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ABSTRACT
Top-𝑘 Nearest Neighbors (𝑘NN) problem on road network has nu-

merous applications on location-based services. As direct search

using the Dijkstra’s algorithm results in a large search space, a

plethora of complex-index-based approaches have been proposed

to speedup the query processing. However, even with the current

state-of-the-art approach, long query processing delays persist,

along with signicant space overhead and prohibitively long index-

ing time. In this paper, we depart from the complex index designs

prevalent in existing literature and propose a simple index named

KNN-Index. With KNN-Index, we can answer a 𝑘NN query opti-

mally and progressively with small and size-bounded index. To

improve the index construction performance, we propose a bidi-

rectional construction algorithm which can eectively share the

common computation during the construction. Theoretical anal-

ysis and experimental results on real road networks demonstrate

the superiority of KNN-Index over the state-of-the-art approach in

query processing performance, index size, and index construction

eciency.
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1 INTRODUCTION
Graphs have been widely used to represent the relationships of

entities in many areas [10, 18, 27, 36, 42, 46–50, 52, 53]. Top 𝑘

nearest neighbors (𝑘NN) search on road network is a fundamental

operation in location-based services [1, 3, 29]. Formally, given a
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Figure 1: 𝑘NN Search in Location-based Service (𝑘 = 3)

road network 𝐺 (𝑉 , 𝐸), a set of candidate objectsM, and a query

vertex 𝑢, 𝑘NN search identies 𝑘 objects inM with the shortest

distance to 𝑢. 𝑘NN search nds many important real world applica-

tions. For example, in the accommodation booking platforms like

Booking [4], Airbnb [2] and Trip [43], an important operation is to

show several accommodations closest to the location provided by

users. In restaurant-review services, such as Yelp [55], Dianping
[13] and OpenRice [30], platforms utilize 𝑘NN search to present

several nearby restaurants to the user. In ride-hailing services like

Uber [45] and Didi [14], several available vehicles near the pickup
location are presented before users send the ride-hailing request.

Example 1.1. Figure 1 shows a 𝑘NN search example in location-

based service. Assume that tourists in New York, such as "John"

and "Jennie", want to nd Starbucks nearby to drink coee, the

location-based service providers like Google Map generally present

several candidate stores based on the distance from their locations,

which can be modeled as 𝑘NN search problem. In Figure 1, there

are 6 Starbucks stores (marked with 𝐴, 𝐵, · · · , 𝐹 ), therefore, the
candidate object setM = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 }. For "Jennie", the 3NN
search returns {𝐸, 𝐹, 𝐵} while the 3NN search for "John" returns

{𝐶, 𝐷, 𝐵}.

Motivation. Given a 𝑘NN query for vertex 𝑢, the query can be

directly answered by exploring the vertices based on their distance

to 𝑢 using Dijkstra’s algorithm [15]. Nevertheless, this method

is inecient, especially when the road network is large and the
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candidate objects are far from 𝑢. Therefore, researchers resort to

indexing-based solutions to accelerate query processing [11, 17, 23,

26, 33, 34, 40, 60].

Although existing index-based approaches have made strides in

accelerating the query processing, they still suer from the long

query processing delay and their performance is far from optimal.

Additionally, these solutions exhibit signicant space overhead and

prohibitively long indexing times, severely limiting their practical

applicability. Take the state-of-the-art approach TEN-Index [33]
for 𝑘NN queries on road networks as an example. The size of

TEN-Index on the dataset USA with only 23.95 million vertices

and 58.33 million edges (nearly 442.5 MB if an edge is stored by

two 4 byte integers) exceeds 160 GB, and it takes more than 5.4

hours to construct the corresponding index. Motivated by these,

this paper aims to propose a new index-based solution for 𝑘NN

query that can overcome the shortcomings of existing solutions in

query processing performance, index size and index construction.

A Minimalist 𝑘NN Index Design. Revisiting the existing solu-

tions, they generally design a complex index to speedup the query

processing. For example, TEN-Index consists of three dierent parts.
Incredibly, as an index for 𝑘NN query, one of the three parts is

even a complete index structure for shortest distance query. The

complex-index design leads to the drawbacks of TEN-Index as an-
alyzed in Section 3. This drives us to ask: is this complex-index

design thinking really suitable for 𝑘NN query?

In this paper, we adopt a completely opposite design approach.

Going back to the essence of 𝑘NN search, it only needs to return

the 𝑘 nearest neighbors for the query vertex. Moreover, the 𝑘 value

of the 𝑘NN search used in real applications is typically not large

as users often have limited attention spans and prefer to quickly

obtain relevant information to reduce cognitive load and facilitate

decision-making [7, 26, 35, 38, 41, 44]. For example, Yelp App [55]

provides customers with 20 results every time when searching

nearest specic place type, such as restaurant or gas station. A

similar strategy is also adopted in other Apps like OpenRice [30]

and OpenTable [31]. Therefore, our proposed new index named

KNN-Index only simply records the 𝑘 nearest neighbors of each ver-

tex. The benets of this minimalist 𝑘NN index design are twofold:

regarding the query processing, the query can be answered pro-
gressively in optimal time. Regarding the space-consumption of

the index, only the essential information directly to 𝑘NN query is

stored in the index and the value of 𝑘 is small in practice, resulting

in a well-bounded index space.

New Challenges. KNN-Index successfully addresses the issues of

long query delays and oversized indexes by directly storing the 𝑘

nearest neighbors for each vertex. However, this strategy leaves the

trouble to the index construction as the index structure intuitively

implies that we have to explore all the query space before con-

structing it. A straightforward approach is to compute the 𝑘 nearest

neighbors for each vertex by Dijkstra’s algorithm [15]. However,

the time complexity of this approach is 𝑂 (𝑛 · (𝑚 + 𝑛 log𝑛)), where
𝑛 is the number of vertices and𝑚 is the number of edges in the

road network. Clearly, this approach is impractical to handle large

road networks. Another possible approach is to use the existing

index like TEN-Index to accelerate the computation of 𝑘 nearest

neighbors for each vertex. Nevertheless, this approach unavoid-

ably induces the drawbacks of existing approaches as discussed

above. Overall, the eciency of the index construction algorithm

determines the applicability of our index while it is challenging to

design such an ecient index construction algorithm that could

outperform existing solutions.

Our Idea. The above discussed approaches compute the 𝑘 nearest

neighbors for each vertex independently, which miss the potential

opportunities to re-use the intermediate results during the con-

struction. Therefore, we adopt a computation sharing strategy to

achieve the ecient index construction. To eectively share the

computation, we introduce the concept of bridge neighbor set for
a vertex 𝑣 and reveal the hidden relationships between its bridge

neighbor set and 𝑘 nearest neighbors. Following these ndings, we

design a bridge neighbor preserved graph (BN-Graph) of the input
road network with which the bridge neighbor set of a vertex can be

easily obtained. Based on BN-Graph, we rst propose a bottom-up

index construction algorithm in which the intermediate results dur-

ing the construction can be largely shared and further improve the

performance by introducing a bidirectional construction algorithm.

Additionally, the given candidate objectsM may be updated in

some cases [33], we also design ecient algorithm to incrementally

maintain the index for these updates.

Contributions. In this paper, we make the following contributions:

(1) A new attempt at an alternative 𝑘NN index design paradigm with
a simple yet eective 𝑘NN index. Recognizing the complex index in

the existing solutions leads to long query processing delay, over-

sized index and prohibitive indexing time, we embrace minimalism

and design a simple 𝑘NN index that has a well-bounded space and

enables progressive and optimal query processing. To the best of

our knowledge, this is the rst work that systematically studies

such simple yet eective index for 𝑘NN query.

(2) Ecient index construction and maintenance algorithms. Fol-
lowing the designed index, we propose a novel index construction

algorithm with which the shortest distance computation regarding

a vertex and its top 𝑘 nearest neighbors can be eectively shared.

We also propose index maintenance algorithms to handle object

insertion and deletion. We provide time complexity analysis for all

proposed algorithms.

(3) Extensive experiments on real-world road networks. We exten-

sively evaluate our proposed algorithms on real road networks.

Compared with the state-of-the-art approach TEN-Index, experi-
mental results demonstrate that our approach reduces the index

space two order of magnitude, speeds up the query time up to two

orders of magnitude, and achieves up to two orders of magnitude

speedup in index construction.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be a connected and weighted graph to represent

a real-world road network, where 𝑉 (𝐺) and 𝐸 (𝐺) is the set of

vertices and edges in 𝐺 , respectively. We use 𝑛 = |𝑉 (𝐺) | (resp.
𝑚 = |𝐸 (𝐺) |) to denote the number of vertices (resp. edges) in𝐺 . For

each vertex 𝑣 ∈ 𝑉 (𝐺), the neighbours of 𝑣 , denoted by nbr(𝑣,𝐺), is
dened as nbr(𝑣,𝐺) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}. The degree of a vertex 𝑣
is the number of neighbors of 𝑣 , i.e., deg(𝑣,𝐺) = |nbr(𝑣,𝐺) |. The
weight of an edge (𝑢, 𝑣) is denoted as 𝜙 ((𝑢, 𝑣),𝐺). A path 𝑝 in 𝐺 is
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Figure 2: A Road Network

a sequence of vertices 𝑝 = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛), such that 𝑣𝑖 ∈ 𝑉 (𝐺)
for each 0 ≤ 𝑖 ≤ 𝑛. The length of 𝑝 , denoted by len(𝑝), is the sum
for the weight of edges in 𝑝 , i.e., len(𝑝) = ∑︁𝑛

𝑖=1 𝜙 (𝑣𝑖−1, 𝑣𝑖 ). Given
two vertices 𝑢 and 𝑣 , the shortest path between 𝑢 and 𝑣 in 𝐺 is a

path 𝑝 from 𝑢 to 𝑣 with smallest len(𝑝). The distance between u

and v in G, denoted as dist(𝑢, 𝑣), is the weight of the shortest path
between them.

