The Case for DBMS Live Patching

Michael Fruth
University of Passau
Passau, Bavaria, Germany
michael.fruth@uni-passau.de

ABSTRACT

Traditionally, when the code of a database management system
(DBMS) needs to be updated, the system is restarted, and database
clients suffer downtime, or the provider instantiates hot-standby
instances and rolls over the workload. We investigate a third op-
tion, live patching of the DBMS binary. For certain code changes,
live patching allows to modify the application code in memory,
without restart. The memory state and all client connections can
be maintained. Although live patching has been explored in the
operating systems research community, it remains a blind spot in
DBMS research. In this Experiment, Analysis & Benchmark article,
we systematically explore this field from the DBMS perspective.
We discuss what distinguishes database management systems from
generic multi-threaded applications when it comes to live patching.
We then propose domain-specific strategies for injecting quiescence
points into the DBMS source code so that threads can safely migrate
to the patched process version. We experimentally investigate the
interplay between the query workload and different quiescence
methods, monitoring both transaction throughput and tail laten-
cies. We show that live patching can be a viable option for updating
database management systems, since database providers can make
informed decisions w.r.t. the latency overhead on the client side.

PVLDB Reference Format:

Michael Fruth and Stefanie Scherzinger. The Case for DBMS Live Patching.
PVLDB, 17(13): 4557 - 4570, 2024.

doi:10.14778/3704965.3704966

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sdbs-uni-p/vldb25-dbms-live-patching.

1 INTRODUCTION

Database management systems (DBMS) are part of the critical IT
infrastructure and must be maintained with care. When it comes to
security patches, database clients may experience database restarts
as highly disruptive, especially when long-standing connections
are severed. At the very least, restarts can be untimely and force
database clients to work around downtimes.

Considerable effort has been made to accelerate the restart of
DBMS servers [6, 22, 57]. Facebook, for instance, relies on shared
memory to accelerate the restart of certain distributed systems [1,
5, 39]: Among these systems is Scuba [1], a main memory database

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
do0i:10.14778/3704965.3704966

4557

Stefanie Scherzinger
University of Passau
Passau, Bavaria, Germany
stefanie.scherzinger@uni-passau.de

Version: ¢ 0 e 1 2 o 3

&' — 0.065 o T I ;
S 20060 ,* mwomeu St B L v o o4 o0

HE 0055 o°% o o 1 Aeme o @ ' s
o I'a 1 a
T} T T T T T
0 5 10 15 20
Time [s]

Figure 1: Seamlessly live patching MariaDB through four
code versions. Colors distinguish the code versions.!

backing about 120 GB, for which the restart time was reduced from
2-3 hours to 2-3 minutes [22]. While this may be acceptable for
a full upgrade, it may not be justifiable for a small (security) fix.
Alternatively, additional DBMS instances are run in parallel (e.g. as
hot-standby or multi-master) [9, 17, 32, 33, 36, 37, 43], and updates
are realized by rolling over [3, 8, 12, 17, 31, 35, 44] on these instances.
Motivation. We investigate a third way, made possible by recent
advances in live patching user-space applications for Linux. Live
patching performs a code change (i.e., a patch) directly in memory,
while the software is running. Instead of a restart, the threads are
gracefully patched so that they read from an updated code segment.
We illustrate the potential of this approach for DBMSs with a
micro-experiment using the WrPaTcH framework [48]. We run
a version of MariaDB with quiescence points injected into the ap-
plication source code. When the control flow of a thread reaches
a quiescence point and a patch exists, the thread migrates to the
patched version. Figure 1 shows the query latencies, while the num-
ber of connections is scaled up and down. Each data point is one
measurement. Every five seconds, we initiate live patching to mi-
grate the DBMS binary to a new version. The colors indicate the
individual versions, and the shapes distinguish the database connec-
tions (allowing to discern new connections). As can be seen by the
change in color, MariaDB gracefully migrates through four code
versions while maintaining all existing connections, evaluating
queries, and even accepting new connections.
State of the Art. In the maintenance of operating systems, live
patching is established practice: IBM AIX [28], Windows virtual ma-
chines for Azure [34], or different live patching tools for Linux (e.g.
Kpatch [42] from RedHat, kGraft [53] from SUSE or Ksplice [4] from
Oracle) are routinely used in production environments, showing
that live patching is feasible, even for highly critical infrastructure.
While live patching in the kernel space is state-of-the-art, live
patching applications in user-space is still underdeveloped. Any
tools publicly available are limited to research prototypes. Proof-
of-concept evaluations often include database management sys-
tems [24, 30, 48, 56]. Yet generally, the DBMS software is merely

Throughput per worker fixed at 5 queries per second. Extreme latencies below 10t/
above 90t percentile filtered out to improve the readability of the chart. Patching using
local quiescence for the one-thread-per-connection policy, concepts to be introduced.
Patching with a synthetic patch, details provided with our artifacts.


https://doi.org/10.14778/3704965.3704966
https://github.com/sdbs-uni-p/vldb25-dbms-live-patching
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704966
https://www.acm.org/publications/policies/artifact-review-and-badging-current

treated as yet another generic multi-threaded application, the same
as caches or web servers. Thus, the special challenges of database
management systems are not adequately taken into account.

Notably, several commercial database providers advertise live
patching capabilities. For example, Azure allows live patching of
the SQL Server Engine. A blog claims that more than 80% of typical
SQL bug fixes can be applied by live patching [40]. This indicates
the vast potential for practical impact of database live patching.
However, since these tools are exclusively operated in-house, they
are not available for experimental analyses.

So far, there has been no systematic exploration of the potential
of live patching specifically for multi-threaded DBMS software from
the unique perspective of database systems research.
Contributions. In this paper, we systematically explore the feasi-
bility of live patching for database management systems.

e DBMSs have unique characteristics that set them apart
from other multi-threaded applications. We show that there
are specific desiderata for live patching to be practical. In
particular, we focus on how to statically prepare the code of
database connection management; we study two common
policies, one-thread-per-connection and thread pools.

e We propose a novel approach for achieving safe thread
quiescence (the prerequisite for live patching) in database
thread pools. Our solution defines the order in which threads
enter into quiescence based on the role of the thread (e.g.,
listener or worker thread). We empirically show that our
approach operates without deadlocks.

For our extensive experiments, we prepared two open source
DBMSs for live patching (MariaDB and Redis). We success-
fully apply real-world patches from GitHub and explore two
alternative quiescence methods. We experimentally eval-
uate live patching from different stakeholder perspectives
and identify the key factors determining the performance.
In particular, we study the impact on extreme latencies un-
der different query workloads. Our insights enable database
providers to make an informed decision w.r.t. live patching.

2 DBMS-SPECIFICS

Desiderata. In patching a multi-threaded application, we prefer
a short synchronization time, i.e. the time it takes from patch trig-
gering until all threads run in the patched version. Ultimately, this
determines how quickly a security vulnerability can be closed.
However, database management systems constitute a family
of applications with highly specific requirements that set them
apart from other multi-threaded applications. We formulate these
additional desiderata for patching a DBMS software binary:
(1) The DBMS server maintains the existing client connections,
and even allows for new connections to be made.
(2) Patching does not cause database deadlocks.
(3) The database state (which can be large) remains available.
(4) Code patches can be applied for different query workloads.
Not all of these desiderata can be met with conventional update
methods: In a classic system restart, connections must be severed,
transactions aborted, and the database state must be restored upon
restart (costing minutes or even hours [22, 57]). When running
instances in parallel, existing client connections must be carefully

4558

handled, and a short failover time may still be noticeable. Through-
out, the hardware requirements multiply (temporarily).

In the following, we discuss the above desiderata in light of live

patching and point out technical challenges.
Technical Challenges. (1) Implementations for database connec-
tion handling range from simplistic to complex: The key-value
store Redis uses a single-threaded event loop, where all commands
are executed in sequential order (since version 6, Redis supports
multiple threads for I/0). In contrast, PostgreSQL maps each con-
nection to its own process and forgoes multi-threading. MariaDB
is multi-threaded and supports different connection management
policies. Changing the DBMS source code is system-specific and
requires extensive domain knowledge.

(2) Implementing a transaction system is a delicate task. Any
manipulations of the source code that cause threads to block (as
quiescence points ultimately will), amplify the risk of deadlocks.
Again, developers must be highly prudent.

(3) Compared to other families of applications, database manage-
ment systems can hold very large states in memory. These states are
expensive to recover at system restart and may also be expensive
to copy during live patching, where we need to prepare the new
address space containing the code changes.

(4) Different query workloads bring about different challenges.
In particular, workloads containing long-running queries are likely
to be unsuitable for live patching methods in which all threads
must block until they reach a global barrier. Such a “stop the world”
event may even noticeably increase extreme latencies.
Stakeholders. In exploring live patching for DBMS, we assume
different stakeholder perspectives.

From the perspective of the developer of the DBMS, quiescence
points must be injected into the source code in a safe manner. Specif-
ically, changes in the system must not introduce new deadlocks.
Moreover, changes to connection management must not noticeably
deteriorate query throughput. Note that these extensions to the
DBMS source code are a one-time effort (although, of course, these
code changes must be maintained over time).

From the perspective of the database clients, performance should
not degrade. Ideally, database clients remain unaware that patches
are being applied. Especially in distributed settings, (tail) latencies
are a particular concern, since latencies exceeding the 99th Jatency
percentile can degrade the client experience (and when they build
up, even the entire system performance [13]).

We also assume the perspective of the database provider, who has
to choose between performing a restart of the application, rolling
over on standby instances, or live patching. This requires that deci-
sion makers be able to predict the latency overhead. Consequently,
we explore the key factors that determine the patch application
time, such as the size of the database state and the size of the patch.
Scope of this work. We focus on the technical aspects of live
patching multi-threaded DBMS, but not the question of whether
the behavioral changes of a code change make it suitable for live
patching. As described in Section 3.3, there are certain technical
constraints to consider. Yet ultimately, deciding whether the behav-
ioral changes of the code allow for live patching a database running
in production warrants separate research and is beyond the scope
of this article.



3 BACKGROUND - LIVE PATCHING

There are several (prototypical) tools for live patching user-space
applications and we refer to our discussion of related work for an
overview (Section 4). In our introduction to the core concepts, we
focus on the framework WrPatcH [48] by Rommel et al.

