
Databases Unbound:Querying All of the World’s Bytes with AI
Samuel Madden

MIT CSAIL
madden@csail.mit.edu

Michael Cafarella
MIT CSAIL

michjc@csail.mit.edu

Michael Franklin
Univeristy of Chicago

mjfranklin@uchicago.edu

Tim Kraska
MIT CSAIL

kraska@csail.mit.edu

ABSTRACT
Over the past five decades, the relational database model has proven
to be a scaleable and adaptable model for querying a variety of struc-
tured data, with use cases in analytics, transactions, graphs, stream-
ing and more. However, most of the world’s data is unstructured.
Thus, despite their success, the reality is that the vast majority
of the world’s data has remained beyond the reach of relational
systems.

The rise of deep learning and generative AI offers an opportu-
nity to change this. These models provide a stunning capability to
extract semantic understanding from almost any type of document,
including text, images, and video, which can extend the reach of
databases to all the world’s data. In this paper we explore how
these new technologies will transform the way we build database
management software, creating new that systems that can ingest,
store, process, and query all data. Building such systems presents
many opportunities and challenges. In this paper we focus on three:
scalability, correctness, and reliability, and argue that the declara-
tive programming paradigm that has served relational systems so
well offers a path forward in the new world of AI data systems as
well. To illustrate this, we describe several examples of such declar-
ative AI systems we have built in document and video processing,
and provide a set of research challenges and opportunities to guide
research in this exciting area going forward.

And lovely apparitions,–dim at first,
Then radiant, as the mind arising bright
From the embrace of beauty (whence the forms
Of which these are the phantoms) casts on them
The gathered rays which are reality–
Shall visit us the progeny immortal
Of Painting, Sculpture, and rapt Poesy,
And arts, though unimagined, yet to be;

Prometheus Unbound, Percy Bysshe Shelley

PVLDB Reference Format:
Samuel Madden, Michael Cafarella, Michael Franklin, and Tim Kraska.
Databases Unbound: Querying All of the World’s Bytes with AI. PVLDB,
17(12): 4546-4554, 2024.
doi:10.14778/3685800.3685916

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685916

1 INTRODUCTION
Database systems are the dominant paradigm for querying struc-
tured data, but most of the world’s data – especially with the rise
of the Internet, digital photos, videos, high rate sensing equipment,
and so on – is not structured as tables that are readily accessible to
databases. Over the past few years, however, new AI models that
are capable of remarkable “understanding” of this unstructured data
have arisen, and potentially provide a way to extend the power of
querying to all data; for example, LLMs can effectively answer arbi-
trary queries over text documents and multi-modal vision models
can answer similar questions about images.

In this paper, we argue for a new generation of database systems
that is “unbound” from the tabular/relational restriction through
its use of these new AI models to query all data. Such a system has
the potential to power many exciting enterprise applications over
data. Imagine, for example:

• A data engineer who can quickly transform all financial doc-
uments, including pay stubs, financial reports, loan applica-
tions, public filings, prospectuses, and more, into queryable
documents and structured tables for analysis.

• A lawyer who can quickly search hundreds of thousands of
pages of documents in legal discovery to look for particular
phrases, names, or general topics, and tabulate statistics
about the prevalence of each.

• A medical researcher who can quickly summarize all of
the data about patients with a particular disease in their
hospital, and compare their findings to the known findings
in the medical literature.

• An investment banker who can quickly correlate stock data
with news announcements and tweets from a set of impor-
tant influencers.

• An AI researcher who can quickly extract the performance
of recent competitor models from figures in PDFs on arXiv.

These tasks span familiar data processing tasks – including re-
trieval (i.e., finding records that match a criteria), extraction (i.e.,
creating structured records from unstructured data), summarization
and combination (i.e., collating many documents into a summary),
analysis (i.e., creating summary statistics), and more – but on large
archives of unstructured text, imagery, PDFs, and other documents.

LLMs and vision models by themselves help with all of these
tasks, but do not wholly solve any of them. Moreover, the lack of
abstractions and principles around generative AI makes it very
difficult to build a practical, reliable piece of software. Our key
thesis is that these new AI applications need new types of data
systems. We believe it’s time to take a step back, rethink the way

4546

https://doi.org/10.14778/3685800.3685916
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685916

we not only build new experiences around data and data systems
using LLMs but also address these new emerging areas in a more
grounded way by developing new abstractions, principles, best
practices, reusable components, and software tools.

Desiderata for such systems include: programmatic access to
large collections (millions at least) of arbitrary documents, with the
ability to search, extract content from, and transform documents,
and, at times, create structured views of them (e.g., that compare
patient data or provide summary statistics). Further, these systems
need to be relatively efficient, in terms of time and money, to do
this in semi-interactive time scales even on very large document
collections, and consistent and correct in their answers.

We argue that a declarative interface – inspired by relational
languages like SQL – is the answer to these challenges. Specifically,
we envision a high level query language the allows users to specify
what to extract from their documents, abstracting away from the
specific underlying models, prompts, and thresholds. This leaves
the query execution system free to choose the specific models and
thresholds, in much the way a relational optimizer chooses the best
query plan. In such AI systems, however, the optimizer has a much
larger variety of execution strategies that it may choose from than
in classical query execution systems, with the ability to select dif-
ferent models, synthesize code (using AI models!), tune thresholds,
selectively process portions of documents, apply pre-processing
and embedding-based indexing, and more. These strategies offer
different latency, cost, accuracy, and runtime tradeoffs, with order-
of-magnitude variation in these dimensions across them.

This new world of AI-powered data systems brings several ex-
citing research opportunities:

Language. Although a natural choice of language for the data-
base community would be a SQL-like (or perhaps pandas-like) lan-
guage, we note that natural language interfaces (perhaps chat based)
are also declarative (in the “say what I want, not how to do it” sense),
and are a natural way for non-expert users like those described
above to interface with a data system. We speculate that more peo-
ple will use NL than SQL in the next 5 years to query data. Still
SQL and its ilk will be an important as intermediate languages and
targets for code generation.