Regarding the given set of candidate objectsM, we assume all

objects inM are on vertices following the previous works [17, 26,

33, 40]. In real-world road networks, each object 𝑜 ∈ M may appear

on any point of edges. For an object 𝑜 not on a vertex, we can see 𝑜

as a vertex object with an oset, and the distance between 𝑜 and

a query vertex 𝑣 can be computed by mapping 𝑜 to an adjacent

vertex with an oset following the previous works [17, 26, 33, 40]

as well. Specically, assume 𝑜 is on an edge (𝑢𝑜 , 𝑢 ′𝑜 ) with a distance

𝜙𝑜 to 𝑢 ′𝑜 , 𝑞 is on an edge (𝑢𝑞, 𝑢 ′𝑞) with a distance 𝜙𝑞 . The distance

between 𝑞 and 𝑜 is represented as dist(𝑞, 𝑜) = 𝜙𝑞 +dist(𝑢𝑞, 𝑢𝑜 ) +𝜙𝑜 .
We denote the 𝑘NN result of a vertex 𝑢 as Vk (𝑢) and dene the

problem of 𝑘NN search as follows.

Problem Denition. Given a road network 𝐺 = (𝑉 , 𝐸), a query
vertex 𝑢, an integer 𝑘 , and a set of candidate objectsM (|M| >
𝑘),M ⊆ 𝑉 (𝐺)), we aim to computes 𝑘 objects fromM, denoted

by Vk (𝑢), such that ∀𝑣 ∈ Vk (𝑢), 𝑤 ∈ M \ Vk (𝑢), dist(𝑢, 𝑣) ≤
dist(𝑢,𝑤).

Example 2.1. Consider the graph 𝐺 in Figure 2 and assume all

vertices are in the candidate object set. For a given query vertex

𝑣12 and 𝑘 = 5, 𝑉5 (𝑣12) = {𝑣12, 𝑣5, 𝑣11, 𝑣4, 𝑣19}. The corresponding
distances between 𝑣12 and vertex in 𝑉5 (𝑣12) are 0, 1, 1, 2 and 2 re-

spectively.

3 THE STATE-OF-THE-ART SOLUTION
TEN-Index [33] is the state-of-the-art index-based approach for

𝑘NN queries on road networks. TEN-Index designs an index based

on tree decomposition [37, 54] and H2H-Index [32], which proves

superiority over other existing approaches. Specically,

Index Structure. TEN-Index decomposes the input road network

into a tree-like structure by tree decomposition [54]. Given the

decomposed tree structure, each vertex 𝑢 has a child vertex set

T(𝑢) and an ancestor vertex set A(𝑢). Apart from the decomposed

tree structure, TEN-Index contains the other two parts: 𝑘TNN for

each vertex 𝑢 which stores the top 𝑘 nearest neighbors of 𝑢 in T(𝑢)
andH2H-Index [32] which is used to compute the shortest distance

between 𝑢 and 𝑣 ∈ A(𝑢).

Query Processing. Given a query vertex 𝑢, for each vertex 𝑣 in

the 𝑘NN of 𝑢, there exists a vertex 𝑝 such that 𝑝 ∈ A(𝑢) ∪ {𝑢} and
𝑣 in 𝑘TNN of 𝑝 . Following this idea, TEN-Index answers the 𝑘NN
query in 𝑘 rounds. In each 𝑖 round (1 ≤ 𝑖 ≤ 𝑘), it outputs the top

𝑖-th result by iterating the vertices in A(𝑢) ∪ {𝑢} and computing

the corresponding shortest distance through H2H-Index.
Index Construction. To construct the index, TEN-Index rst de-
composes the graph following [54].With the decomposed tree,A(𝑢)
and T(𝑢) can be obtained accordingly. After that, TEN-Index builds
the H2H-Index based on [32]. At last, the 𝑘TNN for each vertex

is constructed by querying the shortest distance of corresponding

vertex pairs through H2H-Index.
Drawbacks. Although TEN-Index accelerates the 𝑘NN query pro-

cessing on road network, the following drawbacks limit its applica-

bility in practice:

• Oversized Index. The size of TEN-Index is generally huge in

practice. As veried in our experiments, the size of TEN-Index on
USA (only 23, 947, 347 vertices and 58, 333, 344 edges) exceeds

172.80 GB, in which H2H-Index takes 169.23 GB space.

• Long Query Delay. To answer a 𝑘NN query regarding vertex 𝑢,

TEN-Index has to iterate the vertices in A(𝑢) ∪ {𝑢} and compute

the corresponding shortest distance in 𝑘 rounds. Moreover, the

shortest distance computation is not free, and needs heavy explo-

ration on the H2H-Index. These two factors lead to long query

delay of TEN-Index.
• Prohibitive Indexing Time. As shown in the above, to con-

struct the index, TEN-Index has to decompose the road network

rst, and then build the H2H-Index and compute the 𝑘TNN ac-

cordingly. Obviously, the time cost of these procedures are ex-

pensive, especially the H2H-Index construction. For the dataset
USA, TEN-Index takes 19666s to construct the index, in which

H2H-Index consumes 19632s.

4 OUR INDEXING APPROACH
According to the above analysis, although the use of H2H-Index ac-
celerates the query processing of TEN-Index, heavily depending on

the H2H-Index directly leads to the drawbacks of TEN-Index. This
raises a natural question: why do we need an index for shortest dis-

tance such asH2H-Indexwhen addressing 𝑘NN problem? Based on

the logic of TEN-Index, partial 𝑘NN (namely 𝑘TNN) is maintained

for each vertex and H2H-Index is used to rene the partial 𝑘NN to

obtain the nal results when processing the query. This motivates

us to further ask: Is it necessary to maintain the partial 𝑘NN? How

about maintaining the 𝑘NN for each vertex directly as an index? In

this way, the drawbacks regarding index size and query delay can

be totally addressed. Following this idea, we propose the following

index and query processing algorithm.

4.1 Index Structure and Query Processing
Our index just simply records the 𝑘NN for each vertex in the graph,

which is formally dened as follows:

Denition 4.1. (KNN-Index) Given a graph 𝐺 , an integer 𝑘 and

a set of candidate objectsM (|M| > 𝑘), for each vertex 𝑣 ∈ 𝐺 ,

KNN-Index records the top-𝑘 nearest neighbors of 𝑣 inM, namely

Vk (𝑢), in the increasing order of their shortest distances from 𝑣 .
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Example 4.2. Given the graph𝐺 in Figure 2, assume the candidate

object set is all vertices in𝐺 and𝑘 = 5, theKNN-Index of𝐺 is shown

in Figure 3. Take 𝑣8 as an example,𝑉5 (𝑣8) = {𝑣8, 𝑣20, 𝑣2, 𝑣9, 𝑣1}, with
shortest distance 0, 3, 3, 4 and 4 respectively.

𝑣 KNN-Index 𝑣 KNN-Index
𝑣1 (𝑣1, 0) (𝑣2, 1) (𝑣6, 2) (𝑣7, 4) (𝑣8, 4) 𝑣11 (𝑣11, 0) (𝑣12, 1) (𝑣19, 1) (𝑣5, 2) (𝑣18, 2)
𝑣2 (𝑣2, 0) (𝑣1, 1) (𝑣6, 3) (𝑣8, 3) (𝑣7, 5) 𝑣12 (𝑣12, 0) (𝑣11, 1) (𝑣5, 1) (𝑣4, 2) (𝑣19, 2)
𝑣3 (𝑣3, 0) (𝑣12, 3) (𝑣5, 4) (𝑣11, 4) (𝑣4, 5) 𝑣13 (𝑣13, 0) (𝑣18, 3) (𝑣19, 3) (𝑣11, 4) (𝑣20, 4)
𝑣4 (𝑣4, 0) (𝑣12, 2) (𝑣5, 3) (𝑣11, 3) (𝑣19, 4) 𝑣14 (𝑣14, 0) (𝑣10, 1) (𝑣16, 1) (𝑣15, 3) (𝑣20, 3)
𝑣5 (𝑣5, 0) (𝑣12, 1) (𝑣11, 2) (𝑣17, 2) (𝑣4, 3) 𝑣15 (𝑣15, 0) (𝑣16, 2) (𝑣14, 3) (𝑣17, 3) (𝑣10, 4)
𝑣6 (𝑣6, 0) (𝑣1, 2) (𝑣7, 2) (𝑣2, 3) (𝑣20, 4) 𝑣16 (𝑣16, 0) (𝑣14, 1) (𝑣10, 2) (𝑣15, 2) (𝑣20, 4)
𝑣7 (𝑣7, 0) (𝑣6, 2) (𝑣20, 2) (𝑣9, 3) (𝑣1, 4) 𝑣17 (𝑣17, 0) (𝑣5, 2) (𝑣12, 3) (𝑣15, 3) (𝑣11, 4)
𝑣8 (𝑣8, 0) (𝑣20, 2) (𝑣2, 3) (𝑣9, 3) (𝑣1, 4) 𝑣18 (𝑣18, 0) (𝑣11, 2) (𝑣12, 3) (𝑣13, 3) (𝑣19, 3)
𝑣9 (𝑣9, 0) (𝑣20, 1) (𝑣19, 2) (𝑣7, 3) (𝑣8, 3) 𝑣19 (𝑣19, 0) (𝑣11, 1) (𝑣9, 2) (𝑣12, 2) (𝑣5, 3)
𝑣10 (𝑣10, 0) (𝑣14, 1) (𝑣16, 2) (𝑣15, 4) (𝑣20, 4) 𝑣20 (𝑣20, 0) (𝑣9, 1) (𝑣7, 2) (𝑣8, 2) (𝑣14, 3)

Figure 3: KNN-Index of 𝐺 (𝑘 = 5)
Query Processing. Based on our KNN-Index, for a 𝑘NN query

regarding a vertex 𝑣 , we can answer the query directly by retrieving

the corresponding items of 𝑣 in the KNN-Index.