3.1 Quiescence Points

Live patching changes the memory state of a process. For this to
be safe, a thread must be in a well-defined state. WFPATCH relies
on software developers to identify such safe states and impose
barriers, the quiescence points, in the application source code. Once
the control flow of a thread reaches a quiescence point, the thread
is either blocked, patched, or continued. The action depends on the
chosen quiescence method, and we discuss two methods below.?

3.2 Quiescence Methods

Global. A thread blocks when it reaches a quiescence point. Once
all threads have reached their quiescence point, the patch is applied,
and all threads collectively migrate to the patched version.

The upper half of Figure 2 visualizes a scenario with global quies-
cence. We assume a DBMS with one background thread, two threads
each serving a connection, and one patcher thread. The patcher
thread is spawned by WrPATcH and performs all heavy-weight
tasks for patch application (see Section 3.4.2). At time ¢g;, a patch
request is made. Upon completing task T2, the background thread
blocks. Then the thread serving connection 1 blocks. At time tG4,
the thread serving connection 2 reaches its barrier, achieving global
quiescence. The patcher thread applies the patch. By time ¢gs, all
threads resume work in the patched version.

Drawbacks. In global quiescence, blocking threads can cause var-
ious problems, as exemplified next: (1) Long wait times: All threads
reach their quiescence point timely except the thread serving con-
nection 2. If it executes OLAP-style queries, long wait times occur.
(2) Unbound wait times: Similar to problem 1, but now connection 2
is idle. It waits for user input to reach its barrier, causing unbounded
wait times. (3) Deadlock: Connection 1 blocks at its barrier while
holding a lock. Connection 2 is waiting for the release of this lock,
resulting in a cyclic dependency and, therefore, a deadlock.
Local. In local quiescence, each thread can individually migrate to
the patched process version, upon reaching its quiescence point.
No blocking or waiting for other threads is needed.

Local quiescence is visualized in the lower half of Figure 2: At
time 71, a patch request is made, and the patcher thread prepares
the patched process version. At time 15, the patched process ver-
sion is ready and threads can migrate to this version. The thread
serving connection 2 and the background thread both reach a qui-
escence point at time #73 and migrate to the new version. Finally,
the thread serving connection 1 reaches its barrier at time t74. By
time t75, all threads run in the patched process version.

3.3 Categorizing Patches

From a technical point of view, each change in source code affects
a different region of the memory layout of a program. Not every
patch can be applied with every live patching framework, as these

2Rommel et al. further propose group quiescence, which we do not consider here.

4559

Threads Tasks J<«—patch request r—barr‘ier wait

[Background | {11 [ 12 }——+—{3)] T4 | T5
|Connect'ion 1 | —| Q1.1 —@—)
[connection 2 | ———] Q2.1 o Q2.2
C— patch
WFPATCH
A
________________ Time taiter  tes | tes  tes T
| |
[Background | < 11 [ 12 [ 13 [ 74 [ 75 [migrate]| 16 [ 17 [ 18 ]
[connection 1] —{ @11 H or.2 }——{ 01.3 [migrate| 1.4 |
— Q2.1 m-igrate—' Q2.2 |
MH apply patch N
Time to tra tr3 trg trs 7

Figure 2: Live patching a multi-threaded DBMS: global (top)
vs. local quiescence (bottom). Based on Figure 2 of [48].

are often restricted to patches that affect certain memory regions
(more details in Section 3.4.3).

Furthermore, the semantics of a patch, i.e. the effect or changed
behavior of the application after patching, must be well understood.
While fewer problems arise due to the non-blocking property of
local quiescence, this method is not universally applicable and
restricted to a certain category of semantic changes. In discussing
this next, we categorize patches according to their effect.

A thread-local patch is a code change that affects only the given
thread itself and no other threads. For example, consider a security
fix that adds a boundary or a NULL pointer check [27]. Thread-
local patches can be applied with any quiescence method, including
local quiescence. In the case of a thread-group patch, the changed or
patched behavior affects some threads, but not all. For example, con-
sider that the data to be processed changes in a producer-consumer
scenario [27], so a joint migration is essential. This demands global
quiescence. Finally, a process patch enforces that all threads of the
process are patched at the same time. This is also only feasible
under global quiescence.

Statically determining the correctness of dynamic updates is an
undecidable problem [23]. Only a skilled developer can judge the
effects of a given patch and categorize it accordingly.

3.4 WFrParcH Framework

The WrPATcH framework consists of a modified Linux kernel, a
user-space library, and a customized version of Kpatch [42] for
patch generation. We explain the concepts necessary to understand
this article and refer to the original article for further details [48].

3.4.1 Kpatch. Kpatch [42] is a suite of tools for live patching the
Linux kernel. Rommel et al. [48] customized the Kpatch tool to also
support patch generation for user-space applications. The modified
version of Kpatch is used for patch generation, while loading and
applying the patch is handled by the WrPATCH user-space library.

3.4.2 Address Space Generation. With global quiescence, a
patch is applied directly to the address space of the process. How-
ever, with local quiescence, multiple address space generations are
managed. We outline these concepts in the following.



Linux is divided into user-space and kernel-space: All applica-
tions of the Linux kernel run in kernel-space and application soft-
ware etc. run in user-space (e.g. a DBMS). The memory, also called
address space (AS), of a user-space application is shared between its
threads. For example, the stack, heap, or .text segment (executable
instructions) reside in the address space. On a low-level basis, the
address space consists of a number of regions or virtual memory
areas (VMAs). A VMA forms a contiguous memory area. Each VMA
is further divided into several pages, representing the smallest unit
(the typical size is 4096 B). All access to memory is performed on
virtual addresses which are translated based on page tables to phys-
ical addresses. Each process contains information about its address
space, i.e. a list of VMAs, the page table, etc. This information is
organized within the memory map (MM). Thus, an address space is
the abstract concept represented by the MM structure in Linux.

Linux has a strict one-to-one relationship between the memory
map and the process. WFPATCH relaxes this so that threads of the
same process can have different memory maps, i.e. threads can
operate in different address spaces, yet the individual memory maps
remain siblings. When creating a new memory map, the memory
map data structure with all its attributes of the calling thread is
copied and kept in sync with its siblings by sharing pages. Logically,
they are two separate address spaces, but all entries refer to the same
pages. All memory maps are kept in sync using the first memory
map as a synchronization point. Each distinct memory map forms
an AS generation. Synchronization between AS generations can be
stopped on the level of individual VMAs. The copy-on-write (COW)
mechanism is used on VMAs that are no longer shared. Using COW,
changes are no longer reflected in the other AS generations, as the
page is copied when modified.

The way WFPATCH clones a memory map is similar to the fork()
system call: A new process is created by duplicating the AS of the
calling process. All pages of both processes are shared as read-only
and marked as COW. However, there is a difference from AS cloning:
All pages are shared by default (shared mapping), and changes are
synchronized with all other AS generations. Only certain VMAs of
the AS are marked as COW.

Once an AS has been created and the corresponding regions have
been marked as read-only, a patch can be applied to create a patched
AS generation: WFPATCH loads the patch binary file generated by
Kpatch, extracts all sections, and applies them to the current AS.

The patch binary in Executable and Linking Format (ELF) lists

changed sections between the unpatched and patched object files
of the application to patch (for details about the patch-structure,
we refer to the “create-diff-object” utility in [15]).
WF¥ParcH Operations. Figure 3 illustrates a process having two
AS generations (initial AS on the left; cloned AS on the right) and
five threads. Each box in memory represents a page, whereas an
arrow pointing to it represents the translation process of the page
table (gray bar next to the AS). The fill color of a box for the phys-
ical memory defines its content, while virtual memory boxes are
colored for easier navigation. The steps and the required WrPATCH
operations to achieve the illustrated state are labeled with circled
numbers and the respective operation.

Before the AS in Figure 3 is cloned, the pages in the region of ad-
dresses 4-11 are defined as read-only shared mapping (@wf_pin())
because, for example, we assume that the .text and .rodata segments

4560

Physical Memory patched

[ ol [alcdPfal | ] |

ool | I/ —m""" . 1< »
= shared = 52
02 mapping g a
- - — %]
04 a To
ag - =
w
o6 @ 53
gh read-only 9s 2
08 [N shared =
= mappin \
10 ® |2 pping ® i apply
N e patch

Generation 0 e wf_create()

Threads e wf_migrate()
BN LT

thi thg th{

Generation 1

.5

thy” thg

Figure 3: Process memory layout after WFPATcH operations.

are located there. All other pages remain as shared mappings. Sub-
sequently, the AS is cloned (@ wf_create()). The patch is applied
to the new AS and affects the page at address 11, which is in the
area of the read-only shared mapping. This results in the phys-
ical page to be copied. The change is ultimately applied to the
copied page. AS generation 0 still points to the old unpatched phys-
ical page. Next, two threads migrate to the new AS generation
(@ wf_migrate()). To highlight the shared mapping, a write to
the page at address 1 is reflected by both AS generations, as both
still point to the same physical page. The workflow of WrPaTcH is
to (1) clone an AS, (2) apply a patch, and (3) individually migrate
threads to the patched process version.

3.4.3 Technical Limitations. Kpatch can only generate patches
for applications written in C. Furthermore, the granularity of patches
is based on functions, i.e. old functions are replaced with new ones.
Additionally, a patch can only be applied to inactive functions, i.e.
functions that are not currently active on the stack frame.

WEFPATCH can only patch the read-only regions .text (executable
code) and .rodata (initialized static constants). Thus, global variables
or the layout of data structures cannot be patched.

Despite these limitations, a large share of patches can be applied
in practice. Rommel et al. [48] show in an analysis of more than
100 software fixes for six applications that about 87% of the patches
affect only the .text segment.

4 RELATED WORK

We first discuss live patching in the operating systems community.
These contributions, to the best of our knowledge, have not yet
been systematically explored in database systems research.
Live Patching Research in the OS Community. Various (pro-
totypical) user-space live patching frameworks exist [7, 24, 25, 30,
38, 48, 52, 56]. Several enforce some form of global quiescence [24,
25, 52], while others allow patch application at arbitrary points in
time, but with the overhead of halting all threads [7, 30].