Multi-objective optimization space. Traditionally, the DB
community has focused on one objective: optimize performance.
This is changing in the new world and as it becomes a mix of
performance, cost, and quality.

Approximate and Adaptive Query Processing. Adaptive
techniques are highly relevant in this context as the quality of
pipelines depends on the data and complexity of the task, and the
quality of the AI agents, and may not be easy to determine a priori.

Fact checking, correctness, and consistency. Users of data-
base systems expect answers to be correct, but new AI systems are
unreliable. Here, ideas from human-powered systems [9], such as
majority voting and bad-rater detection will be important, but new
techniques are needed. These may include asking models to verify
each other’s answers or check them for bias and toxicity, repeat-
edly reprocessing inputs to provide estimates of inconsistency or
variation, and more.

Query Interface

Logical Planning
Convert, Enrich, Filter…

Optimizer & Physical Planning
Prompt tuning, model selection,
code generation…

Indexing
RAG/Embeddings
Relationship Graph

Storage / Data Access
Databases, files, images…

Shared Services

Fact Checking

Verification /
Reconciliation

Planning

Instruction Templates
(“Recipe Box”)

Figure 1: Architecture of an Unbound Database

Need for code generation. Code generation provides an im-
mense opportunity for unstructured data to replace LLM invoca-
tions – for example, replacing a call to an LLM with LLM-generated
code that achieves a specific data process or extraction task.

In this paper, we describe the key components of such an “un-
bound database” in more detail, and provide examples of systems
we have built to illustrate the potential of these new AI-powered
data systems. These include VAAS, a system for querying imagery
and video, where a high level declarative specification of video of
interest is used to search and extract relevant portions of a video
corpus, and Palimpzest, a system for applying high-level declarative
operations to arbitrary document collections including PDFs, text,
and imagery. We conclude with a set of research challenges that
we hope will serve as a roadmap for future research.

2 COMPONENTS OF AN UNBOUND DATABASE
An unbound database, like a conventional database system, consists
of several components that together provide an interface to submit
queries and compile those queries into an execution plan over
documents, images, video, or conventional databases. Many of those
components have parallels in conventional data systems, as shown
in Figure 1.

These components include: a declarative interface layer where
the user specifies their program; a logical planning layer where the
system forms a high level operator graph or “plan” for the query; an
optimizer; a physical planning layer where implementations such
as choice of model, prompt generation, batching and parallelization
are done for each logical operator; an indexing layer that provides
the ability to lookup documents or images matching particular
keywords or criteria, e.g., using embeddings and a vector database;
and a a storage layer for accessing documents, images, and other
data. In addition there will be a number of shared services that
implement features like fact checking and verification or majority
voting. We describe each of below, focusing on ways in which
these layers differ from their counterparts in conventional database
systems and some of the research opportunities in each.

2.1 Query Interface
Much of the excitement around GenAI and databases revolves
around the ability to use natural language as a query interface.
While we agree that such an approach will be the right one for
many application scenarios, we also believe that the inherent am-
biguity of natural language (NL) would unnecessarily restrict the
set of applications for which unbound database processing could
be used if NL was the only interface to the system. That is, if we
based our system purely on natural language, applications that

4547

need stricter specificity would not be able to take advantage of the
enhanced functionality of an unbound database system.

Thus, we propose a more semantically rigorous interface lan-
guage for unbound database systems. Such a structured interface
language can then be used directly by sophisticated programmers
and analysts, or as a target language for compiliers from NL or
other user-friendly interfaces.

We believe that a structured declarative interface is a better
match for the functionality and range of applications that unbound
databases can support. This allows unbound database processing to
be treated as an extension of traditional processing and allows us
to leverage existing query processing techniques and technology
in the development of an unbound query processor. This is the
approach we have taken in the architecture described in this section
as well as in the development of the prototypes described in Sections
3 and 4.

It is important to note, however, that we see tremendous op-
portunities for innovation in the end-user interfaces that sit atop
the interface language. These include interactive/conversational
NL-based interfaces that enable users to iterate and refine their
queries as well as visual interfaces such as interactive dashboards.

2.2 Logical Planning / Operators
Traditional relational operators – filters, joins, and aggregates – are
still useful and make sense for the unstructured unbound database.
What additional ones will be needed? Choosing a small but useful
set is a serious design challenge for the data management commu-
nity. The experience of the data science community and the Pandas
package is perhaps a cautionary tale: that package does not have a
well-designed set of logical operators, and as a result, performance
optimizations have been challenging to implement.

Designing a good operator is surprisingly difficult. It must be
high-level enough to permit succinct user-written queries and offer
flexibility to the optimizer. At the same time, it must be clear and
predictable enough that the user and implementer understand what
it will do. For example, natural language is very high-level but in
many cases will be too ambiguous for engineering purposes.

Specifically, we propose two operators that encompass a wide
range of operations an unbound database will need to perform.

Convert: Structural flexibility is core to the unbound database,
and we expect structural data conversions to be ubiquitous. Users
will want to convert information from a document to a relational
database, or from a data plot to a JSON record. It is easy to imagine
applications that involve multiple repeated conversions. Consider
a user who wants to retrieve factual claims from a text document,
recover data records from a bar chart, or extract relevant portions
of a structured database and integrate them into a single output.

Traditional data management might describe these steps as differ-
ent tasks: textual information extraction, visual extraction, entity
matching, schema integration, and so on. But choosing exactly
which algorithm is most appropriate for a particular dataset is
exactly the kind of low-level decision that the unbound database
should be making on the user’s behalf. Instead, we think the user
should be asked to describe a high-level “convert” task, which the
system should implement as best it can.

Convert takes two inputs: (1) a set of data records, described by
an accompanying schema (such as WebPage, which might have
html, datecrawled, and url fields) and (2) a desired target schema
(such as TextDocument, which has a single text field).