4.2 Theoretical Analysis
Following the index structure and query processing algorithm, we

have the following theoretical results.

Optimal Query Processing. Since our query processing algo-

rithm can answer the query directly by scanning the corresponding

items of the query vertex in the KNN-Index, the following theorem
exists obviously:

Theorem 4.3. Given a 𝑘NN query, our algorithm takes𝑂 (𝑘) time
to process the query.

To answer a 𝑘NN query, any algorithm needs to output the 𝑘

results at least, which takes 𝑂 (𝑘) time. On the other hand, Theo-

rem 4.3 shows the time complexity of our query processing algo-

rithm is 𝑂 (𝑘). Therefore, the optimality holds.

Incremental Polynomial Query Processing. Consider an algo-

rithm that returns several results. Let 𝑘 be the number of results in

the output. An algorithm is said to have incremental polynomial

if for all 𝑖 ≤ 𝑘 , the output time of the rst 𝑖 results is bounded by

a polynomial function of the input size and 𝑖 [5]. Since the items

for each vertex 𝑣 in the KNN-Index are recorded in the increasing

order of their distance from 𝑣 , we have:

Theorem 4.4. Given a 𝑘NN query regarding 𝑣 , for every 1 ≤ 𝑖 ≤ 𝑘 ,
our algorithm outputs the top 𝑖-th nearest neighbor in 𝑂 (𝑖) time.

Theorem 4.4 shows that our query processing algorithm is incre-

mental polynomial, indicating that it progressively provides results

for a query within a bounded delay. The capability of incremental

polynomial query processing is considered as a signicant technical

contribution of TEN-Index [33] and Theorem 4.4 conrms that our

algorithm also possesses this desirable theoretical guarantee.

Bounded Index Space. Since KNN-Index only stores the top-𝑘

nearest neighbors of each vertex in the road network, we have:

Theorem 4.5. Given a road network 𝐺 and an integer 𝑘 , the size
of KNN-Index is bounded by 𝑂 (𝑛 · 𝑘).

5 INDEX CONSTRUCTION
Based on the structure of KNN-Index, it can be constructed straight-
forwardly by computing the top 𝑘 nearest neighbors of each vertex

through Dijkstra′s algorithm or TEN-Index. However, these ap-

proaches are time-consuming and inecient to handle large road

network. In this section, we present our new approach to construct

the KNN-Index.

5.1 Key Properties of Vk(𝑢)
The above discussed direct approaches using Dijkstra′s algorithm
or TEN-Index compute the 𝑘 nearest neighbors for each vertex in-

dependently, which misses the potential opportunities to re-use the

intermediate results during the index construction. In this section,

we introduce two important properties regarding the distance com-

putation, which lays the foundation for our computation-sharing

index construction algorithms. We rst dene:

Denition 5.1. (Bridge Neighbor Set) Given a vertex 𝑢 ∈ 𝑉 (𝐺),
the bridge neighbor set of 𝑢, denoted by BNS(𝑢), is the set of 𝑢 ′𝑠
neighbors 𝑣 such that the weight of the edge (𝑢, 𝑣) is equal to the
distance between 𝑢 and 𝑣 in 𝐺 , i.e., BNS(𝑢) = {𝑣 |𝑣 ∈ nbr(𝑢,𝐺) ∧
𝜙 ((𝑢, 𝑣),𝐺) = dist((𝑢, 𝑣),𝐺)}.

Example 5.2. Consider 𝑣8 in Figure 2. nbr(𝑣8,𝐺) = {𝑣2, 𝑣6, 𝑣7, 𝑣20,
𝑣9}. The shortest path between 𝑣8 and 𝑣9 is (𝑣8, 𝑣20, 𝑣9), and the

distance is dist((𝑣8, 𝑣9),𝐺) = 3. As dist((𝑣8, 𝑣9),𝐺) ≠ 𝜙 ((𝑣8, 𝑣9),𝐺),
𝑣9 is not in BNS(𝑣8). Similarly, 𝑣6 and 𝑣7 also does not belong to

BNS(𝑣8). For the graph𝐺 in Figure 2, the bridge neighbor set of 𝑣8
is BNS(𝑣8) = {𝑣2, 𝑣20}.

Based on Denition 5.1, we have following property regarding

the bridge neighbor set of 𝑢 and its 𝑘 nearest neighbors:

Property 1. Given a vertex𝑢 ∈ 𝑉 (𝐺),Vk (𝑢) ⊆ ∪𝑣∈BNS(𝑢)Vk (𝑣).

Proof: We prove this property by contradiction. Assume that

𝑤 ∈ Vk (𝑢) but 𝑤 ∉ ∪𝑣∈BNS(𝑢)Vk (𝑣). According to Denition 5.1,

the shortest path between𝑤 and𝑢 must pass through one vertex 𝑣 ∈
BNS(𝑢) such that for all 𝑣𝑖 ∈ Vk (𝑣), 𝑖 ∈ [1, 𝑘], we have dist(𝑣, 𝑣𝑖 ) <
dist(𝑤, 𝑣). Therefore, dist(𝑢, 𝑣) +dist(𝑣, 𝑣𝑖 ) < dist(𝑢, 𝑣) +dist(𝑣,𝑤).
This implies that there are at least 𝑘 vertices whose distance to 𝑢

are smaller than the distance between 𝑢 and𝑤 , which contradicts

𝑤 ∈ Vk (𝑢). The proof completes. �
Following Property 1, we have:

Property 2. Given a vertex𝑢 ∈ 𝑉 (𝐺), dist((𝑢,𝑤),𝐺) = min𝑣∈BNS(𝑢)
{dist((𝑢, 𝑣),𝐺) + dist((𝑣,𝑤),𝐺)} where𝑤 ∈ Vk (𝑢).

Proof: According to Denition 5.1, for ∀𝑤 ∈ Vk (𝑢), each short-

est path between 𝑤 and 𝑢 must pass through at least one vertex

𝑣 ∈ BNS(𝑢), so we have dist(𝑢,𝑤) = dist(𝑢, 𝑣) + dist(𝑣,𝑤). �
Based on Property 1, when a vertex 𝑤 ∈ Vk (𝑢), 𝑤 must be in

∪𝑣∈BNS(𝑢)Vk (𝑣). Moreover, when the bridge neighbor set BNS(𝑢)
of 𝑢, the distance dist(𝑢, 𝑣) and Vk (𝑣) (dist((𝑣,𝑤),𝐺) accordingly
where𝑤 ∈ Vk (𝑣)) for all 𝑣 ∈ BNS(𝑢) have been computed, we can

compute dist((𝑢,𝑤),𝐺) for each 𝑤 ∈ ∪𝑣∈BNS(𝑢)Vk (𝑣) eciently

following Property 2. Obviously, Vk (𝑢) just selects 𝑘 vertices from

∪𝑣∈BNS(𝑢)Vk (𝑣) with the smallest distance values. Therefore, if

we process the vertices in 𝐺 in a certain order, and when process-

ing each vertex 𝑢, the vertices 𝑣 ∈ BNS(𝑢) and Vk (𝑣) have been

4686



computed, then Vk (𝑢) and thereby KNN-Index can be computed

eciently by sharing the computed results. The remaining problem

is how to make this idea practically applicable. In next section, we

present a bottom-up computation-sharing algorithm, which paves

the way to our nal index construction algorithm.

5.2 A Bottom-Up Computation-Sharing
Algorithm

To compute the bridge neighbor set and share the computation

eectively, we construct the index based on the bridge neighbor

preserved graph 𝐺 ′ of the road network 𝐺 , which is dened as:

Denition 5.3. (BN-Graph) Given a road network 𝐺 , a graph

𝐺 ′ is a bridge neighbor preserved graph (BN-Graph) of 𝐺 if (1)

𝑉 (𝐺 ′) = 𝑉 (𝐺); (2) for each edge (𝑢, 𝑣) ∈ 𝐸 (𝐺 ′), 𝜙 ((𝑢, 𝑣),𝐺 ′) =
dist((𝑢, 𝑣),𝐺); (3) for any two vertices𝑢, 𝑣 ∈ 𝑉 (𝐺 ′), dist((𝑢, 𝑣),𝐺 ′) =
dist((𝑢, 𝑣),𝐺).