To our knowledge, WrPaTcH [48] is the only framework for
live patching multi-threaded user-space applications with wait-free
patch application via local quiescence. The idea of multiple AS



generations of WFPATCH has found further applications, including
thread-specific security [50] and execution variations [54].

Under the hood, WrPaTcH and Kpatch [42] employ trampolines,
a common technique used in live patching [2, 4, 7, 48, 53] to redirect
function calls to the patched code once the control flow reaches it.
Live Patching DBMS in the OS Community. Database systems
are part of experimental evaluations of several live patching ap-
proaches [24, 30, 48, 56], but commonly treated as generic user-
space applications, the same as caches or web servers. The unique
challenges of DBMSs are not considered, and the database client
experience is largely ignored. This can also be observed in the exper-
iments of Rommel et al. [48]: The authors evaluated the WrPATCH
framework based on six different multi-threaded user-space applica-
tions, including MariaDB (the only relational DBMS in their work).
In the following, we discuss their experiments with MariaDB from
the perspective of database systems, which emphasizes aspects
distinct from those prioritized in operating systems research.

Request Latencies. Rommel et al. executed a customized bench-
mark against MariaDB with the one-thread-per-connection policy
(thread connection policies are explained in Section 5). Quiescence
was triggered every 1.5 seconds, but without actually applying a
patch. This experiment was performed for global and local quies-
cence, and the results for both quiescence methods were compared
based on a histogram of measured client request latencies.

Runtime Penalty. Rommel et al. reported the runtime penalties of
WFPATCH operations. They measured the overhead of AS cloning
and AS switching for a single, fixed MariaDB configuration.

Discussion. Both experiments focus on WFPATCH and the concept
of local quiescence in comparison to global quiescence. From the
perspective of database systems research, additional aspects should
be included: (1) In addition to the one-thread-per-connection policy,
MariaDB also supports a thread pool policy. (2) Database systems
are subject to different types of workload, such as OLTP or OLAP.
(3) The steps of loading and applying a real-world patch are not
captured by the experiments. (4) Different kinds of database systems
(e.g. main memory vs. disk-based) have memory states of different
size, and also differ in how they store data internally.

Assuming the domain-specific perspective of database systems
research, different experiments and analyses are required to assess
live patching DBMSs along the desiderata outlined in Section 2.
Given that their quiescence points for the thread pool connection
policy are susceptible to deadlocks (see Section 6.1.1), we propose a
novel approach known as priority-based quiescence (detailed in Sec-
tion 5.2), which aims to ensure a safe and deadlock-free migration
of threads within a thread pool.

DBMS Upgrade Strategies. A common approach to apply a patch
to a DBMS without database clients noticing downtime is to per-
form a rolling upgrade, based on running additional instances (3,
8, 12, 17, 31, 35, 44]. In this setup, the hardware costs multiply
due to redundant provisioning of hardware and database instances.
Furthermore, a rolling upgrade may, nevertheless, take time for
a cluster to patch instance-by-instance. Furthermore, cluster per-
formance is reduced during downtime, and the instance needs to
recover its full memory state on startup.

Live Patching DBMS in the Database Systems Community.
Research on live patching database systems is still in an exploratory

4561

stage. In a very early-work abstract, we conducted a first experi-
ment on live patching a multi-threaded DBMS [18]. Since then, we
have systematically extended our work of specifically addressing
challenges inherent to multi-threaded, single-instance databases,
to the point where we propose a novel solution for live patching
with database thread pools. Moreover, in another research we ex-
panded our focus to distributed database systems, exploring live
patching for distributed in-memory key-value stores [19] using
Redis Cluster as a reference system. We developed and evaluated
patch distribution strategies and proposed guidelines for enabling
live patching in distributed databases. To validate, we implemented
these guidelines for a primary-replica PostgreSQL setup. This re-
search specifically focuses on the distributed aspects while not
addressing multi-threaded concerns, as Redis Cluster nodes are
primarily single-threaded and PostgreSQL is multi-processed.

According to a blog entry [40], Azure SQL Database supports

live patching since 2018. It employs an optimized C++ compiler for
patch generation, and uses trampolines to redirect function calls to
patched code. In particular, this approach is designed for Windows
systems (whereas WrPATCH works for Linux). Furthermore, only
few details about the solution for Azure SQL Database are known,
and we found no published systematic experiments.
DBMS Address Space Optimization. The novelty of WrPATCH
comes from duplicating an address space. Its functionality is similar
to Linux fork(), which is a common operator in today’s database
landscape to perform a snapshot of the memory state. Different
database systems try to work around the overhead of fork() by, for
example, reducing the number of page table entries by using larger
page sizes [26]. A recent proposal of asynchronous fork [41] has
been made to also reduce the fork() overhead of Redis [47].

The exploitation of the address space or virtual memory has also

found application in other areas, such as caching (e.g. DBMS buffer
pool) [29] or query processing [51].
Priority Scheduling in DBMSs. Our novel contribution of priority-
based quiescence designed for database thread pools, to be intro-
duced in Section 5.2, is independent of other priority mechanisms
used within a database system, such as task scheduling [45, 46]. In
fact, our priority-based quiescence concept can seamlessly integrate
with other mechanisms. For example, by aligning the priorities of
quiescence with task priorities, it could be ensured that threads
engaged in high-priority tasks are allowed to execute for at least as
long as there are threads performing lower-priority tasks.

5 SAFE QUIESCENCE POINTS IN DATABASE
CONNECTION MANAGEMENT

Database connection management is a carefully tuned component,
and developers need to take great care when injecting quiescence
points. They must ensure that quiescence points are indeed safe
states for threads to migrate. Ideally, the quiescence points do not
noticeably alter the connection management policy, and the same
quiescence points can be used with both global and local quiescence.

Next, we discuss the established connection management poli-
cies one-thread-per-connection and thread pool. We first consider
quiescence points w.r.t. global quiescence, which has the strictest
requirements, and then discuss local quiescence.



sql/sql_connect.cc:do_handle_one_connection

sql/threadpool_generic.cc:worker_main

sql/threadpool_generic.cc:listener

# main (one-thread-per-conn.)
01 for(;;)

02 while (connection_is_alive)
03 do_command (conn)

04 if (cache_thread) cache()
05 else break

# main (thread pool)
Tol for(;s)

TO2 conn = get_event() T13 conn = event_available()

TO3 do_command (conn) * T14 if (queue_empty) return conn
...................................... put_in_queue(conn)

# get_event PRIO MEDIUM A if (active_threads == 0)

T4 for(;s)

PRIO LOW *

# listener
T12 for(;;)

PRIO CRITICAL

wake_or_create_threads()

TO5 conn = event_from_queue() wf_quiescence()

TO6 if (conn) return conn Tersasassssssassssssssssaaannannnnufed
# do_command PRIO LOW TO7 if (!listener) » # wf_wakeup
D1 if (!transaction) TO8 conn = listener() * W1 while(!quiescence)
D2  wf_quiescence() TO9 return conn W2  for (group in thread_groups)
D3 query = read(conn) T10 wf_quiescence() * W3 wake_worker (group)
D4 ... # execute query T11 sleep() = W4 wake_listener(group)

sql/sql_parse.cc:do_command

sql/threadpool_generic.cc:get_event

sql/threadpool_generic.cc:wf_threadpool_trigger

Figure 4: Implementing one-thread-per-connection (top left) and thread pool policy (right block), inspired by MariaDB.

5.1 One-Thread-per-Connection with Global Q.

Preliminaries. To introduce the one-thread-per-connection policy,
we walk through a pseudocode implementation. While our pseu-
docode is inspired by MariaDB source code?, the considerations in
setting quiescence points are applicable in a more general context.
To the top left, Figure 4 shows the main function of a worker
thread. For now, we ignore the commands and functions set in italic
green, which marks the injected code. Each connection is assigned a
dedicated thread, its worker. The worker executes commands, such
as queries (line 03), as long as the connection to the client is alive
(line 02). Once the client connection is closed, the worker is either
cached (line 04) or terminated (line 05). The do_command function is
the starting point for query processing: First, it performs a blocking
read on the client connection (line D3) and waits for input from the
client. Once input is available, the query can be executed (line D4).
Challenges. When injecting quiescence points, it is essential to
avoid deadlock and starvation. (1) Deadlocks: A thread that encoun-
ters a quiescence point will block and wait for the other threads to
reach the barrier. If this thread already holds a lock to a data object,
this can cause a deadlock when another thread requires this lock
before it is able to reach its own quiescence point. (2) Starvation: A
thread that remains cached will not reach its quiescence point and
therefore blocks all other threads that already wait at their barrier.
Solution. The solution presented here is based on the approach
proposed by Rommel et al. [48] (with minor refactoring) and ad-
dresses the following challenges: (1) To not increase the risk of
deadlocks, a worker thread must be outside of a transaction when it
encounters a quiescence point. Therefore, we check the transaction
status (line D1 in Figure 4) before a quiescence point is reached
(line D2). It is generally best practice to inject quiescence points
high up in the call hierarchy, as only functions that are not cur-
rently active on the call stack can be patched at runtime. (2) To
prevent starvation, a patch request must cause all cached threads to
wake up so that they may then reach their quiescence point. This
wake-up call is triggered by the patcher thread (code not shown).
Discussion. An inherent problem concerns blocking reads, where
a thread waits for user input. In global quiescence, this will cause
unbound wait times (line 03), for example, with a client holding

3Based on git hash: 06fae75859. The names and functions shown as pseudocode differ
slightly from the original implementation, they were edited for easier readability.

4562

an idle connection. This problem can be addressed by intentionally
interrupting the thread, as we also do with the listener in the thread-
pool policy (discussed next).

Implementation. We adopted the solution based on Rommel et
al. [48] and implemented it with minor changes in MariaDB.

5.2 Thread Pool with Global Quiescence

Preliminaries. In the thread pool as implemented in MariaDB,
thread groups are used to partition client connections. The size
of the thread pool corresponds to the number of thread groups,
whereby each thread group can consist of several threads with dif-
ferent roles (this is explained in more detail below). In the following
discussion, we may safely assume that there is only one thread
group, as the thread groups operate independently of each other.