The unbound database system then attempts to convert all of
the input records into an output set that has the specified target
schema. In the above example, the convert operator will strip the
HTML to yield a single human-readable text document.

If we want to implement an information extraction task, we
might convert a set of TextDocument records into a set of Medical-
Records (which have appointmentDate, patientName, doctor-
Name, and diagnosis fields). If instead we want to implement a
schema integration task, wemight simply specify a set of traditional
databases as the input, with the target schema as the output. Finally,
if we want to perform a data cleaning task, we might specify con-
version of a set of ProductListing records (with productName and
manufacturer fields) into a set of CleanedProductListing records
(with twoWordProductName and manufacturerStockTicker fields).

Convert is a high-level operator. For example, it encompasses
the sem_map and sem_extract operations proposed as part of the
recent LOTUS project [21]. Further, it is not limited only to text.
We can convert an Image to a DogBreed, which entails generating
a correct dog breed label for the input image. Or we could convert a
TrafficImage into a TrafficDescription record, which might include
a runningRedLight Boolean field, or a passengerInCrosswalk
field (we discuss image use cases in more detail in Section 3.)

The user may have to provide additional information that de-
scribes the desired cardinalities involved in the conversion. For
example, a WebPage that is derived from a conference website
might be converted into a single output record of type Proceed-
ings, or into multiple output records of type PaperListing. We have
implemented convert as part of the Palimpzest project (Section 4)
and it currently has optional parameters for describing desired car-
dinalities. We note that the output cardinality of convert can also
depend on the input (for example, producing on record per paper
in a list of proceedings), much like a relational group by.

Enrich: Large AI models do not merely allow us to perform compli-
cated operations on the data in hand. They also allow us to extend
existing data with datasets that the user has never even heard of.
The enrich operator is intended to be a generalized version of the
joinable table search and table union search problems from the
dataset discovery literature (e.g., [8, 29]). As with the convert oper-
ator, enrich is chosen specifically to permit the system some wide
flexibility at implementation time; the user does not need to know
which dataset search operator is being used, and in some cases may
not even know the corpus over which the search is being executed.
The user simply knows that after the enrich step, the dataset gets
“bigger and better” in a particular way.

The enrich operator takes a dataset as input and a specifica-
tion for how to enrich the dataset (in natural language), which
might include adding columns or rows, as well as guidance for how
much data to add and what types of sources (e.g., the web, model
knowledge, etc) to consult.

For example, additional rows can help with assembling a larger
training set or test set. In some cases, building a training set might
require a couple of steps: use enrich to add additional rows of raw

4548

data objects (such as product web pages), then use convert to extract
features and labels. In such cases, the enrich termination criterion
might simply count the number of new records.

Or consider using enrich to enable new visualizations. We might
want to display real estate listings along two axes: the house price
and each house’s number of days each year with rainfall. If the start-
ing dataset has house listings, we can use horizontal enrichment to
marshal this additional rainfall column.

Building theRecipe Box: Finally, we propose a general method for
managing these tradeoffs, which we call a “recipe box”. We believe
that in many use cases that have semantic ambiguity, agreement
amongst operations (from a single user or organization) is of utmost
importance. That is, the unbound database should build up a shared
set of “recipes” for all of its users, which are employed to resolve
ambiguity in user programs – for example, how a company defines
complex business terms like “active users”, “quarterly revenue”,
“model performance”, and so on. These recipes can be derived from
a “quality administrator” or from a training data style process.
Recipes might not be shared across installations: the definition
of “quarterly earnings” might rightfully differ from company to
company. But in many cases, a domain-specific recipe box may be
able to deliver both high-level primitives and clear shared semantics
for engineering teams.

2.3 Optimizations
The biggest advantage of the declarative approach is that – like
SQL – it allows for a range of logical and physical optimizations.
Here we list several potential optimizations. In the next sub-section
we addresses the challenges of constructing a query plan.

Prompt Tuning: Prompt engineering, the process of asking
the LLM the right question, is a very time consuming, trial and
error-based process, but can make a significant difference in quality.
Maybe more surprisingly, prompt engineering can also significantly
impact cost and latency as LLMs service providers often charge
extra per input (and output) token and fewer tokens can lead to
reduced inference time. Hence a good short prompt, which re-
quests a succinct response, in some cases can lead to significant
quality, cost, and latency improvements. Recently, there have been
several proposals on how to automatically tune prompts [14, 17],
demonstrating that it is possible to tune prompts automatically
given a task. We believe that such techniques are not only essential
for an unbound database, but that there exists even more poten-
tial for prompt optimization given the declarative nature of the
task. For example, different strategies could optimize the prompt
for cost/latency/quality or certain safe-guards, typically found in
prompts, could be disabled if it is known that other operations
will perform them later. Similarly, it might be possible to combine
several operations into a single prompt to reduce overall cost or to
fragment prompts for higher accuracy in order to not confuse the
model.

Model Selection: It is an interesting optimization problem to
automatically determine what model should be used for each op-
eration in the query pipeline. For example, Anthropic Opus is an
extremely powerful – and for some tasks better model than GPT
4o – but also very expensive model. Model selection can include
commercial models (e.g., OpenAI, Anthropic), open-source models

(e.g., LLaMA) and even up to (on-the-fly) self-trained or fine-tuned
model models. For example, for video processing, student/teacher-
style training shows significant promise and can yield significant
cost/time-savings with little impact on quality [4, 12].

Code Generation: One of the most impactful potential opti-
mizations is to replace parts of the query plan with generated code
or other relatively inexpensive operators. For example, consider
the legal discovery use case: based on a collection of emails in text
format the user wants to extract date and sender name for all the
emails that talk about market domination. Invoking an LLM-model
for each individual email could be prohibitively expensive. On the
other hand, an LLM can be used to generate a regex expression
to extract the date and sender name at almost no cost. Similarly,
the LLM could be used to generate a list of keywords related to
market domination (e.g., “crush them”, “competitor”, “leader”, “bar-
riers to entry”, ...) and create a filter to search emails for those
keywords. Such optimizations can reduce latency and cost by or-
ders of magnitude in but also come with their own set of challenges
in terms of how to automate their implementation and determine
their effectiveness.