Algorithm 1: SD-Graph-Gen(𝐺, 𝜋)
1 𝐺′ ← 𝐺 ;

2 for each 𝑤 ∈ 𝑉 (𝐺) in increasing order of 𝜋 (𝑤) do
3 N ← {𝑣 |𝑣 ∈ nbr(𝑤,𝐺′) ∧ 𝜋 (𝑣) > 𝜋 (𝑤) };
4 for each pair of vertices 𝑢, 𝑣 ∈ N do
5 if (𝑢, 𝑣) ∉ 𝐸 (𝐺′) then
6 insert (𝑢, 𝑣) into𝐺′;
7 𝜙 ( (𝑢, 𝑣),𝐺′) ← 𝜙 ( (𝑢, 𝑤),𝐺′) + 𝜙 ( (𝑤, 𝑣),𝐺′) ;
8 else if 𝜙 ( (𝑢, 𝑤),𝐺′) + 𝜙 ( (𝑤, 𝑣),𝐺′) < 𝜙 ( (𝑢, 𝑣),𝐺′) then
9 𝜙 ( (𝑢, 𝑣),𝐺′) ← 𝜙 ( (𝑢, 𝑤),𝐺′) + 𝜙 ( (𝑤, 𝑣),𝐺′) ;

10 for each 𝑤 ∈ 𝑉 (𝐺) in decreasing order of 𝜋 (𝑤) do
11 N ← {𝑣 |𝑣 ∈ nbr(𝑤,𝐺′) ∧ 𝜋 (𝑣) > 𝜋 (𝑤) };
12 for each pair of 𝑢, 𝑣 ∈ N do
13 if 𝜙 ( (𝑤, 𝑣),𝐺′) + 𝜙 ( (𝑣,𝑢),𝐺′) < 𝜙 ( (𝑤,𝑢),𝐺′) then
14 𝜙 ( (𝑤,𝑢),𝐺′) ← 𝜙 ( (𝑤, 𝑣),𝐺′) + 𝜙 ( (𝑣,𝑢),𝐺′) ;
15 mark (𝑤,𝑢) as removed;

16 remove all the marked edges in𝐺′;

17 for each 𝑣 ∈ 𝑉 (𝐺′) do
18 BNS(𝑣) ← nbr(𝑣,𝐺′) ;

Based on Denition 5.3, we propose Algorithm 1 to compute

the BN-Graph of an input road network and obtain the bridge

neighbor set for each vertex accordingly. Intuitively, a BN-Graph
of 𝐺 with larger bridge neighbor set for each vertex has more

potential possibility to share the computation following the analysis

of Section 5.1. Meanwhile, the construction of BN-Graph should

not be costly. Following this idea, for a given road network𝐺 and a

total vertex order 𝜋 (the order used in our paper is discussed at the

end of this section), our algorithm (Algorithm 1) contains two steps

to construct BN-Graph: (1) Edge insertion, it aims to add edges

to connect vertices to enlarge the bridge neighbor set. (2) Edge

deletion, it deletes edges to guarantee that the bridge neighbor set

is enlarged correctly. Specically,

• Step 1. Edge Insertion: Given a graph 𝐺 and a rank over all ver-

tices in 𝐺 , it initializes 𝐺 ′ as 𝐺 , and iterates every vertex in the

increasing order of 𝜋 (𝑤) (line 1-2). For every pair of vertices 𝑢, 𝑣

among the neighbors of𝑤 in𝐺 ′ with higher ranks than𝑤 , if (𝑢, 𝑣) ∉
𝐸 (𝐺 ′), a new edge (𝑢, 𝑣) with weight 𝜙 ((𝑢, 𝑣),𝐺 ′) = 𝜙 ((𝑢,𝑤),𝐺 ′) +
𝜙 ((𝑣,𝑤),𝐺 ′) is inserted into𝐺 ′ (line 5-7). Otherwise, if𝜙 ((𝑢,𝑤),𝐺 ′)+
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Figure 4: BN-Graph 𝐺 ′ of 𝐺
𝜙 ((𝑤, 𝑣),𝐺 ′) < 𝜙 ((𝑢, 𝑣),𝐺 ′), it updates𝜙 ((𝑢, 𝑣),𝐺 ′) as𝜙 ((𝑢,𝑤),𝐺 ′)
+𝜙 ((𝑤, 𝑣),𝐺 ′) (line 8-9).
• Step 2. Edge Deletion: After the edge insertion step, it further it-

erates the vertex in the decreasing order of 𝜋 (𝑤) (line 10). For

every pair of vertices 𝑢, 𝑣 among the neighbors of 𝑤 in 𝐺 ′ with
higher ranks than 𝑤 (line 11-12), if 𝜙 ((𝑤, 𝑣),𝐺 ′) + 𝜙 ((𝑣,𝑢),𝐺 ′) <
𝜙 ((𝑤,𝑢),𝐺 ′), it updates𝜙 ((𝑤,𝑢),𝐺 ′) as𝜙 ((𝑤, 𝑣),𝐺 ′)+𝜙 ((𝑣,𝑢),𝐺 ′)
and marks the updated edge as removed (line 13-15). At last, the

marked edges in 𝐺 ′ are removed (line 16), and BNS(𝑤) for each
vertex is set as nbr(𝑤,𝐺 ′) (line 17-18).

Example 5.4. Consider the road network 𝐺 in Figure 2 and as-

sume the vertex order 𝜋 = (𝑣1, 𝑣2, ..., 𝑣20), the BN-Graph 𝐺 ′ of 𝐺
is shown in Figure 4. To construct 𝐺 ′, we rst conduct the edge
insertion step. For 𝑣1, itsN is {𝑣2, 𝑣6}. There exists no edge (𝑣2, 𝑣6)
in 𝐺 ′ currently, then (𝑣2, 𝑣6) with 𝜙 ((𝑣2, 𝑣6),𝐺 ′) = 3 is added into

𝐺 ′. The procedure continues until all vertices are processed. In the

edge deletion step, vertices are processed in the reverse order of

𝜋 . Take 𝑣7 as an example. When processing 𝑣7, its N is {𝑣8, 𝑣20}.
Since 𝜙 ((𝑣7, 𝑣20),𝐺 ′) +𝜙 ((𝑣20, 𝑣8),𝐺 ′) = 2+2 < 𝜙 ((𝑣7, 𝑣8),𝐺 ′) = 5,

(𝑣7, 𝑣8) is marked. When all the vertices are processed, the marked

edges are removed, and Figure 4 shows the nal 𝐺 ′.

Lemma 5.5. The graph 𝐺 ′ generated at the end of Algorithm 1 is
a BN-Graph of 𝐺 .

Following Lemma 5.5, it is clear that for each vertex 𝑣 ∈ 𝑉 (𝐺),
its 𝑘NN in 𝐺 is the same as that in 𝐺 ′ based on the condition

(3) of Denition 5.3. Moreover, nbr(𝑤,𝐺 ′) is the bridge neighbor
set of 𝑤 in 𝐺 ′ based on the condition (2) of Denition 5.3. The

following problem is how to compute Vk (𝑢) for each vertex 𝑢 via

𝐺 ′ and BNS(𝑢). According to the discussion in Section 5.1, to fully

utilize the intermediate computed results during the KNN-Index
construction, we dene a special type of path based on the given

total vertex order as follows:

Denition 5.6. (Monotonic Rank Path) Given the BN-Graph
𝐺 ′ of a road network 𝐺 , for a vertex 𝑢 ∈ 𝑉 (𝐺 ′), a path 𝑝 (𝑢, 𝑣) =
(𝑢 = 𝑣1, 𝑣2, . . . , 𝑣 𝑗 = 𝑣) in 𝐺 ′ is a decreasing rank path of 𝑢 if

𝜋 (𝑣 𝑗 ) < 𝜋 (𝑣 𝑗−1) < · · · < 𝜋 (𝑣1), and it is an increasing rank path

of 𝑢 if 𝜋 (𝑣 𝑗 ) > 𝜋 (𝑣 𝑗−1) > · · · > 𝜋 (𝑣1).
Denition 5.7. (Monotonic Rank Path Subgraph) Given the

BN-Graph 𝐺 ′ of a road network 𝐺 , for a vertex 𝑢, the decreasing

rank path subgraph of 𝑢, denoted by G′< (𝑢), is the subgraph in-

duced by all decreasing rank paths of 𝑢 in 𝐺 ′. The increasing rank

path subgraph, denoted by G′> (𝑢), is the subgraph induced by all

increasing rank paths of 𝑢 in 𝐺 ′.
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Example 5.8. Given the BN-Graph 𝐺 ′ in Figure 4, for vertex 𝑣1,

increasing rank paths of 𝑣1 contain 𝑝 (𝑣1, 𝑣2) = (𝑣1, 𝑣2), 𝑝 (𝑣1, 𝑣6) =
(𝑣1, 𝑣6), 𝑝 (𝑣1, 𝑣8) = (𝑣1, 𝑣2, 𝑣8) or (𝑣1, 𝑣6, 𝑣8), 𝑝 (𝑣1, 𝑣7) = (𝑣1, 𝑣6, 𝑣7)
or (𝑣1, 𝑣2, 𝑣6, 𝑣7), 𝑝 (𝑣1, 𝑣20) = (𝑣1, 𝑣2, 𝑣8, 𝑣20), (𝑣1, 𝑣6, 𝑣8, 𝑣20), (𝑣1, 𝑣2,
𝑣7, 𝑣20), (𝑣1, 𝑣2, 𝑣6, 𝑣7, 𝑣20), (𝑣1, 𝑣2, 𝑣6, 𝑣8, 𝑣20). The increasing rank

path subgraph of 𝑣1, i.e., G′> (𝑣1), is the subgraph induced by these

paths, which is shown in pink in Figure 4. The decreasing rank path

subgraph of 𝑣17, i.e., G′< (𝑣17), can be obtained similarly, which is

shown in green in Figure 4.