We first assume that the database workload is high. Then, a dedi-
cated listener thread manages a queue to distribute the work among
the worker threads. Consequently, the listener adds connections
to the queue when they have work available (lines T13 and T15 in
Figure 4). Based on the producer-consumer model, worker threads
dequeue connections from the queue (line T@5) and then process
the query (lines T06 and T@3). The dedicated listener thread is only
active in the listener function. With each iteration, it is checked
whether an active thread can process the previously added event
(line T16). Otherwise, a sleeping thread is awakened or a new one
is created (line T17; see arrows in Figure 4). If the work queue is
empty, the consuming worker thread goes to sleep (line T11).

For a medium-to-low workload, there is no dedicated listener
thread, but the worker threads temporarily assume this role: A
worker transitions to listener (line T@8) and waits for a connection
to become available to process data. Once a connection has input,
the input is fetched (lines T14 and T@9) and processed (line T03).
Challenges. Since this policy is more complex, the risk of acciden-
tally introducing deadlocks or allowing starvation is amplified.*
The quiescence points in which a thread pool has no dedicated
listener are similar to the one-thread-per-connection policy. Specif-
ically when MariaDB faces high loads and the thread pool has a
dedicated listener, we must carefully control the order in which
threads may block upon reaching their quiescence points.

4Rommel et al. provide an implementation for the thread pool that runs into deadlocks
in our experimental setup. This highlights the challenge in finding a functional solution.



Let us illustrate these risks and consider the scenario of a worker
thread inside an active transaction waiting for the release of a lock.

Active Worker vs. Listener. A listener thread reaches its quies-
cence point and blocks. It no longer manages the queue. As long as
the event which could release the desired lock is not added to the
queue, the worker thread cannot complete its transaction. As qui-
escence points are purposefully positioned outside of transactions,
the worker thread is indefinitely blocked.

Active Worker vs. Sleeping. A worker that awakes from sleep
may have to be prevented from blocking when it encounters a
quiescence point (line T10). Otherwise, there may not be a worker
left that handles events entering the queue, which could release the
desired lock of the active worker. This constitutes a deadlock.
Novel Solution - Priority-Based Quiescence. These scenarios
motivate us to propose priority-based quiescence, a priority-based
approach to orchestrate blocking of threads. We assign priorities
to threads depending on their current role, where threads with
higher priority will only block at their quiescence point after all
lower-priority threads block. Put differently, a thread encountering
a quiescence point skips it if there is still a lower-priority thread
that has not yet reached its quiescence point. Intuitively, the higher-
priority thread has not yet reached a state where blocking is safe.

General Applicability. To adopt this approach, it is essential to
identify the specific roles or tasks that a thread can perform. Pri-
oritization is established on the basis of the following hierarchy:
Tasks relying on others are assigned lower priorities, whereas tasks
that are prerequisites for other tasks to proceed are given higher
priorities (the hierarchy is reflected in the priorities). As a result,
threads responsible for tasks on which other threads depend remain
active until all these dependent threads are blocked.

Following the assignment of priorities, careful consideration
is required when placing quiescence points. Integration should
guarantee that each thread consistently encounters quiescence
points. Threads should only pass a quiescence point when they
do not hold locks on shared resources. In scenarios with blocked
or sleeping threads, common in a thread pool setup, an external
mechanism (triggered by the WrPATCH thread) can awaken them,
ensuring a reliable progression toward the quiescence point.

Adoption to MariaDB. In Figure 4, the priority of each role is
annotated to the top right of each code block. For MariaDB, three
roles are identified with their respective priority: active worker
(LOW), sleeping worker (MEDIUM) and listener (CRITICAL). The
listener blocks last since it accepts incoming data upon which both
workers depend. A sleeping worker is awakened to handle queries,
supporting active workers in completing their tasks. Consequently,
a sleeping worker should only block after active workers.

We have also injected a dedicated quiescence point for each
role of a thread (line T10 for a (sleeping) worker, line T18 for a
listener). To avoid problematic scenarios between blocked workers
and sleeping workers, we trigger the wf_wakeup method from the
outside. It wakes all sleeping worker threads (line W3) and blocking
listener (line W4) until global quiescence is reached (line W1).
Discussion. The priority-based scheme is designed to prevent the
deadlock scenarios outlined above.

Implementation. We implemented our novel concept of priority-
based quiescence for thread pools in MariaDB and extended the
WFPATCH user-space library to support priorities.

4563

5.3 Adaption to Local Quiescence

For both connection policies, the same quiescence points described
above can also be utilized for local quiescence. We do not require
adaptation, since local quiescence is not plagued by the problems of
global quiescence (bound/unbound wait times, deadlocks). In fact,
we could inject additional and “local quiescence specific” quiescence
points in the source code. However, these benefits come with the
limitation of reduced patchability, since local quiescence is limited
to thread-local patches. Since global quiescence has the stricter
requirements and local quiescence is compatible, we settle on the
shared set of quiescence points in favor of less code complexity.

6 EXPERIMENTS

We evaluate live patching for database systems from the stakeholder
perspectives discussed in Section 2. For enlarged and additional ex-
periment plots, we refer to the extended version of this article [20].
Hardware. Our server has two Intel Xeon Gold 6248R CPUs (24
cores per CPU; 3.0 GHz) and 384 GB of main memory. To reduce
system noise, Intel Turbo-Boost is disabled. All CPU cores run
at a fixed core frequency of 3.0 GHz. Since we assign more than
twice the number of cores to each application (DBMS / benchmark
framework) as there are concurrently running queries (detailed con-
figuration given below), we have disabled Intel Hyper-Threading
to utilize all 24 physical cores per CPU and to avoid competition
for shared core cache.

Live Patching Infrastructure. The system runs Debian 11 with
the latest WrPaTcH® Linux kernel (version 5.15) at the time of
writing. Live patching also requires the WrPATCH user-space library.
Applications to be patched. We extended the source code for the
RDBMS MariaDB and the key-value store Redis. MariaDB imple-
ments the connection management policies of interest, and Redis
allows us to easily control the size of the memory state.
MariaDB. Code Extensions. We extended the MariaDB source
code as discussed in Section 5. We injected quiescence points for
the main thread, all worker threads, and dedicated listener threads.
Therefore, we cover all threads relevant to transaction processing.®
Patches. We developed a fully automated pipeline to analyze the de-
velopment history of an application for live-patchable code changes.
For every commit, we check whether Kpatch can generate a patch
and, upon success, automatically apply our source code changes,
specifically injecting the quiescence points. In this way, we obtain
a wide range of patches and their various characteristics.

The Kpatch tool faces limitations in generating patches for Mari-
aDB, as MariaDB is written in C/C++ and Kpatch targets C. Despite
this, our automated pipeline, scanning versions 10.5.0-10.5.13 of
MariaDB on GitHub, identified 117 live-patchable code changes.
While all 117 patches contribute to our broader analysis (see Sec-
tion 6.3), we imposed two strict filters for our in-depth evaluation:
(1) the patch must be officially labeled a “bug” in the MariaDB bug
tracker, and (2) it should modify a function in the stack trace below
the do_command function. In consequence, the patch actually affects
a function that is executed during a benchmark run (and not some
dormant code, which is low risk to patch). The five selected patches

Shttps://github.com/luhsra/linux-mmview; git tag: mmview-v5.15
®There are further threads in MariaDB which we do not live patch in our experiments.
This is merely a technical limitation that can be easily resolved in productization.


https://github.com/luhsra/linux-mmview

Table 1: MariaDB patches fixing official bugs.

ID git hash MariaDB Jira #LoC added #LoC deleted
#1 18502f99eb MDEV-22185 +1 -1
#2 30d41c8102 MDEV-22881 +2 -1
#3  3bb5c6b0c2 MDEV-22113 +7 -8
#4 56402e84b5 MDEV-21824 +1 -1
#5 5b678d9ea4 MDEV-25251 +1 -1

are presented in Table 1. The first column provides a unique iden-
tifier that is used throughout this paper. In the PDF, the git hash
and the corresponding Jira ticket of the code change are clickable
links, pointing to the respective entries on GitHub and Jira, so that
readers may inspect them in detail. The last two columns show the
number of lines changed, excluding tests. Note that these patches
resolve real-world bugs by changing just a few lines of code.
Benchmarks. We adapted the benchmark harness BenchBase’
(formerly OLTP-Bench [14]) to trigger patch application. For OLTP
workloads, we use the benchmarks NoOp, YCSB [11] (scale factor
1,200) and TPC-C [55] (scale factor ten). NoOp (No Operation) is
extremely lightweight and just sends a single semicolon to the
database. For NoOp, we run BenchBase with the Epsilon Garbage
Collector, as Java garbage collection can interfere with latency
measurements [21]. For all OLTP benchmarks, a ten-second warm-
up phase is followed by a 30-second benchmark phase.

For OLAP-style queries, we removed all OLTP queries from
the benchmark CH-benCHmark [10]. BenchBase is configured to
execute a 30 minute measurement phase without warm-up phase,
and to trigger the patching process after five minutes.
Configurations. For all benchmarks against MariaDB, we use
ten terminals, i.e. ten parallel connections. MariaDB is executed
with default settings, except for the thread pool which is limited to
three thread groups. Connections are assigned round-robin to the
three groups, each consisting of workers and potentially a dedicated
listener. We further reduce latencies caused by disk I/O, placing the
MariaDB data directory in a filesystem mapped to main memory.

We assign MariaDB to all 24 cores of CPU 1 and BenchBase to
23 cores of CPU 0. As ten connections are used, each thread pro-
cessing queries can be scheduled on its own physical core, leaving
more than 10 cores for background threads.

These configurations and (system) optimizations enable accurate
and highly repeatable measurements.

Redis. Code Extensions. For Redis (version 7.0.11), we injected
one quiescence point in the single-threaded main event loop.
Patches. Redis is implemented in C, i.e. it is highly compatible for
patch generation with Kpatch. From the development history of
Redis versions 5.0.0-7.0.11 on GitHub, we extracted 529 patches.
Benchmarks. We extended the vendor benchmark framework
redis-bench (part of the Redis project) to measure individual laten-
cies. We use benchmarks consisting of only SET or GET operations.

6.1 Developer Perspective: Impact of Quiescence

We assume the perspective of the database developer, concerned
about the safety of quiescence points and performance regressions.

