lock-free extensible hash
tables. In PODC. 102–111.

4544

http://rocksdb.org/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/


[64] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era (It’s Time
for a Complete Rewrite). In VLDB. 1150–1160.

[65] Symas. 2024. Lightning Memory-Mapped Database Manager (LMDB). http:
//www.lmdb.tech/doc/.

[66] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOPS. 18–32.

[67] Demian E. Vöhringer and Viktor Leis. 2023. Write-Aware Timestamp Tracking:
Effective and Efficient Page Replacement for Modern Hardware. PVLDB 16, 11
(2023), 3323–3334.

[68] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. PVLDB 7, 10 (2014), 865–876.

[69] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes
More Than Just Buzz Words. In SIGMOD. 473–488.

[70] Niklaus Wirth. 1995. A Plea for Lean Software. Computer 28, 2 (1995), 64–68.
[71] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB
10, 7 (2017), 781–792.

[72] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine: An Update-In-Place Key-Value Store
for Modern Storage. PVLDB 16, 1 (2022), 99–112.

[73] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In SIGMOD. 1567–1581.

[74] Ling Zhang, Matthew Butrovich, Tianyu Li, Andrew Pavlo, Yash Nannapaneni,
John Rollinson, Huanchen Zhang, Ambarish Balakumar, Daniel Biales, Ziqi
Dong, Emmanuel J. Eppinger, Jordi E. Gonzalez, Wan Shen Lim, Jianqiao Liu,
Lin Ma, Prashanth Menon, Soumil Mukherjee, Tanuj Nayak, Amadou Ngom,
Dong Niu, Deepayan Patra, Poojita Raj, Stephanie Wang, Wuwen Wang, Yao
Yu, and William Zhang. 2021. Everything is a Transaction: Unifying Logical
Concurrency Control and Physical Data Structure Maintenance in Database
Management Systems. In CIDR.

[75] Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David E. Cohen. 2021. Spitfire: A
Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In SIGMOD.
2195–2207.

[76] Xinjing Zhou, Xiangyao Yu, Goetz Graefe, and Michael Stonebraker. 2023. Two
is Better Than One: The Case for 2-Tree for Skewed Data Sets. In CIDR.

4545

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/

	Abstract
	1 Introduction
	2 LeanStore
	2.1 Caching
	2.2 Page Replacement
	2.3 I/O Management
	2.4 Indexing
	2.5 Low-Level Data Structure Synchronization
	2.6 Multi-Version Concurrency Control
	2.7 Logging, Checkpoints, and Recovery
	2.8 Related Work

	3 Discussion
	4 Future Work
	Acknowledgments
	References