Denition 5.9. (Decreasing Rank Partial 𝑘NN) Given a vertex

𝑢 ∈ 𝑉 (𝐺) and a set of candidate objectsM, the decreasing rank

partial 𝑘NN of 𝑢, denoted by V<
k (𝑢), is the 𝑘NN of 𝑢 in G′< (𝑢).

Lemma 5.10. Given a vertex 𝑢 ∈ 𝑉 (𝐺) in a road network 𝐺 ,
Vk (𝑢) ⊆ ∪𝑤∈𝑉 (G′> (𝑢))V<

k (𝑤).
Proof: This lemma can be proved directly following Property 1.

�
Therefore, if we can obtain V<

k (𝑤) for each vertex, we can obtain

Vk (𝑢) following Lemma 5.10. Moreover, we have:

Lemma 5.11. Given a road network of 𝐺 and a set of candidate
objectsM, let𝑢1 be the vertex with the lowest rank, we haveV<

k (𝑢1) =
{M ∩ {𝑢1}}.

Proof: From Denition 5.7, 𝑉 (G′< (𝑢1)) = {𝑢1}. Based on De-

nition 5.9, V<
k (𝑢1) = {M∩𝑉 (G

′< (𝑢1))} = {M∩{𝑢1}}. The lemma

holds. �
Based on Lemma 5.11, the decreasing rank partial 𝑘NN for the

vertex with the lowest rank can be computed directly. Regard-

ing the remaining vertices, we further divide BNS(𝑢) into two

parts: BNS< (𝑢) which contains the neighbors of𝑢 in𝐺 ′ with lower

rank than 𝑢, i.e., BNS< (𝑢) = {𝑣 |𝑣 ∈ BNS(𝑢) ∧ 𝜋 (𝑣) < 𝜋 (𝑢)} and
BNS> (𝑢) which contains the neighbors of 𝑢 in𝐺 ′ with higher rank

than 𝑢, i.e., BNS> (𝑢) = {𝑣 |𝑣 ∈ BNS(𝑢) ∧ 𝜋 (𝑣) > 𝜋 (𝑢)}. We have:

Lemma 5.12. Given a vertex 𝑢 ∈ 𝑉 (𝐺) in a road network 𝐺 ,
V<
k (𝑢) ⊆ {M ∩ {𝑢}} ∪𝑣∈BNS< (𝑢) V

<
k (𝑣).

Proof: This lemma can be proved directly based on Property 1

and Denition 5.9. �
Lemma 5.12 indicates the scope of V<

k (𝑢) for each vertex. To

obtain V<
k (𝑢), we only need to compute the distance between𝑢 and

𝑤 ∈ {M ∩ {𝑢}} ∪𝑣∈BNS< (𝑢) V<
k (𝑣), and retrieve the top 𝑘 objects.

To avoid the expensive Dijkstra′s algorithm, we dene:

Denition 5.13. (Decreasing Rank Shortest Path) Given the

BN-Graph 𝐺 ′ of a road network 𝐺 , for two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺 ′),
the decreasing rank shortest path between 𝑢 and 𝑣 is the rank

decreasing path from 𝑢 to 𝑣 with the smallest length in 𝐺 ′.

In BN-Graph𝐺 ′ of𝐺 , for any two vertices𝑢, 𝑣 ∈ 𝐺 ′, one shortest
path between 𝑢 and 𝑣 is a decreasing rank shortest path. We call

the length of decreasing rank shortest path between 𝑢 and 𝑣 as

decreasing rank distance and denote it as dist< (𝑢, 𝑣). We have:

Lemma 5.14. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for
a vertex 𝑢 ∈ 𝑉 (𝐺 ′), dist< (𝑢, 𝑣) = min𝑤∈BNS< (𝑢) {𝜙 ((𝑢,𝑤),𝐺 ′) +
dist< (𝑤, 𝑣)}, where 𝑣 ∈ V<

k (𝑢).
Proof: Based on Denition 5.7 and Denition 5.9, we have

V<
k (𝑢) ⊆ {M ∩ 𝑉 (G′< (𝑢))}. According to Denition 5.13, for

∀𝑣 ∈ G′< (𝑢), there is one decreasing rank shortest path between 𝑢

and 𝑣 , which passes through one vertex𝑤 ∈ BNS< (𝑢). Therefore,
dist< (𝑢, 𝑣) = min𝑤∈BNS< (𝑢) {𝜙 ((𝑢,𝑤),𝐺 ′) + dist< (𝑤, 𝑣)}. �

Lemma 5.15. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for a
vertex𝑢, let 𝑣 ∈ V<

k (𝑢)∩Vk (𝑢), if dist< (𝑢, 𝑣) = dist((𝑢, 𝑣),𝐺 ′), there
is a shortest path between 𝑢 and 𝑣 in 𝐺 ′, which is also a decreasing
rank shortest path.

Proof: According to Denition 5.7 and Denition 5.9, if 𝑣 ∈
V<
k (𝑢), we know 𝑣 ∈ 𝑉 (G′< (𝑢)). Based on Denition 5.13, there is

one decreasing rank shortest path between𝑢 and 𝑣 .When dist< (𝑢, 𝑣)
= dist((𝑢, 𝑣),𝐺 ′), there is a shortest path between 𝑢 and 𝑣 in 𝐺 ′,
which is also a decreasing shortest path. �

Based on Lemma 5.11, Lemma 5.12, and Lemma 5.14, to obtain

V<
k (𝑢) for each vertex, we can adopt a bottom-up strategy based on

the increasing order of 𝜋 (𝑢), and the computed distance for a lower

rank vertex can be re-used to compute the distance for a higher

rank vertex. However, V<
k (𝑢) only contains the vertices 𝑣 ∈ Vk (𝑢)

whose shortest paths to 𝑢 pass through BNS< (𝑢), the vertices 𝑣 ∈
Vk (𝑢) whose shortest paths to 𝑢 pass through BNS> (𝑢) does not
considered. Unfortunately, these vertices cannot be obtained by

only exploring the vertices in ∪𝑣∈BNS> (𝑢)V<
k (𝑣) in the similar way

as discussed above since this approach only explores the vertices

whose ranks are not higher than max𝑣∈BNS> (𝑢)𝜋 (𝑣). On the other

hand, we have the following lemmas regarding the distance between

𝑢 and 𝑣 ∈ Vk (𝑢) based on Lemma 5.10:

Lemma 5.16. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for
a vertex 𝑢 ∈ 𝑉 (𝐺), let 𝑣, 𝑣 ′ ∈ 𝑉 (G′> (𝑢)), dist((𝑣, 𝑣 ′),G′> (𝑢)) =
dist((𝑣, 𝑣 ′),𝐺).

Proof: This lemma can be proved directly following Lemma 5.5.

�

Lemma 5.17. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for a
vertex𝑢 ∈ 𝑉 (𝐺), dist((𝑢, 𝑣),𝐺) = min𝑤∈𝑉 (G′> (𝑢)) {dist((𝑢,𝑤),G′>
(𝑢)) + dist< (𝑤, 𝑣)}, where 𝑣 ∈ Vk (𝑢).

Proof: This lemma can be proved directly based on Lemma 5.10

and Lemma 5.16. �

Algorithm. By combing the above two cases together, our index

construction algorithm is shown in Algorithm 2. It rst generates

the BN-Graph 𝐺 ′ using Algorithm 1 (line 1). Then, it adopts a

bottom-up strategy to compute V<
k (𝑢) in the increasing order of

𝜋 (𝑢) (line 2-7). Specically, for each vertex 𝑢, it retrieves {M ∩
{𝑢}} ∪𝑣∈BNS< (𝑢) V<

k (𝑣) based on Lemma 5.12 (line 4) and com-

putes dist< (𝑢, 𝑣) based on Lemma 5.14 (line 5-6). Then, V<
k (𝑢)

is the 𝑘 vertices in S with the smallest dist< (𝑢, 𝑣) (line 7). After
that, it constructs G′> (𝑢) by conducting BFS search from 𝑢 on

𝐺 ′ (line 9). And we compute the single source shortest distance

dist((𝑢,𝑤),G′> (𝑢)) from 𝑢 to each vertex 𝑤 in G′> (𝑢) using the

Dijkstra’s Algorithm (line 10-11). Then, following Lemma 5.10, it re-

trieves ∪𝑤∈𝑉 (G′> (𝑢))V<
k (𝑤) (line 12) and computes dist((𝑢, 𝑣),𝐺)

based on Lemma 5.17 (line 13-14). dist< (𝑤, 𝑣) can be obtained from

V<
k (𝑤) directly. dist((𝑢,𝑤),G

′> (𝑢)) can be computed (line 10-11)

after the construction of G′> (𝑢) (line 9) following Lemma 5.16. At

last, the 𝑘 vertices in S with the smallest dist((𝑢, 𝑣),𝐺) is returned
as Vk (𝑢) in line 15.
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Figure 5: Procedure of Algorithm 2 to Compute V5 (𝑣17)