"https://github.com/cmu-db/benchbase; git hash: 979b53b043

4564

- Baseline Global Q - Local Q
One-Th.-Per-Conn. Thread Pool
Global Q Global Q Local Q
—~ 20.5 - T e P
2 20.0 7 AT || g
£ 195 EREEE|EEEEEN
S 19.0 -
~ 85 —————— 7
g 807 M“‘ }E*Em ‘ 3
gt Il
$ 7.04 U i i L H L | B w
S 0.4 T T
S TR R T )
& 03+ -*_“:,\'ﬁpﬁ'“.“ W o
0.2 A Rl k] bkl S
T T T

5 15 25 5 15 25
Elapsed Time [s]

5 156 25

Figure 5: Query throughput over time for OLTP workloads,
MariaDB without patch application (“baseline”, blue) versus
live patching in 5-second intervals in different setups.

6.1.1 OLTP Workloads. Figure 5 shows throughput over time
aggregated over bins of 100 ms, running OLTP-benchmarks against
MariaDB. We compare one-thread-per-connection (left) against
thread pool (right). We patch the system (using patch ID #1) 5, 10, 15,
20, and 25 seconds into the benchmark (but each in a separate run)
to catch the system in different states. We employ both global (left
column; orange line) and local quiescence (right column; red line).
We show the throughput over time 2 seconds before/after patch
application (for a compact visualization and an easy comparison of
the results). In each chart, the live patching run is superimposed
onto the baseline run (blue line) for comparison.

The experiments for the remaining patches (patch IDs #2-#5)
do not provide new insights. We refer to our artifacts and to the
extended version of this article [20] for the corresponding charts.
Results. Obviously, throughput is highest for the lightweight NoOp
benchmark and lower for more intense workloads. Throughput over
time for live patching aligns closely with the baseline. Only a slight
variation can be observed for the NoOp benchmark (e.g. about
100 queries per 100 ms difference). These marginal differences fall
within the normal variations between individual runs.

For the NoOp benchmark, we can observe for all three configura-
tions (baseline, global and local quiescence) of the one-thread-per-
connection policy a brief drop in throughput at about 25 seconds.
However, for global quiescence, we can additionally observe a short
drop in throughput for both connection policies when performing
a live patch. These drops cannot be observed for local quiescence;
therefore, they can be attributed to threads blocking for global qui-
escence. Unlike with NoOp benchmark, which is lightweight and
sensitive, throughput over time fluctuates with the YCSB and TPC-C
benchmarks, masking any drops caused by global quiescence.

TPC-C has the lowest throughput for the one-thread-per-con-
nection policy with about 350 queries per 100 ms, thus it takes on
average about 0.35 ms for one thread to process one query. In global
quiescence, this is also the average time that a thread has to wait
for all other threads to reach their quiescence point (after which
the patch is applied). Thus, live patching under an OLTP workload
does not noticeably impact throughput.

One concern from the developer perspective is that of encourag-
ing deadlocks. While we did do not encounter deadlocks in any run,


https://github.com/mariadb/server/commit/18502f99eb24f37d11e2431a89fd041cbdaea621
https://jira.mariadb.org/browse/MDEV-22185
https://github.com/mariadb/server/commit/30d41c8102c36af7551b3ae77e48efbeb6d7ecea
https://jira.mariadb.org/browse/MDEV-22881
https://github.com/mariadb/server/commit/3bb5c6b0c21707ed04f93fb30c654caabba69f06
https://jira.mariadb.org/browse/MDEV-22113
https://github.com/mariadb/server/commit/56402e84b5ba242214ff4d3c4a647413cbe60ff3
https://jira.mariadb.org/browse/MDEV-21824
https://github.com/mariadb/server/commit/5b678d9ea4aa3b5ed4c030a9bb5e7d15c3ff8804
https://jira.mariadb.org/browse/MDEV-25251
https://github.com/cmu-db/benchbase

ID: 1 ID: 2
10 X ————— e ¥
g-x—x—x—-(—x—x M I
- X Tmexx x————  wm
7 - || de—rex x |&
6 =| DA HHH—IMEIH x R
5 = XMW HHN—— X %3¢ 2
2 = X——%3 %3¢ 5
3o M——— 3 —x| | M———————x ®
2= XOOME X JOMEC | | MO I I I
T | M2 mex—x = 34
10 Ire————x 2 S vy
a g-xe<—m—x
- ¥e— % e
gg-x—m—x—-—x X% x g
o e M WX
£ oY e ek e omemcsoc |8
S 4o %dx—— X - XK =
2 S X0 »*xk I O
2 = e mEwoe X % x—— X
T ——— e XN FKCIK X
10 4 5% 3% | [ e 3
9 % % X dem————— =
8 = ¥ 2 q -
7 = 3% | R e — ] )
6 = MINE-—>NIT x x|
5 = MK M » X o
2 = JOMOIME—IOCK %X — % WMex o
3 = RO w3
2= 3¢ H | S
T 2 I || X eome—————x—x

15 20 25 30 0 5 10 15 20 25 30
Elapsed Time [m]

T
10

Figure 6: Fine-granular traces of the activities of 10 worker
threads in MariaDB. Top row shows baseline. Yellow back-
ground highlights the synchronization time.

this is not the case for the earlier implementation [49] by Rommel
et al. for the MariaDB thread pool policy, which does not employ
the priority-based quiescence proposed by us. When we replicate
our experiment using the YCSB and TPC-C benchmark with their
implementation, every patch request inevitably causes a deadlock
(in 100 out of 100 runs). This illustrates the intricacies of identifying
suitable quiescence points and justifies our approach.

6.1.2 OLAP Workload. Global quiescence is unproblematic with
short-lived queries, as the threads will frequently encounter their
quiescence points. But with long-running queries, threads syn-
chronizing at the quiescence barrier may incur longer wait times.
Therefore, we discuss our experiment with our OLAP workload
and the one-thread-per-connection policy.
One-thread-per-connection. Figure 6 shows fine-grained traces
of ten worker threads in MariaDB running the one-thread-per-
connection policy. The topmost row shows baseline runs (no patches
applied). Randomness in issuing queries in the benchmark harness
and differences in query runtimes lead to unique traces.

Each line shows the activity of one given worker thread over
time. The start and end of a query are marked with a cross and a con-
necting line. A query that does not complete within the 30 minute
measurement phase is shown as a small purple cross, connected by
a dotted purple line. The pale yellow rectangle frames the synchro-
nization time, that is, the time until all threads have migrated to
the new version. Red bars connected by a red line show the time a
thread blocks at a quiescence point until it has migrated.

The second row shows traces of patch ID #1 and ID #2, applied
with the global quiescence method. The third row shows traces
of patch ID #1 and ID #2 applied, but now with the local quies-
cence method. Further traces are included in our artifacts and our
extended version of this article [20].

4565

NoOp YCSB TPC-C
7841 + E
E 1 ) | T
o 0.1 =+ 2 - o
£ 00 0 D
F 164 94 11 o =
B E T g N S
& 10— 5] 7 =

357911 15 20

357911 15 20
Thread Pool Size

357911 15 20

Figure 7: Boxplots of synchronization times, varying thread
pool size and triggering patch application every 100 ms.

Results. We first focus on patch ID #1 under global quiescence
(Figure 6, left middle chart): Worker 2 reaches its quiescence point
about 5 seconds after the patch request is issued. It blocks for
about 13 minutes until worker 4 reaches its quiescence point (last
thread to reach its barrier). Therefore, all workers that have reached
their quiescence point before worker 4 remain idle and blocked. As
expected, global quiescence incurs long wait times.

Local quiescence results in evidently higher concurrency (more
crosses within the yellow-shaded area), as threads promptly migrate
upon encountering a quiescence point. Yet, overall, it takes longer
for all workers to complete their migration: As all worker threads
keep working, they keep competing for resources (locks), which
can delay the other threads in reaching their quiescence points.
In both bottom charts, the last worker completes migration about
one minute after the 30-minute benchmark window.

6.1.3 Synchronization Time. To evaluate synchronization time
for the thread pool policy, we perform an experiment using OLTP
benchmarks and the source code version of patch ID #1 (patch ID #2-
#5 show the same effects and the results are available in the artifacts
and our extended version of this article [20]). For the duration of
the 30-second benchmark phase, we trigger patch application every
100 ms, i.e. 300 patch requests per run. We measure synchronization
time, but without applying a real patch. Patch application is highly
patch-dependent (an effect which we explore below). For global
quiescence, we measure the time until all threads reach their barrier
and for local quiescence the duration of cloning the AS plus the
time until all threads have migrated to the new AS generation. The
experiment is conducted for a scale-out scenario, ranging the thread
pool size from three to 20 (keep in mind that our benchmark utilizes
ten parallel connections that are uniformly distributed among all
thread groups in round-robin fashion).

The boxplots in Figure 7 show synchronization times, where out-
liers (data points outside the boundary of the whiskers; whiskers are
based on the 1.5 IQR value) are not shown for better visualization.
Columns specify the benchmark, while rows specify the quiescence
method. The x-axis denotes thread pool size, and the y-axis the
synchronization time in milliseconds (y-axes scaled individually).

As can be expected, the synchronization time is inversely corre-
lated with throughput (see Figure 5): The higher the throughput, the
lower the synchronization time, since quiescence points are passed
more frequently. However, this is not the case for the OLAP work-
load visualized in Figure 6: The synchronization time for global
quiescence is lower compared to local quiescence, even though
throughput is lower. This advantage comes with the drawback of



® Extreme Latency @ Standard Latency

ID: 1 ID: 2 ID: 3 ID: 4 ID: 5
1_0_ LJ LA A A AN A A AN AN NN J COUUVNINOIW S U U UV III'-'.II— LA A AN AN N NN N NN NJ VOUOUUU GOUUVUU VUL SUS VU O W
0.3-&--- . . ----@. e o . .@ oo o o 'é eoqge o . --?3
Illl | D) m?
Qlz
o
glo
8|S
=
o
o
=
o
E -5
]
g 3
g
3 ol
7]
g |w
=
o
o
=
1(1)8-. e ) ) o Bo ) . (W'} o 9 se008%000 00 =g
- . - . ) e = . o . 0 . . «_ o * =3
@h‘.-'ﬁy‘- ZL) T qefy 0 N80 Tpeedd || v g, 0T SR IR o 0, 8% SesWSt o (| 9 % gpe 2 ‘ool |®
1= =% s '”bs..v.“._" :":.‘*. ~,~~:"-'1°'0 o ?nw* sl ooap, ‘.-:.t.- ."-.'.;..u Seo @ 200 ap =S -t.-‘: f':':'.s.g.;.'na:to{. ®
1 Q -]
slo
02|10
2|6
! -
1 408
[ :
14 g YT 3 -SRI B
T T T T T

T T
10 15 20 25 5 10 15 20 25

T LI
10 15 20 25

LI
15 20 25

i T T
10 10 15 20 25

Elapsed Time [s]

Figure 8: Latencies in live patching MariaDB under the one-thread-per-connection policy. Varying patches and setup.

threads blocking at their quiescence points, leading to less compe-
tition for locks, but also to a reduced degree of parallelism.