Caching: Like most systems, caching can help to significantly
improve performance. For unbounded databases we believe all data
should be permanently cached (unless the result is invalidated for
some reason), as model invocations are so expensive. Moreover, in
some cases it might be possible to extract more information in one
go over the data for future uses. For example, if the model is trying
to determine if a picture contains a car, in doing so the model could
provide information about other objects in the picture at little to no
extra cost, which might be useful for future queries. However, this
“speculative” extraction and caching can also be very expensive in
other cases and thus, needs to be carefully optimized.

2.4 Physical Plan Search
There can be orders-of-magnitude difference in cost, quality, and
time between a well optimized vs a naive AI plan. As in database
systems, we propose a cost-based optimizer to select the best ex-
ecution plan. However, in contrast to query optimizers the opti-
mization problem is significantly more complex and comes with
its own set of unique challenges. Most importantly, there is not a
single optimization goal anymore (i.e., time), rather it is a multi-
objective optimization, which has to balance cost, time (latency),
and quality and it is a research challenge in itself as to how the user
specifies the policy. In the current Palimpzest prototype (see Sec-
tion 4), we allow the user to choose from three policies: cost-, time-,
quality-optimized. However, each of these policies only weights
one dimension more than the others, but does not “only” optimize
for cost, time, or quality. Just picking a single dimension as the goal
would only create meaningless results. For example, it is trivial to
optimize for cost or time by simply not returning any results (i.e.,
quality is 0). Clearly, our policy-based approach is just a starting
point and much more research is required in providing the users
an easy way to express their optimization goals.

Beyond the multi-objective optimization goal, adaptive query
processing will play a more crucial role in optimizing the query
plan. In contrast to traditional DB optimization, it is very hard
to impossible to estimate the quality of certain optimizations just
based on statistics. Rather, the system has to try and experiment

4549

on the actual data to determine how successful a certain strategy
is, leading to a whole new set of interesting research questions.
For example, in the current Palimpzest prototype a mixture of a
bandit-based approach and learning from past history is used in
order to derive the best execution plan. Interestingly, this approach
has many commonalities with AutoML frameworks which often
have similar problems e.g., [16, 23].

2.5 Orchestration Operators
As stated above, the use of an operator-based execution frame-
work enables the use of cost-based query optimization to provide
efficient access to information contained a wide-variety of data
types. Beyond optimization, however, another key advantage of
this approach is extensibility in terms of more sophisticated data
processing strategies, particularly ones that can orchestrate mul-
tiple model calls (either to a particular model or to a variety of
models) to enhance accuracy or increase repeatability.

By embedding these steps as operations in a physical query plan,
we enable several optimizations: for example, instead of each oper-
ator needing to implement its own majority voting, fact checking,
or sanitization operations, these operators can be explicitly placed
at the right location in the plan.
Example operators that we envision include:

Data Verification: One of the main challenges with using cur-
rent LLM technology in query processing is the propensity of such
models to “hallucinate”, that is, to return data that is false or simply
made up. Confidence in data extraction and query operators can
be enhanced by various strategies, such as asking one model to
validate the result obtained from another model, or by asking an
LLM to indicate the data sources underlying its answers.

Reconciliation of Multiple Outputs: Another way to enhance
accuracy is to send a request to multiple models and to use tech-
niques such as majority voting or EM-based approaches. More so-
phisticated approaches, such as learning over time that a particular
model is good for a particular type of task, are also possible.

“Chain of Thought” Plan Steps: Given a small language for
data processing (such as Palimpzest, described in Section 4), LLMs
are good at devising programs to perform simple tasks. As such, it
should be possible for programmers to write brief descriptions of
what they would like to do in English or psuedocode and have the
LLM generate a program in the underlying execution language.

Instruction templates: The operator model provides extensibil-
ity that enables recipes to be encoded and costed so that they can be
appropriately used in a larger query plan to improve cost, accuracy
or speed. Further, because of the semantic ambiguity inherent in
many AI programs, once a given prompt or program template has
been generated, using the “recipe box” design, the database can
reuse it in subsequent executions, helping to maintain consistency.

2.6 Indexes
Because arbitrary documents are often quite large, and searching
through them can be quite slow, we expect that most data accessed
by an unbound database system will first be pre-processed and
indexed in some form to support efficient access.

For text, imagery, and video, embeddings, where we transform a
high dimensional object (say a paragraph of text or a single image)
into some lower dimensional space (say, a 512 element vector),

are a natural fit. Recent years have shown that transformer based
models [26] work particularly well for embeddings. For example,
BERT [7] and its many variants are often used for text embeddings
(although in recent years BERT based model performance has been
eclipsed by new representations.) For imagery, again there many
possible choices, but of particular interest for query systems are
cross-modal embeddings where text and imagery are encoded into
the same space, such that an image and a textual description of the
image will have approximately the same embedding [22].

Given a corpus of data that has been embedded in some way,
a common next step is to store the data in an index to facilitate
efficient retrieval of related documents. A typical setup is to encode
every document using an embedding (or to divide documents in
sections and embed each section) and store these embeddings in a
vector database, which provides an approximate nearest neighbor
(ANN) query facility. Then, given a query vector (e.g., of a document
embedding using the same encoder as the documents stored in the
database), an ANN query can be issued to find related documents.
Despite the popularity of this approach, there are several interesting
questions for database researchers, including:

Attribute-based retrieval. Performing retrieval both based on
attribute values as well as ANN vector search will often be required.
Although some existing vector stores support this use case, they
typically do so either by first performing a vector search and then
constraining on attribute values or search on attribute values and
then scanning through the retrieved vectors. Other approaches –
e.g., creating clusters of documents with similar attribute values that
are indexed by ANN techniques –may offer significant performance
gains.