Algorithm 2: KNN-Index-Cons(𝐺, 𝜋,M)
1 𝐺′ ← SD-Graph-Gen(𝐺, 𝜋 ) ;
2 S ← ∅, V<

k ( ·) ← ∅, Vk ( ·) ← ∅;
3 for each 𝑢 in increasing order of 𝜋 (𝑢) do
4 S ← {M ∩ {𝑢 }} ∪𝑤∈BNS< (𝑢) V<

k (𝑤) ;
5 for each 𝑣 ∈ S do
6 dist< (𝑢, 𝑣) ← min𝑤∈BNS< (𝑢) {𝜙 ( (𝑢, 𝑤),𝐺′) + dist< (𝑤, 𝑣) };
7 V<

k (𝑢) ← 𝑘 vertices in S with the smallest dist< (𝑢, 𝑣) ;
8 for each 𝑢 in increasing order of 𝜋 (𝑢) do
9 construct G′> (𝑢) by conducting BFS search from 𝑢 on𝐺′

following edge (𝑣, 𝑣′) with 𝜋 (𝑣) < 𝜋 (𝑣′) ;
10 for each 𝑤 ∈ 𝑉 (G′> (𝑢)) do
11 compute dist( (𝑢, 𝑤),G′> (𝑢)) ;
12 S ← V<

k (𝑢) ∪𝑤∈𝑉 (G′> (𝑢) ) V
<
k (𝑤) ;

13 for each 𝑣 ∈ S do
14 dist( (𝑢, 𝑣),𝐺) ←

min𝑤∈G′> (𝑢) dist( (𝑢, 𝑤),G′> (𝑢))+dist< (𝑤, 𝑣) ;
15 Vk (𝑢) ← 𝑘 vertices in S with the smallest dist( (𝑢, 𝑣),𝐺) ;

Example 5.18. Following the BN-Graph 𝐺 ′ in Figure 4, Figure 5

takes 𝑣17 as an example to show the procedure of Algorithm 2 to

compute V5 (𝑣17). According to Algorithm 2, we compute V<
5 (𝑣17)

rst. Based on 𝐺 ′, BNS< (𝑣17) = {𝑣5, 𝑣12, 𝑣15, 𝑣16}, which is shown

in green in Figure 5 (a). Following Algorithm 2, when computing

V<
5 (𝑣17), we already have V<

5 (𝑣5),V
<
5 (𝑣15),V

<
5 (𝑣12) and V<

5 (𝑣16),
which is shown in Figure 5 (b). Consequently, following line 6 of Al-

gorithm 2, we can achieveS = {M∩{𝑣17}}∪𝑤∈BNS< (𝑣17) V<
5 (𝑤) =

{(𝑣17, 0), (𝑣5, 2), (𝑣12, 3), (𝑣15, 3), (𝑣11, 4), (𝑣4, 5), (𝑣16, 5), (𝑣3, 6), (𝑣14,
6), (𝑣10, 7)}. Figure 5 (b) shows this set S for constructing V<

5 (𝑣17).
After sorting distance, we have V<

5 (𝑣17) = {(𝑣17, 0), (𝑣5, 2), (𝑣12, 3),
(𝑣15, 3), (𝑣11, 4)}.

Figure 5 (c) shows the G′> (𝑣17) in purple with bold lines. Using

Dijkstra′sAlgorithm, we compute the distance from 𝑣17 to each ver-

tex in G′> (𝑣17). And dist((𝑣17, 𝑣18),G′> (𝑣17)) = 6, dist((𝑣17, 𝑣19),
G′> (𝑣17)) = 5, and dist((𝑣17, 𝑣20),G′> (𝑣17)) = 8. Following line 12

of Algorithm 2, when computingV5 (𝑣17), we haveV<
5 (𝑣18),V

<
5 (𝑣19)

and V<
5 (𝑣20), which is shown in Figure 5 (d). Following line 14

of Algorithm 2, we achieve S = V<
5 (𝑣17) ∪𝑤∈G′> (𝑣17) V

<
5 (𝑤) =

{(𝑣17, 0), (𝑣5, 2), (𝑣12, 3), (𝑣15, 3), (𝑣11, 4), (𝑣19, 5), (𝑣18, 6), (𝑣9, 7), (𝑣20
, 8), (𝑣13, 9), (𝑣7, 10), (𝑣8, 10)}, which is shown in Figure 5 (c). Then,

we select 5 nearest objects from S as the KNN-Index of 𝑣17, namely,

Vk (𝑣17) = {(𝑣17, 0), (𝑣5, 2), (𝑣12, 3), (𝑣15, 3), (𝑣11, 4)} .

The correctness of Algorithm 2 is straightforward following the

above discussion. For the eciency of the algorithm, we have:

Theorem 5.19. The time complexity of Algorithm 2 is bounded by
𝑂 (𝑛 · (𝜌2+𝜂 ·𝜏 ·𝑙𝑜𝑔(𝜂) + (𝜏 +𝜂) ·𝑘)), where 𝜌 represents the maximum
degree of vertices in the graph generated by Algorithm 1 when Step 1
nishes, 𝜂 = max𝑣∈𝑉 (𝐺) |G′> (𝑣) | and 𝜏 = max𝑣∈𝑉 (𝐺) |BNS> (𝑣) |.

Proof:Algorithm 1 requires𝑂 (𝑛 ·𝜌2) time (line 1 of Algorithm 2).

This is because in the for loop (line 2-9 of Algorithm 1), for each

vertex 𝑤 , line 4-9 of Algorithm 1 takes 𝑂 (𝜌2) time and the for

loop terminates at 𝑛 iterations. Therefore, the edge insertion step

(line 2-9 of Algorithm 1) requires𝑂 (𝑛 · 𝜌2) time. Similarly, the edge

deletion step requires𝑂 (𝑛 ·𝜌2) (line 10-16 of Algorithm 1). Scanning

all vertices to achieve BNS(·) is bounded by 𝑂 (𝑛 · 𝜏) (line 17-18 of
Algorithm 1). Obviously, for ∀𝑢 ∈ 𝑉 (𝐺), 𝜏 ≤ 𝜌 . Therefore, the time

complexity of Algorithm 1 is 𝑂 (𝑛 · (𝜌2 + 𝜏)) = 𝑂 (𝑛 · 𝜌2). In the for

loop from line 3 to line 7 of Algorithm 2, line 4 of Algorithm 2 takes

𝑂 (𝜏 · 𝑘), since each vertex 𝑢 is only explored by the vertex 𝑤 ∈
BNS> (𝑢). At the same time with obtainingS (line 4 of Algorithm 2),

line 5-7 of Algorithm 2 could be done. Therefore,V<
k (·) construction

(line 3-7 of Algorithm 2) requires 𝑂 (𝑛 · 𝜏 · 𝑘) time. In the for loop

(line 8-15 of Algorithm 2), constructing G′> (𝑢) by conducting BFS
search requires 𝑂 (𝜂 · 𝜏) time (line 9 of Algorithm 2). Computing

dist(𝑢, 𝑣) for ∀𝑣 ∈ 𝑉 (G′> (𝑢)) via Dijkstra′s algorithm (line 10-11

of Algorithm 2) consumes 𝑂 (𝜂 · 𝜏 · 𝑙𝑜𝑔(𝜂)) time. Obtaining S and

distance computation require 𝑂 (𝜂 · 𝑘) (line 12-15 of Algorithm 2).

Therefore, Vk (·) construction (line 8-15 of Algorithm 2) requires

𝑂 (𝑛 · (𝜂 · 𝜏 · 𝑙𝑜𝑔(𝜂) + (𝜏 + 𝜂) · 𝑘)). In summary, the time complexity

of Algorithm 2 requires 𝑂 (𝑛 · (𝜌2 + 𝜂 · 𝜏 · 𝑙𝑜𝑔(𝜂) + (𝜏 + 𝜂) · 𝑘)). �
Remark. Based on Theorem 5.19, we prefer the generated BN-
Graph with smaller 𝜌 and 𝜏 . Thus, we use the following heuristic

total order 𝜋 in this paper: (1) The vertex with the minimum degree

in 𝐺 has the lowest rank (the vertex with a smallest id has the

lowest rank if more than one vertices have the minimum degree);

(2) for two unprocessed vertices 𝑢 and 𝑣 in line 2 of Algorithm 1,

𝜋 (𝑢) > 𝜋 (𝑣) if the number of unprocessed neighbors of 𝑢 is bigger

than that of 𝑣 in𝐺 ′. Note this order can be obtained incidentally in

Algorithm 1, and does not aect the time complexity of Algorithm 1.

5.3 A Bidirectional Construction Algorithm
Algorithm 2 adopts a bottom-up strategy to construct the KNN-
Index with which the computation regarding V<

k (𝑢) is well shared.
However, it still needs to invoke Dijkstra′s algorithm to compute

the distance between 𝑢 and 𝑤 ∈ 𝑉 (G′> (𝑢)) in line 11-12, which
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Algorithm 3: KNN-Index-Cons+ (𝐺, 𝜋,M)
1 𝐺′ ← SD-Graph-Gen(𝐺, 𝜋 ) ;
2 V<

k ( ·) ← line 3-7 of Algorithm 2;

3 S ← ∅, Vk ( ·) ← ∅;
4 for each 𝑢 in decreasing order of 𝜋 (𝑢) do
5 S ← V<

k (𝑢) ∪𝑤∈BNS> (𝑢) Vk (𝑤) ;
6 for each 𝑣 ∈ S do
7 𝑑 ← min𝑤∈BNS> (𝑢) {𝜙 ( (𝑢, 𝑤),𝐺′) + dist( (𝑤, 𝑣),𝐺) };
8 dist(𝑢, 𝑣) ← min{𝑑, dist< (𝑢, 𝑣) };
9 Vk (𝑢) ← 𝑘 vertices in S with the smallest dist( (𝑢, 𝑣),𝐺) ;

is costly. To address this problem, we propose a new algorithm to

further improve the index construction eciency. Instead of fol-

lowing the sole bottom-up direction which adopted in Algorithm 2,

the new algorithm constructs the index in a bidirectional manner,

which totally avoids the invocation of Dijkstra′s algorithm. Before

introducing our algorithm, we have:

Lemma 5.20. Given a road network 𝐺 , let 𝑢𝑛 be the vertex with
the highest rank, Vk (𝑢𝑛) = V<

k (𝑢𝑛).