For the NoOp benchmark in Figure 7, the synchronization time
increases with the number of thread groups, but this is noticeable
only up to a thread pool size of ten. This indicates that synchro-
nization time increases with the number of thread groups, but this
effect is notable only when the thread groups are active (i.e., have
an assigned connection). Inactive thread groups do not deteriorate
the synchronization time. A similar trend is observed for global
quiescence in the YCSB and TPC-C benchmarks, albeit to a lesser
extent due to the generally higher synchronization time.

For this experiment, no deadlock appeared during any of the
approximately 81,000 patch applications with global quiescence.
This once again highlights - albeit empirically — the applicability
of our priority-based quiescence approach for thread pools.

6.2 Client Perspective: Extreme Latencies

The experience of the database client is shaped by latencies in query
processing, as extreme latencies can accumulate in distributed sys-
tems [13]. Figure 8 visualizes® query latencies in live patching
MariaDB with the one-thread-per-connection policy. We compare
five patches, different OLTP benchmarks, and quiescence methods.
Baseline. The top row shows a baseline run for the NoOp bench-
mark where no patches are applied. Along the horizontal axis, we
show progress over time. The dots represent latencies measured

8For this sequence of charts, we adapted the visualization style and the scripts from a
reproduction package for an earlier project [21].

4566

within BenchBase and reflect the experience of the database client.
Latencies beyond the 99.95th percentile are colored black (extreme
values). The maximum latency is labeled. The standard latencies in
orange are heavily sampled (down to 10%) to reduce overplotting.
Comparing the baseline runs (rows 1, 4 and 7), we confirm that
the more intensive the workload, the higher the extreme latencies
in the baseline runs. These charts not only underscore the robust-
ness and repeatability of our experiments but also highlight the
influence of code versions on performance. When examining charts
for different patch IDs, a highly consistent latency pattern is appar-
ent. However, occasional variations in extreme latencies arise (e.g.,
TPC-C baseline row) due to each MariaDB patch being associated
with a specific code version, with an individual performance profile.
Live Patching. We focus on the 2nd and 3rd charts (counting from
the top) in the left column, showing live patching of MariaDB under
the NoOp benchmark for patch ID #1. We perform five isolated runs
and issue a patch request at either 5, 10, 15, 20, or 25 seconds into
the benchmark (to hit the system in different states). The charts
show the time slices 1.5 seconds before/after patch application (for
a compact visualization and an easy comparison of the results). By
comparing the latencies at the time of patch application against
the baseline run, we can observe the overhead of live patching.
Moreover, the horizontal purple lines visualize the synchronization
time for global quiescence and, for local quiescence, the longest
duration from a quiescence point to migration completion.
Results. We focus on patch #1 and the NoOp benchmark. In the
baseline run, we observe standard latencies of about 0.03 ms and



e Baseline e Fork © New AS

> 3 po——
3 %T 24 ,—f"’-’w"
=% =1 s
T s
1 ] 1 1
0 200 400 600
PTE Size [MB]

Figure 9: Impact of size of database state on max. query laten-
cies, comparing address space cloning and forking in Redis.

extreme latencies in the 1 ms range. With global quiescence, we
observe one extreme latency of about 5.6 ms at patch application
time. This corresponds to the time it takes for all threads to migrate
(purple line) and can clearly be attributed to patch application. Note
that these extreme latencies include the time until all threads have
reached their barrier and the time required to load and apply the
patch (to be explored in Section 6.3). For local quiescence, we only
observe a slight increase in extreme latencies. The purple line shows
the maximum time a thread needs to migrate, which is about 0.3 ms.
Let us also compare the behavior of different patches. The base-
line runs are highly similar under the NoOp benchmark, However,
different patches cause different extreme latencies. With global
quiescence, the maximum latencies of patch #2 are at about 27.8 ms
and for patch #3 at about 13.9 ms. This suggests that the time for
loading and applying the patch is patch-specific. We explore this
effect in Section 6.3. A similar behavior can be observed for YCSB,
but not for TPC-C: This benchmark is more work-intensive, and
the latency overhead is still within the standard range of TPC-C.

6.3 Provider Perspective: Predictable Overheads

For the database provider, it is crucial to be able to assess the factors
influencing the overhead of live patching.

Size of Database State. Rommel et al. [48] carefully explored
key impact factors from the perspective of operating systems re-
search. They measured the overhead for address space cloning and
switching (both operations in local quiescence) across six different
user-space applications, each executed with a fixed configuration.
Their experiment shows that creating an address space scales with
its size, while migration is a constant-time operation.

For the database provider, the former is a concern, since DBMSs
commonly have large memory states. To explore this further, we
turn to Redis, a memory-based key-value store where we can eas-
ily control memory consumption. For example, we can issue SET
operations with a data size of 400 KiB. The page size on our ma-
chine is 4096 B, so each SET results in the allocation of 100 pages
(neglecting other internal data structures). As the page table stores
one pointer for each page (the page table entry), and a pointer has
8 B, this results in 800 B of new page table entries (PTEs). The size
of the page table is therefore a proxy metric for the number of page
table entries (neglecting details of the internal page table tree struc-
ture) and correlates with main memory usage. Thus, SET operations
inflate the page table and also serve as benchmark workload.

We create 200 instances of Redis with a total page table size of
up to 818 MiB. Figure 9 visualizes the maximum query latencies in
each baseline run (blue ticks). These are not affected by the size
of the memory state. The (modified) patcher thread triggers Redis
to clone an address space while Redis is under load. We capture

4567

Global Q e Local Q

£ — 150 MariaDB Redis
-C'ggloo- s 60~ t t.e,
£83 g, 7 (40 s oSN
FE 0 T gl
2‘; O - ] ] ] - ] ] O - ] ] ] ] ]
5 25 60 120 200 50 200 500 900 1500

Sum over all Section Sizes [KiB]

Figure 10: Impact of patch size on patch application time.

the maximum query latency within a window of +1 second (green
ticks). For reference, the patcher thread triggers Redis to fork()
instead of creating a new address space (brown ticks). The results
for address cloning and forking are near-indistinguishable.
Results. The maximum latencies increase linearly with the size
of the page table, i.e. the size of the database state. An adminis-
trator who knows the size of the allocated memory can predict
the maximum latencies to be expected in live patching. However,
even the delay in the range of seconds still outperforms a database
restart, as it takes several minutes to restore 120 GB of data from
shared-memory [22]. It is also important to note that cloning an
address space only needs to copy 8 B (PTE) per 4KiB of data (page).
AS cloning is implemented similarly to the fork() system call [48],
which results in highly similar latencies. AS cloning also suffers
from the process freeze of fork() [26, 47]: For copying the memory
map structure, all threads are temporarily halted, so the latency
affects all threads, not just the one initiating AS cloning.
Size of the Binary Patch. We measured the impact of the patch
size on the patch application time for two systems. For MariaDB,
we use a total of 117 patches, for Redis a total of 529 patches, all
real-world patches extracted from GitHub. We only measure the
patch application time from within the WrPATCH user-space library.
Figure 10 plots the size of the binary patches (stating the sum of
their section sizes) against the time it takes to actually apply the
patch. We compare the global and local quiescence method. Recall
that in the first case, the patch is applied directly to the address
space (in place); in the second case, the patch is applied to a cloned
address space. In this experiment, barrier wait times etc. are ignored.
We put both databases under load (NoOp for MariaDB and GET for
Redis), so that the threads can reach their quiescence points.
Figure 10 shows the relationship between the total sum of the
size of all sections of the patch file (x-axis; please note square
root scaling) and the patch application time, for global quiescence
(orange) and local quiescence (red). A dashed regression line has
been imposed for both quiescence methods. We observe that the
time for patch application increases with the size of the patch.
However, the latencies of MariaDB (one-thread-per-connection)
are higher than those for Redis. For MariaDB, applying a patch with
a total section size of about 200 KiB takes about 50 ms using local
quiescence and 85 ms using global quiescence. For Redis, latencies
are in the range of 7 ms. This reveals that patch application for
MariaDB with local quiescence is faster than with global. This
observation cannot be made for Redis.
Results. The duration of patch application depends on the size of
the patch binary files. Moreover, for the multi-threaded MariaDB,
patch application takes longer and the duration depends on the
quiescence method used, which is not the case for Redis.



Table 2: Minimum and maximum latencies of live patching
operations observed throughout the experiments.
New AS

Reach Quiescence Apply Patch

Min. / Max. 0.4ps/26min 0.1ms/145ms 1ms/3s

7 DISCUSSION AND OUTLOOK

Our study is the first to evaluate the potential of live patching of
multi-threaded DBMS from the perspective of database systems
research. In the following, we summarize insights and challenges.

Main Insights. Our experiments show that live patching can in-
deed be a viable alternative to conventional means of updating,
given that the patch is suitable. In our experiments, the quiescence
points injected in the code for connection management did not
cause any deadlocks.” This makes priority-based quiescence in
thread pools one of our core contributions.

Our experiments show that the observed extreme latencies are
in the milliseconds or lower second range. In comparison, a DBMS
restart (1) loses all connections, (2) cannot create new connections
or respond during the downtime and (3) takes several minutes when
restoring the database state from shared-memory, or even hours to
restore from disk (for 120 GB [22]).