Choice of embeddings. There are often many possible embed-
dings for the same object, and different embeddings may be better
for particular use cases (i.e., retrieval vs. classification.) Further the
choice of how to divide documents (images or text) into chunks,
whether the chunks should overlap and by how much, etc. has a
significant impact on retrieval of both text and images.

Embedding alternatives. Although embeddings are an effec-
tive general purpose tool for summarizing documents, many other
higher-level representations are possible. For example, much of
the work querying over images and video encodes images using
a higher-level semantic representation, i.e., encoding images as a
list of the objects that are in them [4, 12, 13]. Similar approaches
can be applied to text – i.e., summarizing before embedding. It is
unclear how storage and retrieval performance (both in terms of
time and accuracy) vary between these domain-specific methods
and general purpose RAG methods.

2.7 Storage / Data Access
Below the indexing layer, an unbound database will clearly need
access to a variety of data types, including tabular databases as well
as archives of text, image, video, audio, and more. In a retrieval-only
system, these may simply be immutable collections accessed via an
index or an exhaustive scan.

More interesting questions arise when updates and insertions
are considered. A selling point of database systems has long been
that they provide strong consistency in the face of changing data,
but it’s unclear what consistency even means in an AI world where
many questions have ambiguous or multifarious answers.

4550

Some basic principles are straightforward: a system might pro-
vide a transaction-like guarantee that the set of documents consid-
ered throughout the transaction would not change, or the system
might provide a guarantee that an answer given earlier in the trans-
action might be the same for a later invocation.

Many other aspects of updates are much less clear. For example,
is it possible to issue statements that modify the contents of docu-
ments? What are the syntax and semantics of such modifications?
Given that a common operation in these systems is likely to pro-
duce derived data, e.g., summaries or extractions from base data,
how is such derived data tracked, and how are relationships to base
data preserved? What if base data changes or is removed? Similar
issues arise in data provenance, versioning, and materialized views
for relational systems, although the details are likely quite different.

Building on these foundational components we have built several
new AI Data Systems which will help more directly with particular
end-to-end tasks or improve the interface of existing systems. These
include Video Querying (Section 3) and a new AI-powered data
science system called Palimpzest (Section 4).

3 VIDEO QUERYING
In this section we describe VAAS (Video Analytics at Scale) [25], a
system built for declarative video querying that is a specific embod-
iment of the architecture described above. It processes stored video
using a high level declarative program (specified graphically) that is
optimized into an efficient physical plan that attempts to minimize
processing time while maximizing result quality. As with LLMs,
recent advances in image and video processing algorithms that can
identify objects, segment images, and produce textual descriptions
of scenes mean that it is possible to build systems that “understand”
images in a transformative way.

The motivation for such systems is that there are many settings
where people have large archives of video and they want to an-
swer questions over them or search through them to find events of
interest. Examples include:

Autonomous driving. Autonomous driving requires millions
of hours of video to train and and improving models requires identi-
fying challenging scenarios from video – such as bikes in the snow
or vehicles driving the wrong way – to evaluate algorithms on.

Traffic cameras. A city might want to analyze intersection
cameras, of which they may have hundreds or thousands, to find
places where people engage in risky behavior – e.g., running red
lights – to determine where to implement traffic calming measures.

Biology.A biologist maywant to analyze wildlife camera images
to find specific animals or behaviors, such as eating or mating.

Although deep learning models, such as image segmentation and
object tracking, can be used to implement many of these examples, a
naive application of such models would be prohibitively expensive.
For example, on a high-end GPU on Amazon AWS, where a state-of-
the-art object tracker like Mask-RCNN [11] runs at about 30 frames
per second, processing one month of video from 100 cameras would
cost about $72,000! Put differently, a single $80 camera can capture
more than 946 million frames a year.

Clearly, a naive search strategy that applies expensive AI models
to every frame would require a huge and likely infeasible amount
of computation, even for modest collections. Also, video search is

Figure 2: Example visual query specification for a redlight
running query in VAAS.

likely to be used in interactive settings when fast results are espe-
cially valuable to the user. For both economic and user experience
reasons, a video search component should be as fast as possible,
even in the face of huge data collections.

Fortunately, there is a potential opportunity in video search: the
vast majority of video frames are irrelevant for most queries, so only
a small fraction of model invocations will yield valuable results. If
we could somehow identify the potentially-valuable frames without
invoking the visual model, we could sidestep all the fruitless frames
and save a huge amount of runtime and computation.

Queries in VAAS are specified through a largely declarative vi-
sual querying interface (see Figure 2). They do not specify a specific
execution plan, but instead describe logical operators to apply to
the data. They thereby enable potential system optimizations that
can avoid unnecessary work, such as re-ordering operators or con-
suming video out-of-order, exploiting novel semantic properties
of video operators. For example, in the query shown in Figure 2,
each detection needs to both contain a red light and a car passing
through a specific sequence of rectangles (the “straight through”
box). If red lights are less common than cars passing through the
intersection, the best query plan is likely to first detect red lights,
then look for tracks of vehicles.

VAAS’s most common operations are to filter and aggregate
video after using convert operators to cast raw images into specific
types of object detections and tracks (e.g., vehicles and paths). Fil-
ters include detecting one or more objects (in a bounding box) or
filtering the path of a trajectory through a bounding box (possibly
defined by another object or trajectory). Queries can also apply
temporal predicates, e.g., tracks that pass through box A then box
B (as opposed to just A and B).

Optimization Techniques. Because VAAS provides a high level
interface for expressing queries over video, there are a variety of
opportunities for automatic optimization of queries that we plan
to pursue to reduce the number or resolution of video frames that
need to be processed, or the sophistication of models that need to
be run to produce accurate query results. Specific optimizations the
we have implemented include reducing the video frame rate adap-
tively, filtering out partial detections (tracks) that are unlikely to
satisfy the query, focusing on portions of the viewframe of interest,
and applying declarative ordering optimizations to query predi-
cates. These optimizations are described in several recent papers
published in SIGMOD and VLDB [3, 4].