Proof: Following Denition 5.7, 𝑉 (G′> (𝑢𝑛)) = {𝑢𝑛}. Based on

Lemma 5.10, Vk (𝑢𝑛) ⊆ ∪𝑤∈𝑉 (G′> (𝑢𝑛))V<
k (𝑤) = V<

k (𝑢𝑛). �

Lemma 5.21. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for a
vertex 𝑢 ∈ 𝑉 (𝐺), Vk (𝑢) ⊆ V<

k (𝑢) ∪𝑤∈BNS> (𝑢) Vk (𝑤).

Proof: This lemma can be proved directly based on Property 1.

�
Lemma 5.20 and Lemma 5.21 imply that if we process the vertices

in the decreasing order of their ranks when computing Vk (𝑢), it can
re-use the computed information of vertices with higher ranks in

the computation of the𝑘NN for vertices with lower ranks. Moreover,

we have:

Lemma 5.22. Given the BN-Graph 𝐺 ′ of a road network 𝐺 , for a
vertex𝑢 ∈ 𝑉 (𝐺), dist((𝑢, 𝑣),𝐺) = min{min𝑤∈BNS> (𝑢) {𝜙 ((𝑢,𝑤),𝐺 ′)
+ dist((𝑤, 𝑣),𝐺)}, dist< (𝑢, 𝑣)}, where 𝑣 ∈ Vk (𝑢).

Proof: For 𝑣 ∈ Vk (𝑢), there are two parts. The one part con-

tains all 𝑣 whose shortest paths to 𝑢 pass through BNS> (𝑢), this
distance computation can be proved based on Property 2. The

other part contains all 𝑣 whose shortest paths to 𝑢 pass through

BNS< (𝑢), dist< (𝑢, 𝑣) can be directly obtained from V<
k (𝑢) based

on Lemma 5.15. �

Algorithm. Following Lemma 5.22, our new bidirectional con-

struction algorithm is shown in Algorithm 3. It rst generates the

BN-Graph𝐺 ′ of𝐺 using Algorithm 1 (line 1) and computes V<
k (𝑢)

in the same way as Algorithm 2 (line 2). After that, it processes the

vertices in the decreasing order of their ranks (line 4-9). For each

vertex𝑢, it retrievesV<
k (𝑢)∪𝑤∈BNS> (𝑢)Vk (𝑤) based on Lemma 5.21

and stores them in S (line 5). Then, the distance between 𝑢 and

𝑣 ∈ S is computed following Lemma 5.22 (line 6-8). Since the in-

dex construction procedure follows the decreasing order of 𝜋 (𝑢),
Vk (𝑤) for ∀𝑤 ∈ BNS> (𝑢) has been computed before computing

Vk (𝑢). dist((𝑤, 𝑣),𝐺) can be obtained from Vk (𝑤) directly. And
𝜙 ((𝑢,𝑤),𝐺 ′) can be achieved from BN-Graph directly. At last, the

𝑘 vertices in S with the smallest dist((𝑢, 𝑣),𝐺) is returned as Vk (𝑢)
in line 9.
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Figure 6: Procedure of Algorithm 3 to Compute V5 (𝑣17)

Example 5.23. Figure 6 shows the V5 (𝑣17) construction proce-

dure following Algorithm 3. Based on the BN-Graph𝐺 ′ in Figure 4,

for 𝑣17, BNS> (𝑣17) = {𝑣18, 𝑣19}, which is shown in pink in Fig-

ure 6 (a). V<
5 (𝑣17) can be constructed in the same way as shown in

Example 5.18. Following line 5 of Algorithm 3, when computing

V<
5 (𝑣17), we already have V<

5 (𝑣17),V5 (𝑣18), and V5 (𝑣19), which is

shown in Figure 6 (b). According to line 7-8 of Algorithm 3, we have

S = V<
5 (𝑣17) ∪𝑤∈BNS> (𝑣17) V5 (𝑤) = {(𝑣17, 0), (𝑣5, 2), (𝑣12, 3), (𝑣15,

3), (𝑣11, 4), (𝑣19, 5), (𝑣18, 6), (𝑣9, 8), (𝑣13, 9)}. After sorting distance,
the 5 nearest neighbors for 𝑣17 is selected from the set S, namely,

V5 (𝑣17) = {(𝑣17, 0), (𝑣5, 2), (𝑣12, 3), (𝑣15, 3), (𝑣11, 4)}.

Theorem 5.24. Given a road network 𝐺 , the time complexity of
Algorithm 3 is bounded by𝑂 (𝑛 · 𝜌2 +𝑛 · 𝜏 · 𝑘) where 𝜌 represents the
maximum degree of vertices in the graph generated by Algorithm 1
when Step 1 nishes, and 𝜏 = max𝑣∈𝑉 (𝐺) |BNS> (𝑣) |.

Proof:As proved in Theorem 5.19, Algorithm 1 requires𝑂 (𝑛 ·𝜌2)
time (line 1 of Algorithm 3) and V<

k (·) construction requires 𝑂 (𝑛 ·
𝜏 · 𝑘) (line 2 of Algorithm 3). In the for loop from line 4 to line 9 of

Algorithm 3, obtaining S and distance computation require𝑂 (𝜏 ·𝑘)
(line 5-9 of Algorithm 3) and the loop terminates in 𝑛 iterations.

Therefore, the for loop takes𝑂 (𝑛 ·𝜏 ·𝑘) (line 4-9 of Algorithm 3). In

summary, the bidirectional KNN-Index construction (Algorithm 3)

requires 𝑂 (𝑛 · 𝜌2 + 𝑛 · 𝜏 · 𝑘). �

6 CANDIDATE OBJECT UPDATE
In some cases, the candidate objectsM may be updated by inserting

new objects or deleting existing objects. Straightforwardly, we

can reconstruct the index from scratch by Algorithm 3 to handle

the update. However, this approach is inecient as the update

of a candidate object may not aect the 𝑘NN results of all the

vertices. In this section, we discuss how to maintain the KNN-Index
incrementally when the candidate objects are updated.

Obviously, when a candidate object 𝑢 is inserted or deleted, the

update of 𝑢 will not aect the 𝑘NN results of a vertex 𝑣 if 𝑢 and

𝑣 are far away from each other. Specically, let 𝑣𝑘 be the vertex

in Vk (𝑣) with the largest distance to 𝑣 . If dist(𝑢, 𝑣) > dist(𝑣, 𝑣𝑘 ),
then 𝑢 cannot be in Vk (𝑣), which means deleting or inserting 𝑢 will

not aect Vk (𝑣). Moreover, we have the following lemma based on

Property 1 and Property 2:

Lemma 6.1. Given the BN-Graph 𝐺 ′ of the road network 𝐺 , for a
vertex 𝑣 ∈ 𝑉 (𝐺)), when an object 𝑢 is inserted/deleted, Vk (𝑣) could
be aected if and only if there exists at least one vertex𝑤 ∈ BNS(𝑣)
whose Vk (𝑤) changes due to the update of 𝑢.
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Proof: This lemma can be directly proved based on Property 1

and Property 2. �
Therefore, we can maintain the KNN-Index starting from the

vertex of the updated object 𝑢. Based on the denition of 𝑘NN,

it is clear that Vk (𝑢) will be changed. Following Lemma 6.1, the

change of Vk (𝑢) will possibly lead to the change of Vk (𝑣) where
𝑣 ∈ BNS(𝑢). Then, we check whether Vk (𝑣) needs to be updated

based on dist(𝑢, 𝑣) and dist(𝑣, 𝑣𝑘 ) as discussed above. We continue

to repeat the above procedure recursively, and it is obvious that the

KNN-Index is correctly maintained when no more vertices whose

𝑘NN results change. Based on the above idea, our algorithms to

handle the candidate object insertion and deletion are shown in

Algorithm 4 and Algorithm 5, respectively.