Latency Breakdown. Our experiments examine the time taken by
the individual live patching operations and the factors that influ-
ence it. Table 2 shows the lowest and highest latencies observed in
our experiments. The overall latency of global quiescence comprises
the maximum latency among individual threads reaching their qui-
escence point (“Reach Quiescence” column), which varies with the
workload (Figure 6 and Figure 7), plus the subsequent loading and
application of the patch (“Apply Patch” column), which is specific
to the patch (Figure 10). With local quiescence, the total latency
comprises (1) creating a new address space (“New AS” column),
which is proportional to the size of the memory state (Figure 9).
(2) The WrPaTcH thread switches to the new address space, and
(3) applies the patch, both actions are executed in the background.
(4) Eventually, threads reach their quiescence point, and (5) switch
to the patched address space. Switching address spaces is a constant-
time operation [48], in our experiments in the range of 4 pus - 2 ms.
In summary, the workload, the size of the DBMS memory state, and
the specific patch independently influence latencies.

Exploring Trade-Offs. For thread-local patches, we may choose
between local or global quiescence. Our experiments show that
there is no direct answer to the question of which method to pre-
fer. Regardless of the workload, global quiescence displays lower
synchronization times. This can help close software vulnerabilities
quickly. However, blocking threads reduce the degree of concur-
rency until global quiescence is reached. In particular, this neg-
atively affects OLAP workloads. In addition, there is a delay in
loading and applying a patch, which depends on the patch size
and also partly on the quiescence method. The duration of patch
application is important not only for synchronization time, but also
temporarily impose latency overheads.

9To guarantee the absence of deadlocks, specialized methods such as code analysis,
model checking, etc., must be employed, which is beyond the scope of this paper.

4568

Main memory databases are particularly affected, especially by

AS cloning of WrPatcH (with local quiescence). The larger the
main memory state, the longer the entire process is frozen. This
increases extreme latencies and also the synchronization time.
Challenges for Database DevOps. Integrating live patching into
the database DevOps workflow raises several challenges. Live patch-
ing requires custom Linux kernels and libraries, and such major
changes to the systems stack require extensive testing. Live patch-
ing even affects the way code changes are prepared when they are
intended to be applied as a live patch. The Linux community ob-
serves best practices for carrying out code modifications [16] to en-
sure that patches can be generated seamlessly. Given a code change,
DBMS vendors must carefully analyze its behavioral changes, possi-
bly supported by program analysis tools. In [19], we further outline
our vision of this new DevOps workflow.
Challenges in Tooling. From our own experience, debugging
in the context of live patching is a serious challenge. Debuggers
such as the GNU debugger (GDB) cannot be used out-of-the-box
for applications having multiple address spaces. If the application
crashes, the core dump cannot be analyzed using Linux on-board
tools. Over time, we can expect the tooling ecosystem to evolve with
live patching in user-space applications becoming more common.
Challenges in Patching Database Clusters. So far, we have eval-
uated live patching for a single-instance, multi-threaded DBMS. In
another line of work, we address live patching of distributed in-
memory key value stores [19] and systematically explore the swift
and reliable dissemination of patches in the cluster. Our results
demonstrate that live patching outperforms conventional patch-
ing via rolling updates, specifically maintaining stable throughput,
avoiding latency spikes, and only marginally increasing network
consumption during the distribution of patches across the cluster.
We refer to [19] for a detailed discussion of our findings and the
remaining challenges in the context of distributed DBMSs.

Overall, having opened the field of research on live patching of
databases, and having conducted our experiments and analyses, we
see strong potential for follow-up research and real-world impact.

ACKNOWLEDGMENTS

The authors thank Ralf Ramsauer (OTH Regensburg), Christian
Dietrich (Hamburg University of Technology) and Florian Rommel
(Leibniz University Hannover) for technical support with WrPATCH
at early stages of this research, Stefan Klessinger (University of
Passau) and Mojtaba Zali (University of Passau) for their support
with crawling patches, and Julia Fruth for help with proofreading.

REFERENCES

[1] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak R. Borkar, Bhuwan
Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subra-
manian, Janet L. Wiener, and Okay Zed. 2013. Scuba: Diving into Data at Face-
book. Proc. VLDB Endow. 6, 11 (2013), 1057-1067. https://doi.org/10.14778/
2536222.2536231
Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew Schultz. 2005. OPUS:
Online Patches and Updates for Security. In Proc. USENIX Security Symposium.
Amazon. 2018.  Best Practices for Upgrading Amazon RDS for MySQL
and Amazon RDS for MariaDB. Retrieved October 23, 2023 from
https://aws.amazon.com/blogs/database/best-practices-for-upgrading-
amazon-rds-for-mysql-and-amazon-rds-for-mariadb/
[4] Jeff Arnold and M. Frans Kaashoek. 2009. Ksplice: automatic rebootless kernel
updates. In Proc. EuroSys. 187-198. https://doi.org/10.1145/1519065.1519085


https://doi.org/10.14778/2536222.2536231
https://doi.org/10.14778/2536222.2536231
https://aws.amazon.com/blogs/database/best-practices-for-upgrading-amazon-rds-for-mysql-and-amazon-rds-for-mariadb/
https://aws.amazon.com/blogs/database/best-practices-for-upgrading-amazon-rds-for-mysql-and-amazon-rds-for-mariadb/
https://doi.org/10.1145/1519065.1519085

[10

(1]

[12]

[13]

[14]

(15

[16]
[17]

(18]

[19

[20]

[21

[22]

[23

[24

[25]

[26]

[27]

[28]

[29]

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran
Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social
Graph. In Proc. USENIX. 49-60.

Tuan Cao, Marcos Antonio Vaz Salles, Benjamin Sowell, Yao Yue, Alan J. De-
mers, Johannes Gehrke, and Walker M. White. 2011. Fast checkpoint recovery
algorithms for frequently consistent applications. In Proc. SIGMOD. 265-276.
https://doi.org/10.1145/1989323.1989352

Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. 2007. POLUS:
A POwerful Live Updating System. In Proc. ICSE. 271-281. https://doi.org/
10.1109/ICSE.2007.65

Codership. [n.d.]. Upgrading Galera Cluster. Retrieved October 23, 2023 from
https://galeracluster.com/library/documentation/upgrading.html

Codership. 2013. Minimizing downtime and maximizing elasticity
with Galera Cluster for MySQL. Retrieved October 23, 2023 from
https://galeracluster.com/wp-content/uploads/2013/10/Minimizing-downtime-
and-maximizing- elasticity- with- Galera- Cluster-for-MySQL.pdf

Richard L. Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper,
Stefan Krompass, Harumi A. Kuno, Raghunath Othayoth Nambiar, Thomas
Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon, and
Florian Waas. 2011. The mixed workload CH-benCHmark. In Proc. DBTest. 1-6.
https://doi.org/10.1145/1988842.1988850

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proc. SoCC.
143-154. https://doi.org/10.1145/1807128.1807152

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner.
2016. The Snowflake Elastic Data Warehouse. In Proc. SIGMOD. 215-226. https:
//doi.org/10.1145/2882903.2903741

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2(2013), 74-80. https://doi.org/10.1145/2408776.2408794

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proc. VLDB Endow. 7, 4 (2013), 277-288. https://doi.org/
10.14778/2732240.2732246

dynup/kpatch. 2024. kpatch: dynamic kernel patching. Retrieved January 19,
2024 from https://github.com/dynup/kpatch

dynup/kpatch. 2024. kpatch Patch Author Guide. Retrieved January 19, 2024
from https://github.com/dynup/kpatch/blob/master/doc/patch-author- guide.md
EDB. [n.d.]. PostgreSQL BDR (Bi-Directional Replication). Retrieved October 23,
2023 from https://www.enterprisedb.com/docs/pgd/4/bdr/

Michael Fruth. 2022. Live Patching Database Management Systems. In Proc.
SIGMOD. 2524-2526. https://doi.org/10.1145/3514221.3520253 ACM SIGMOD
Student Research Competition 2022.

Michael Fruth and Stefanie Scherzinger. 2024. Live Patching for Distributed
In-Memory Key-Value Stores. In Proc. SIGMOD. https://doi.org/10.1145/3698816
Michael Fruth and Stefanie Scherzinger. 2024. The Case for DBMS Live Patching
[Extended Version]. https://doi.org/10.48550/arXiv.2410.09925 arXiv:2410.09925
Michael Fruth, Stefanie Scherzinger, Wolfgang Mauerer, and Ralf Ramsauer. 2021.
Tell-Tale Tail Latencies: Pitfalls and Perils in Database Benchmarking. In Proc.
TPCTC, Vol. 13169. 119-134. https://doi.org/10.1007/978-3-030-94437-7_8
Aakash Goel, Bhuwan Chopra, Ciprian Gerea, Dhruv Matani, Josh Metzler,
Fahim Ul Hagq, and Janet L. Wiener. 2014. Fast database restarts at facebook. In
Proc. SIGMOD. 541-549. https://doi.org/10.1145/2588555.2595642

Deepak Gupta, Pankaj Jalote, and Gautam Barua. 1996. A Formal Framework
for On-line Software Version Change. IEEE Trans. Software Eng. 22, 2 (1996),
120-131. https://doi.org/10.1109/32.485222

Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and
Jeffrey S. Foster. 2012. Kitsune: efficient, general-purpose dynamic software up-
dating for C. In Proc. OOPSLA. 249-264. https://doi.org/10.1145/2384616.2384635
Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster.
2011. State transfer for clear and efficient runtime updates. In Proc. ICDE. 179-184.
https://doi.org/10.1109/ICDEW.2011.5767632

Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In Proc. ICDE.
195-206. https://doi.org/10.1109/ICDE.2011.5767867

The kernel development community. [n.d.]. Livepatch - The Linux Kernel docu-
mentation. Retrieved October 23, 2023 from https://docs.kernel.org/livepatch/
livepatch.html

Rajender Kumar. 2021. IBM AIX 7.2 Live Kernel Update for a reboot-free world!
Retrieved October 23, 2023 from https://www.ibm.com/support/pages/ibm-aix-
72-live-kernel-update-reboot-free-world

Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. Proc. ACM Manag.

4569

[30

[31

[32

[33

[34

[35

[37

(38]

[39

[41

[42]

[43

(44

'S
&

[46

[47

[48

[49

[50

Data 1, 1 (2023), 7:1-7:25. https://doi.org/10.1145/3588687

Kristis Makris and Rida A. Bazzi. 2009. Immediate Multi-Threaded Dynamic
Software Updates Using Stack Reconstruction. In Proc. USENIX.