4551

Storage and Indexing.Of course, operating directly on massive
archives of video will be quite slow. For this reason, we (and several
others) have developed indexing techniques that pre-detect objects
and paths (tracks) of those objects in video [4]. These pre-detected
objects can then be embedded and stored in a vector database so
support efficient retrieval of objects of interest [13].

4 PALIMPZEST
In this section, we describe a second embodiment of an unbound
database we have built, called Palimpzest [18]. Palimpzest is a pro-
gramming tool that makes it possible to query text and images just
like a relational database can query tables. It enables engineers to
write succinct, declarative code that can be compiled into optimized
programs. It is targeted at a variety of workloads, including large-
scale information extraction, data integration, data discovery from
medical and scientific literature, image understanding tasks, and
multimodal analytics. Palimpzest is declarative in that users write a
high level program, and it considers a range of logical and physical
optimizations, yielding a set of possible concrete executable pro-
grams. Palimpzest then estimates the cost, time, and quality of each
one, then chooses a program based on runtime user preferences.
The system is designed to be extensible, so that new optimizations
can be easily added in the future. Just as relational databases allow
users to write SQL queries more quickly and correctly than they
could by writing traditional code, Palimpzest will allow engineers
to write better AI programs more quickly than they could unaided.
It uses many of the components described above, including prompt
tuning, model selection, cost modeling, and guard rails to generate
optimized implementations of declarative programs.

A core challenge in building Palimpzest is creating an optimizer
that can marshal many optimizations to meet a user’s cost, runtime,
and quality goals. By using a language that is high-level, type-
focused, and declarative — rather than the low-level prompting
and coding method pursued by naive programming and some other
frameworks (e.g., LangChain)— we believe Palimpzest can exploit
many optimizations that would not otherwise be available. Another
key challenge involves designing a programming interface which
simultaneously enables engineers to express the broadest possible
set of AI programs, while imposing structure on their programs
that the optimizer can exploit. To this end, we created a Python
library which implements a thin abstraction over an underlying
relational algebra. The core intellectual operation in Palimpzest
is the relational convert operator, which transforms an object of
one user-defined schema to another. This operator — which is
implemented using a variety of methods, often based on foundation
models — allows the programmer to implement many AI tasks in a
relational and optimizable style.

To illustrate Palimpzest, consider the declarative program shown
in Figure 3; this program iterates over a set of emails to identify
those that refer to a potentially fraudulent scheme (this is a work-
load derived from the Enron emails):

In this short example program, the user wants to identify emails
that are not quoting from sources outside of Enron and that refer-
ence fraudulent investment vehicles. As a first step, the programmer
uses Palimpzest to create a custom schema for the input dataset of
Emails – on lines 3-6. In this case, Email is a subclass of TextFile,

Figure 3: Palimpzest code for the Legal Discovery workload.

which is defined in Palimpzest’s core library and inherits directly
from the base Schema class. Starting on line 9, the user begins to
describe data processing actions, beginning with instantiating an
initial Dataset that adheres to the Email schema. The source string
“enron-emails” uniquely identifies a set of files that have been pre-
registered with Palimpzest. The code on line 9 transforms the raw
input data objects into the Email Schema and stores the results in
the emails Dataset. On line 10, the program filters emails for the
subset which are not quoting from news articles. On line 11 the
program filters for emails which discuss fraudulent investments.

The programmer takes two more steps: on line 14, they specify a
policy that describes how the system should choose amongmultiple
possible implementations of the steps described so far. (In this case,
the plan with the lowest expected financial cost, subject to a lower
bound on quality, is preferred.) Finally, on line 15, the programmer
asks Palimpzest to Execute() the program; this entails generating
a logical execution plan, generating multiple optimized physical
execution plan candidates, choosing one according to the specified
policy, and then executing the code and yielding results. Programs
written with Palimpzest are executed lazily, thus no actual data
processing occurs until line 15.

The user-provided description strings for the schema fields and
filters comprise both a way for the developer to specify correct
program output, and a way for the system to find a high-quality
implementation. These strings are provided to underlying (often
Generative AI-based) operators which use them when constructing
internal prompts. In contrast to prompt engineering, we do not in-
tend for users to expend significant effort tuning these descriptions.
Instead, Palimpzest tunes the prompts automatically for the user.

As noted above, the key component of Palimpzest is an optimiza-
tion framework that automatically decides how to best execute the
program. When running an input user program, Palimpzest con-
siders a range of logical and physical optimizations, then yields a
set of possible concrete executable programs. Palimpzest estimates
the cost, time, and quality of each one, then chooses a program
based on runtime user preferences. The system is designed to be
extensible, so that new optimizations can be easily added in the
future. Just as relational databases allow users to write database
queries more quickly and correctly than they could by writing
traditional code, Palimpzest allows engineers to write better AI

4552

Figure 4: Runtime, cost, and quality of plans found by the
declarative Palimpzest system.

programs more quickly than they could unaided. Examples of opti-
mizations Palimpzest considers, driven by the components we are
developing in the overall New AI Data Platform, include:

Using the Prompt Tuningmodule, Palimpzest will optimize word-
ing and decide on a general prompting strategy (e.g., zero-shot,
few-shot, chain-of-thought, ReAct, etc.). Using the Model Selection
module, Palimpzest will try to pick the best model for each subtask
in the program, balancing time, cost, and quality; for example for
easy tasks it might run a small model on a CPU, and for more diffi-
cult tasks it might call out to GPT-4o. With the Code Synthesis and
Quality Estimator modules, Palimpzest will decide whether each
subtask is best implemented by a foundation model query, synthe-
sized code, or a locally-trained student model. Furthermore, it will
consider how to combine tasks to improve GPU cache utilization,
and how to avoid running over LLM context limits. All Palimpzest
outputs will be validated using the Fact Checking module.

Finally, when scaling out to a larger dataset, Palimpzest faces
additional challenges in selecting an efficient execution plan. Even if
the system performs well on a small dataset, it may require redesign
to ensure reasonable runtime, cost, and performance at a larger
scale. This may involve enabling parallelism for each component
and scheduling these parallelized components on multiple GPUs
and CPUs for optimal efficiency.

Figure 4 shows the results of running the Palimpzest system
on a schema matching task (extracting cancer data from several
PDFs and creating a merged table). Each of the green dots in the
figure represents one candidate plan generated by Palimpzest for
this task, with a plan that uses GPT4 for every step in the program
shown with an arrow. The left plot shows plan quality on the X
axis (measured as F1 score relative to a human-generated ground
truth result) and the Y axis shows runtime in seconds. On the right,
F1 score is plotted against dollar cost. For this particular program,
Palimpzest generates plans that are 20% of the cost of GPT4 while
achieving significantly higher F1 scores at lower runtimes.

5 RELATEDWORK
We note that there is currently a vast and ever growing literature in
the AI community on LLMs and vision models. Rather than trying
to cover all of this work, we focus here on work from the database
community that is most relevant to our proposal.

There have been a other recent attempts to mix LLMs with the
relational querymodel, and the amount of work in this area has been
growing rapidly [6, 18, 21, 24]. These systems differ along several
design dimensions: the use of natural language at query-writing
time, the semantics of operators, and the optimizations supported.

Castro Fernandez, et al. presented a high-level vision of possible
changes in data management due to recent AI advances [10].

A key technical ability of the unbound database will be to sub-
stitute cost- and quality-effective implementations for expensive
AI operations. Notable efforts in the data management community
include model cascades, especially for vision tasks [1, 12, 15]; and
code synthesis methods [2, 5].

There is growing recognition in other communities about the
need to combine software systems concepts and AI elements. SG-
Lang [28] is an early example of a tool designed to build “compound
AI systems” [27]. The vision sketched in this paper can be thought
of as a compound AI system tailored for data management tasks.

Finally, we note that many of the challenges around the unbound
database were considered roughly a decade ago in the context of
crowd-powered databases. These systems [9, 19, 20] similarly had
new declarative operators that were not implemented through
conventional computation; instead of processing tasks with an
expensive AI model, they used human answers. Although many
technical details have changed, we have found it instructive to
review and reconsider these projects.

6 CONCLUSION
We presented our vision of an unbound database, which provides
a declarative interface to all of the world’s data, spanning not just
tables but text, images, video, documents and more. While new
AI models are a necessary element, such a system will need many
other novel components to deliver scale and robustness needed for
many enterprise-class applications. These include: new interfaces,
which may be be based on natural language or new programming
languages; optimizations like caching, prompt tuning, batching,
and code generation to avoid expensive LLM calls on every on
every input element; cost/quality/performance optimizers that help
users navigate tradeoffs between runtime and dollars; techniques
to ensure repeatability and verifiability of answers; and more. We
presented two examples of such systems, VAAS and Palimpzest,
and illustrated how they make use of declarative optimization tech-
niques to explore performance tradeoffs.

SPEAKER BIOGRAPHIES
Samuel Madden is a the College of Computing Distinguished
Professor of Computing at MIT. His research interests include
databases, distributed computing, and networking. Research projects
include learned database systems, the C-Store column-oriented data-
base system, and the CarTel mobile sensor network system. Madden
heads the Data Systems Group at MIT and the Data Science and
AI Lab (DSAIL), an industry supported collaboration focused on
developing systems that use AI and machine learning.

Madden was named one of Technology Review’s Top 35 Under 35
in 2005 and an ACM Fellow in 2020, and is the recipient of several
awards, including an NSF CAREER award, a Sloan Foundation
Fellowship, the ACM SIGMOD Edgar F. Codd Innovations Award,
and “test of time” awards from VLDB, SIGMOD, SIGMOBILE, and
SenSys. He is the co-founder and Chief Scientist at Cambridge
Mobile Telematics, which develops technology to make roads safer
and drivers better.

4553

REFERENCES
[1] Michael R Anderson, Michael Cafarella, German Ros, and Thomas F Wenisch.

2019. Physical representation-based predicate optimization for a visual analytics
database. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 1466–1477.

[2] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language models enable simple
systems for generating structured views of heterogeneous data lakes. arXiv
preprint arXiv:2304.09433 (2023).

[3] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael J. Cafarella, Tim Kraska, and
Sam Madden. 2020. MIRIS: Fast Object Track Queries in Video. In Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.
Ngo (Eds.). ACM, 1907–1921. https://doi.org/10.1145/3318464.3389692

[4] Favyen Bastani and Samuel Madden. 2022. OTIF: Efficient Tracker Pre-processing
over Large Video Datasets. In SIGMOD ’22: International Conference on Man-
agement of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 2091–2104.
https://doi.org/10.1145/3514221.3517835

[5] Zui Chen, Lei Cao, Sam Madden, Ju Fan, Nan Tang, Zihui Gu, Zeyuan Shang,
Chunwei Liu, Michael Cafarella, and Tim Kraska. 2023. Seed: Simple, effi-
cient, and effective data management via large language models. arXiv preprint
arXiv:2310.00749 (2023).