MariaDB. [n.d.]. Changing a Replica to Become the Primary. Retrieved October
23, 2023 from https://mariadb.com/kb/en/changing-a-replica-to-become-the-
primary/

MariaDB. [n.d.]. Replication Overview. Retrieved October 23, 2023 from https:
//mariadb.com/kb/en/replication-overview/

MariaDB. [n.d.]. What is MariaDB Galera Cluster? Retrieved October 23, 2023
from https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/

Microsoft. 2023. Hotpatch for virtual machines. Retrieved October 23, 2023 from
https://learn.microsoft.com/en-us/windows-server/get-started/hotpatch
Microsoft. 2023. Upgrade a failover cluster instance. — Retrieved October
23, 2023 from https://learn.microsoft.com/en-us/sql/sql-server/failover-
clusters/windows/upgrade-a-sql-server-failover-cluster-instance?view=sql-
server-verl6

Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboul-
naga, Kenneth Salem, and Andrew Warfield. 2013. RemusDB: transparent
high availability for database systems. VLDB j. 22, 1 (2013), 29-45. https:
//doi.org/10.1007/s00778-012-0294-6

MySQL. [n.d.]. MySQL Cluster CGE. Retrieved October 23, 2023 from https:
//www.mysql.com/products/cluster/

Tulian Neamtiu, Michael W. Hicks, Gareth Paul Stoyle, and Manuel Oriol. 2006.
Practical dynamic software updating for C. In Proc. SIGPLAN. 72-83. https:
//doi.org/10.1145/1133981.1133991

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Proc. NSDI. 385-398.

Hans Olav Norheim. 2019. Hot Patching SQL Server Engine in Azure SQL Database.
Retrieved October 23, 2023 from https://techcommunity.microsoft.com/t5/azure-
sql-blog/hot-patching-sql-server-engine-in-azure-sql-database/ba-p/849700
Pu Pang, Gang Deng, Kaijhao Bai, Quan Chen, Shixuan Sun, Bo Liu, Yu Xu,
Hongbo Yao, Zhengheng Wang, Xiyu Wang, Zheng Liu, Zhuo Song, Yong Yang,
Tao Ma, and Minyi Guo. 2023. Async-fork: Mitigating Query Latency Spikes
Incurred by the Fork-based Snapshot Mechanism from the OS Level. Proc. VLDB
Endow. 16, 5 (2023), 1033-1045. https://doi.org/10.14778/3579075.3579079
Josh Poimboeuf. 2014. Introducing kpatch: Dynamic Kernel Patching. Retrieved
October 23, 2023 from https://www.redhat.com/de/blog/introducing-kpatch-
dynamic-kernel-patching

PostgreSQL. [n.d.]. Replication.  Retrieved October 23, 2023 from https:
/[www.postgresql.org/docs/current/runtime- config-replication.html
PostgreSQL. [n.d.]. Upgrading a PostgreSQL Cluster. Retrieved October 23, 2023
from https://www.postgresql.org/docs/current/upgrading.html

Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ailamaki. 2013.
Task Scheduling for Highly Concurrent Analytical and Transactional Main-
Memory Workloads. In Proc. ADMS. 36-45.

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-
tasia Ailamaki. 2016. Adaptive NUMA-aware data placement and task scheduling
for analytical workloads in main-memory column-stores. Proc. VLDB Endow. 10,
2 (2016), 37-48. https://doi.org/10.14778/3015274.3015275

Redis. [n.d.]. Diagnosing latency issues. Retrieved October 23, 2023 from https:
//redis.io/docs/management/optimization/latency/

Florian Rommel, Christian Dietrich, Daniel Friesel, Marcel Képpen, Christoph
Borchert, Michael Miiller, Olaf Spinczyk, and Daniel Lohmann. 2020. From Global
to Local Quiescence: Wait-Free Code Patching of Multi-Threaded Processes. In
Proc. OSDI. 651-666.

Florian Rommel, Christian Dietrich, Daniel Friesel, Marcel Képpen, Christoph
Borchert, Michael Miiller, Olaf Spinczyk, and Daniel Lohmann. 2020. Reproduc-
tion Package for From Global to Local Quiescence: Wait-Free Code Patching of
Multi-Threaded Processes. Retrieved October 23, 2023 from https://www.sra.uni-
hannover.de/Publications/2020/WfPatch/index.html

Florian Rommel, Christian Dietrich, Andreas Ziegler, Illia Ostapyshyn, and Daniel
Lohmann. 2023. Thread-Level Attack-Surface Reduction. In Proc. LCTES. 64-75.
https://doi.org/10.1145/3589610.3596281

Felix Martin Schuhknecht, Jens Dittrich, and Ankur Sharma. 2016. RUMA has it:
Rewired User-space Memory Access is Possible! Proc. VLDB Endow. 9, 10 (2016),
768-779. https://doi.org/10.14778/2977797.2977803

SUSE. 2023. libpulp. Retrieved October 23, 2023 from https://github.com/SUSE/
libpulp

SUSE. 2023. Live Kernel Patching Using kGraft. Retrieved October 23, 2023 from
https://documentation.suse.com/sles/12-SP4/html/SLES-kgraft/index.html
Dominik Téllner, Christian Dietrich, Illia Ostapyshyn, Florian Rommel, and
Daniel Lohmann. 2023. MELF: Multivariant Executables for a Heterogeneous
World. In Proc. USENIX. 257-273.

Transaction Processing Council. 2010. TPC-C Benchmark (Revision 5.11). Re-
trieved October 23, 2023 from http://tpc.org/tpc_documents_current_versions/
pdf/tpc-c_v5.11.0.pdf


https://doi.org/10.1145/1989323.1989352
https://doi.org/10.1109/ICSE.2007.65
https://doi.org/10.1109/ICSE.2007.65
https://galeracluster.com/library/documentation/upgrading.html
https://galeracluster.com/wp-content/uploads/2013/10/Minimizing-downtime-and-maximizing-elasticity-with-Galera-Cluster-for-MySQL.pdf
https://galeracluster.com/wp-content/uploads/2013/10/Minimizing-downtime-and-maximizing-elasticity-with-Galera-Cluster-for-MySQL.pdf
https://doi.org/10.1145/1988842.1988850
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://github.com/dynup/kpatch
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md
https://www.enterprisedb.com/docs/pgd/4/bdr/
https://doi.org/10.1145/3514221.3520253
https://doi.org/10.1145/3698816
https://doi.org/10.48550/arXiv.2410.09925
https://arxiv.org/abs/2410.09925
https://doi.org/10.1007/978-3-030-94437-7_8
https://doi.org/10.1145/2588555.2595642
https://doi.org/10.1109/32.485222
https://doi.org/10.1145/2384616.2384635
https://doi.org/10.1109/ICDEW.2011.5767632
https://doi.org/10.1109/ICDE.2011.5767867
https://docs.kernel.org/livepatch/livepatch.html
https://docs.kernel.org/livepatch/livepatch.html
https://www.ibm.com/support/pages/ibm-aix-72-live-kernel-update-reboot-free-world
https://www.ibm.com/support/pages/ibm-aix-72-live-kernel-update-reboot-free-world
https://doi.org/10.1145/3588687
https://mariadb.com/kb/en/changing-a-replica-to-become-the-primary/
https://mariadb.com/kb/en/changing-a-replica-to-become-the-primary/
https://mariadb.com/kb/en/replication-overview/
https://mariadb.com/kb/en/replication-overview/
https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/
https://learn.microsoft.com/en-us/windows-server/get-started/hotpatch
https://learn.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/upgrade-a-sql-server-failover-cluster-instance?view=sql-server-ver16
https://doi.org/10.1007/s00778-012-0294-6
https://doi.org/10.1007/s00778-012-0294-6
https://www.mysql.com/products/cluster/
https://www.mysql.com/products/cluster/
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1145/1133981.1133991
https://techcommunity.microsoft.com/t5/azure-sql-blog/hot-patching-sql-server-engine-in-azure-sql-database/ba-p/849700
https://techcommunity.microsoft.com/t5/azure-sql-blog/hot-patching-sql-server-engine-in-azure-sql-database/ba-p/849700
https://doi.org/10.14778/3579075.3579079
https://www.redhat.com/de/blog/introducing-kpatch-dynamic-kernel-patching
https://www.redhat.com/de/blog/introducing-kpatch-dynamic-kernel-patching
https://www.postgresql.org/docs/current/runtime-config-replication.html
https://www.postgresql.org/docs/current/runtime-config-replication.html
https://www.postgresql.org/docs/current/upgrading.html
https://doi.org/10.14778/3015274.3015275
https://redis.io/docs/management/optimization/latency/
https://redis.io/docs/management/optimization/latency/
https://www.sra.uni-hannover.de/Publications/2020/WfPatch/index.html
https://www.sra.uni-hannover.de/Publications/2020/WfPatch/index.html
https://doi.org/10.1145/3589610.3596281
https://doi.org/10.14778/2977797.2977803
https://github.com/SUSE/libpulp
https://github.com/SUSE/libpulp
https://documentation.suse.com/sles/12-SP4/html/SLES-kgraft/index.html
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

[56] Nico Weichbrodt, Joshua Heinemann, Lennart Almstedt, Pierre-Louis Aublin,
and Rudiger Kapitza. 2021. sgx-dl: dynamic loading and hot-patching for secure

applications: experience paper. In Proc. Middleware. 91-103. https://doi.org/
10.1145/3464298.3476134

[57] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast

Databases with Fast Durability and Recovery Through Multicore Parallelism. In
Proc. OSDI. 465-4717.

4570


https://doi.org/10.1145/3464298.3476134
https://doi.org/10.1145/3464298.3476134

	Abstract
	1 Introduction
	2 DBMS-Specifics
	3 Background – Live Patching
	3.1 Quiescence Points
	3.2 Quiescence Methods
	3.3 Categorizing Patches
	3.4 WfPatch Framework

	4 Related Work
	5 Safe Quiescence Points in Database Connection Management
	5.1 One-Thread-per-Connection with Global Q.
	5.2 Thread Pool with Global Quiescence
	5.3 Adaption to Local Quiescence

	6 Experiments
	6.1 Developer Perspective: Impact of Quiescence
	6.2 Client Perspective: Extreme Latencies
	6.3 Provider Perspective: Predictable Overheads

	7 Discussion and Outlook
	Acknowledgments
	References