[6] Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade
Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, and
Dale Schuurmans. 2024. UQE: A Query Engine for Unstructured Databases.
arXiv:2407.09522 [cs.DB] https://arxiv.org/abs/2407.09522

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[8] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-
aware Dataset Discovery from Data Lakes with Contextualized Column-based
Representation Learning. Proceedings of the VLDB Endowment 16, 7 (2023),
1726–1739. https://doi.org/10.14778/3587136.3587146

[9] Amber Feng, Michael J. Franklin, Donald Kossmann, Tim Kraska, Samuel Mad-
den, Sukriti Ramesh, Andrew Wang, and Reynold Xin. 2011. CrowdDB: Query
Processing with the VLDB Crowd. Proc. VLDB Endow. 4, 12 (2011), 1387–1390.
http://www.vldb.org/pvldb/vol4/p1387-feng.pdf

[10] Raul Castro Fernandez, Aaron J. Elmore,Michael J. Franklin, Sanjay Krishnan, and
Chenhao Tan. 2023. How Large LanguageModelsWill Disrupt DataManagement.
Proc. VLDB Endow. 16, 11 (2023), 3302–3309. https://doi.org/10.14778/3611479.
3611527

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask
R-CNN. CoRR abs/1703.06870 (2017). arXiv:1703.06870 http://arxiv.org/abs/1703.
06870

[12] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: optimizing neural network queries over video at scale. Proc. VLDB
Endow. 10, 11 (aug 2017), 1586–1597. https://doi.org/10.14778/3137628.3137664

[13] Daniel Kang, John Guibas, Peter D. Bailis, Tatsunori Hashimoto, and Matei
Zaharia. 2022. TASTI: Semantic Indexes for Machine Learning-based Queries
over Unstructured Data. In Proceedings of the 2022 International Conference on
Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for
Computing Machinery, New York, NY, USA, 1934–1947. https://doi.org/10.1145/
3514221.3517897

[14] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi,

Hanna Moazam, et al. 2023. Dspy: Compiling declarative language model calls
into self-improving pipelines. arXiv preprint arXiv:2310.03714 (2023).

[15] Ferdi Kossmann, Ziniu Wu, Alex Turk, Nesime Tatbul, Lei Cao, and Samuel
Madden. 2024. CascadeServe: Unlocking Model Cascades for Inference Serv-
ing. CoRR abs/2406.14424 (2024). https://doi.org/10.48550/ARXIV.2406.14424
arXiv:2406.14424

[16] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. Journal of Machine Learning Research 18 (2018), 1–52.

[17] Xiang Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Association for Computational
Linguistics, 4582–4597.

[18] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen,
Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024. A Declarative System for Optimizing AI Workloads.
arXiv:2405.14696 [cs.CL] https://arxiv.org/abs/2405.14696

[19] Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. 2011. Crowd-
sourced Databases: Query Processing with People. In Fifth Biennial Conference
on Innovative Data Systems Research, CIDR 2011, Asilomar, CA, USA, January 9-12,
2011, Online Proceedings. www.cidrdb.org, 211–214. http://cidrdb.org/cidr2011/
Papers/CIDR11_Paper29.pdf

[20] Hyunjung Park, Richard Pang, Aditya G. Parameswaran, Hector Garcia-Molina,
Neoklis Polyzotis, and Jennifer Widom. 2012. Deco: A System for Declarative
Crowdsourcing. Proc. VLDB Endow. 5, 12 (2012), 1990–1993. https://doi.org/10.
14778/2367502.2367555

[21] Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. 2024. LOTUS: En-
abling Semantic Queries with LLMs Over Tables of Unstructured and Structured
Data. arXiv:2407.11418 [cs.DB] https://arxiv.org/abs/2407.11418

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual
Models From Natural Language Supervision. CoRR abs/2103.00020 (2021).
arXiv:2103.00020 https://arxiv.org/abs/2103.00020

[23] Zeyuan Shang, Emanuel Zgraggen, and Tim Kraska. 2019. Alpine Meadow: A
System for Interactive AutoML. In Proceedings of the MLSys: Workshop on Systems
for ML at NeurIPS.

[24] Matthias Urban and Carsten Binnig. 2023. CAESURA: Language Models as
Multi-Modal Query Planners. arXiv preprint arXiv:2308.03424 (2023).

[25] vaas [n. d.]. https://vaas.csail.mit.edu/docs/introduction.html.
[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762 http://arxiv.org/abs/
1706.03762

[27] Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller,
Chris Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and
Ali Ghodsi. 2024. The Shift from Models to Compound AI Systems. https:
//bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/.

[28] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun,
Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez,
et al. 2023. Efficiently programming large language models using sglang. arXiv
preprint arXiv:2312.07104 (2023).

[29] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
Proceedings of the 2019 International Conference on Management of Data (SIGMOD
’19) (Amsterdam, Netherlands). ACM, 847–864. https://doi.org/10.1145/3299869.
3319901

4554

https://doi.org/10.1145/3318464.3389692
https://doi.org/10.1145/3514221.3517835
https://arxiv.org/abs/2407.09522
https://arxiv.org/abs/2407.09522
http://arxiv.org/abs/1810.04805
https://doi.org/10.14778/3587136.3587146
http://www.vldb.org/pvldb/vol4/p1387-feng.pdf
https://doi.org/10.14778/3611479.3611527
https://doi.org/10.14778/3611479.3611527
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://doi.org/10.14778/3137628.3137664
https://doi.org/10.1145/3514221.3517897
https://doi.org/10.1145/3514221.3517897
https://doi.org/10.48550/ARXIV.2406.14424
https://arxiv.org/abs/2405.14696
https://arxiv.org/abs/2405.14696
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper29.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper29.pdf
https://doi.org/10.14778/2367502.2367555
https://doi.org/10.14778/2367502.2367555
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/2407.11418
https://arxiv.org/abs/2103.00020
https://vaas.csail.mit.edu/docs/introduction.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://doi.org/10.1145/3299869.3319901
https://doi.org/10.1145/3299869.3319901

	Abstract
	1 Introduction
	2 Components of an Unbound Database
	2.1 Query Interface
	2.2 Logical Planning / Operators
	2.3 Optimizations
	2.4 Physical Plan Search
	2.5 Orchestration Operators
	2.6 Indexes
	2.7 Storage / Data Access

	3 Video Querying
	4 Palimpzest
	5 Related Work
	6 Conclusion
	References