Algorithm 4: KNN-Index-Ins(𝐺 ′,Vk (·), 𝑢)
1 dist[ ·] ← +∞; S ← {∅};𝑄 ← ∅;
2 dist[𝑢 ] ← 0; S ← {𝑢 };𝑄.𝑝𝑢𝑠ℎ (𝑢) ;
3 while𝑄 ≠ ∅ do
4 𝑤 ← 𝑄.pop() ;
5 for each 𝑣 ∈ BNS(𝑤) do
6 dist[𝑣 ] ← min{dist[𝑣 ], dist[𝑤 ] + 𝜙 ( (𝑤, 𝑣),𝐺′) };
7 if 𝑣 ∉ S ∧ checkIns(𝑣,Vk (𝑣), dist[𝑣 ]) then
8 𝑄.push(𝑣) ; S ← S ∪ {𝑣 };
9 for each 𝑣 ∈ S do
10 remove 𝑣𝑘 from Vk (𝑣) ; insert 𝑢 into Vk (𝑣) ;

11 Procedure checkIns(𝑣,Vk (𝑣), 𝑑)
12 𝑣𝑘 ← the vertex with the largest distance to 𝑣 in Vk (𝑣) ;
13 if dist(𝑣, 𝑣𝑘 ) ≤ 𝑑 then return False;
14 else return True;

Object Insertion. Algorithm 4 shows the algorithm for candidate

object insertion. An array dist[·] stores the distance between 𝑢 and

other vertices, a set S stores vertices whose 𝑘NN results should

be updated, and a queue 𝑄 stores the vertices whose bridge neigh-

bor sets should be checked (line 1). Then, it initializes dist[𝑢] as
0 and adds 𝑢 in S and 𝑄 (line 1). After that, it pops a vertex 𝑤

from 𝑄 (line 4), and for each 𝑣 ∈ BNS(𝑤), it computes the dis-

tance between 𝑢 and 𝑣 , which can be obtained based on the fact

dist(𝑢, 𝑣) = min𝑤′∈BNS(𝑣) {dist(𝑢,𝑤 ′) + dist(𝑤 ′, 𝑣)} (line 6). Note
that instead of visting all 𝑤 ′ ∈ BNS(𝑣), only the vertices whose

Vk (𝑤) changes due to the update of 𝑢 need to be explored fol-

lowing Lemma 6.1, which is captured by 𝑄 . If 𝑣 is not in S and

dist[𝑣] is smaller than the distance between 𝑣 and 𝑣𝑘 , where 𝑣𝑘
is the vertex with the largest distance to 𝑣 in Vk (𝑣) which can be

obtained directly based on KNN-Index, it adds 𝑣 into 𝑄 and S (line

7-8). The procedure terminates when 𝑄 becomes empty (line 3). At

last, for each vertex 𝑣 ∈ S, it removes 𝑣𝑘 from Vk (𝑣) and inserts 𝑢

into Vk (𝑣) (line 9-10). When inserting 𝑢 into Vk (𝑢), dist[𝑣] is the
shortest distance between 𝑢 and 𝑣 guaranteed by Lemma 6.1.

Theorem 6.2. Given the BN-Graph 𝐺 ′ and its corresponding
KNN-Index of a road network 𝐺 , Algorithm 4 maintains the KNN-
Index correctly when an object 𝑢 is inserted.

Proof: Algorithm 4 (line 5-6) can guarantee dist[𝑣] for ∀𝑣 ∈ S is

the distance between 𝑢 and 𝑣 before inserting 𝑢 to Vk (𝑣) for 𝑣 ∈ S
(line 9-10). Even though when using checkIns(𝑣,Vk (𝑣), 𝑑) (line 7), 𝑑
may not be the distance between 𝑢 and 𝑣 and checkIns(𝑣,Vk (𝑣), 𝑑)
returns True, the nal result can not be aected. Since dist(𝑢, 𝑣) ≤ 𝑑 ,

checkIns returning True denotes that 𝑑 < dist(𝑣, 𝑣𝑘 ). Therefore, we
have dist(𝑢, 𝑣) < dist(𝑣, 𝑣𝑘 ). Overall, Algorithm 4 maintains the

KNN-Index correctly when an object 𝑢 is inserted. �

Theorem 6.3. Given the BN-Graph 𝐺 ′ and its corresponding
KNN-Index of a road network 𝐺 , when an object 𝑢 is inserted, Algo-
rithm 4 maintains the KNN-Index in 𝑂 (Δ · 𝜏 ′), where Δ = |S| and
𝜏 ′ = max𝑣∈𝑉 (𝐺) |BNS(𝑣) |.

Proof: The time complexity of checkIns(𝑣,Vk (𝑣), 𝑑) (line 11-

14) is 𝑂 (1). In the for loop (line 3-8), for each vertex 𝑤 , line 5-8

requires𝑂 (𝜏 ′) time and the loop terminates in at most Δ iterations.

Therefore, the for loop (line 3-8) requires 𝑂 (Δ · 𝜏 ′) time. In the for

loop (line 9-10), removing 𝑣𝑘 from Vk (𝑣) requires 𝑂 (1), inserting
𝑢 into Vk (𝑣) in the correct position needs 𝑂 (𝑘) and the loop stops

in Δ iterations. Therefore, the for loop (line 9-10) requires 𝑂 (Δ · 𝑘)
time. In summary, the overall time complexity of Algorithm 4 is

𝑂 (Δ · (𝜏 ′ + 𝑘) = 𝑂 (Δ · 𝜏 ′), since 𝑘 is not large in real applications

as discussed in Section 1. �

Algorithm 5: KNN-Index-Del(𝐺 ′,Vk (·), 𝑢)
1 dist[ ·] ← +∞; S ← {∅};𝑄 ← ∅;
2 dist[𝑢 ] ← 0; S ← {𝑢 };𝑄.𝑝𝑢𝑠ℎ (𝑢) ;
3 while𝑄 ≠ ∅ do
4 𝑤 ← 𝑄.pop() ;
5 for each 𝑣 ∈ BNS(𝑤) do
6 dist[𝑣 ] ← min{dist[𝑣 ], dist[𝑤 ] + 𝜙 ( (𝑤, 𝑣),𝐺′) };
7 if 𝑣 ∉ S ∧ checkDel(𝑢, 𝑣,Vk (𝑣), dist[𝑣 ]) then
8 𝑄.push(𝑣) ; S ← S ∪ {𝑣 };
9 for each 𝑣 ∈ S in decreasing order of 𝜋 (𝑣) do
10 processDel(𝑣,BNS(𝑣),Vk ( ·)) ; delete 𝑢 from Vk (𝑣) ;

11 Procedure checkDel(𝑢, 𝑣,Vk (𝑣), 𝑑)
12 𝑣𝑘 ← the vertex with the largest distance to 𝑣 in Vk (𝑣) ;
13 if dist(𝑣, 𝑣𝑘 ) < 𝑑 ∨𝑢 ∉ Vk (𝑣) then return False;
14 else return True;

15 Procedure processDel(𝑣,BNS(𝑣),Vk ( ·))
16 S′ ← {∪𝑤∈BNS(𝑣)Vk (𝑤) } \ Vk (𝑣) ;
17 𝑣′ ← argmin𝑣′∈S′dist(𝑣′, 𝑣) ;
18 insert 𝑣′ into Vk (𝑣) ;

Object Deletion. Algorithm 5 shows the algorithm for candidate

object deletion, which follows a similar framework as Algorithm 4.

The main dierence is in line 10. When the vertices whose Vk (𝑣)
need to be updated are determined, Algorithm 5 nds a new vertex

𝑣 ′ to replace 𝑢 in Vk (𝑣) by procedure processDel and deletes 𝑢

from Vk (𝑣). For procedure processDel, it is easy to know that 𝑣 ′

must be the vertex in {∪𝑤∈BNS(𝑣)Vk (𝑤)} \Vk (𝑣) with the smallest

distance to 𝑣 according to Property 1, thus it rst retrieves such set

of vertices, namely S′ (line 16), and nds the vertex in S′ with the

smallest distance to 𝑣 (line 17, since the vertices are processed in

decreasing order of 𝜋 (𝑣), dist(𝑣 ′, 𝑣) can be obtained in the similar

way as line 7-8 of Algorithm 3 following the same idea). At last, it

inserted 𝑣 ′ into Vk (𝑣) in line 18.

Theorem 6.4. Given the BN-Graph 𝐺 ′ and its corresponding
KNN-Index of a road network 𝐺 , Algorithm 5 maintains the KNN-
Index correctly when an object 𝑢 is deleted.
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Proof: Algorithm 5 (line 5-6) can guarantee dist[𝑣] for ∀𝑣 ∈ S
is the distance between 𝑢 and 𝑣 , before processing each 𝑣 ∈ S (line

9-10). Even though when using checkDel(𝑣,Vk (𝑣), 𝑑) (line 7), 𝑑

may not be the distance between 𝑢 and 𝑣 and checkDel(𝑣,Vk (𝑣), 𝑑)
returns True, the nal result can not be aected. Since dist(𝑢, 𝑣) ≤ 𝑑 ,

checkDel returning True denotes that 𝑑 < dist(𝑣, 𝑣𝑘 ). Therefore,
we have dist(𝑢, 𝑣) < dist(𝑣, 𝑣𝑘 ). Overall, Algorithm 5 maintains the

KNN-Index correctly when an object 𝑢 is deleted. �

Theorem 6.5. Given the BN-Graph 𝐺 ′ and its corresponding
KNN-Index of a road network 𝐺 , when an object 𝑢 is deleted, Al-
gorithm 5 maintains the KNN-Index in 𝑂 (Δ · 𝜏 ′ · 𝑘), where Δ = |S|
and 𝜏 ′ = max𝑣∈𝑉 (𝐺) |BNS(𝑣) |.

Proof: The time complexity of checkDel(𝑢, 𝑣,Vk (𝑣), 𝑑) (line 11-
14) is 𝑂 (1). In the for loop (line 3-8), for each vertex 𝑤 , line 5-8

requires𝑂 (𝜏 ′) time and the loop terminates in at most Δ iterations.

Therefore, the for loop (line 3-8) requires 𝑂 (Δ · 𝜏 ′) time. For the

procedure processDel(𝑣,BNS(𝑣),Vk (·) (line 15-18), retrieving S′
from {∪𝑤∈BNS(𝑣)Vk (𝑤)} \ Vk (𝑣) needs 𝑂 ( |BNS(𝑣) | · |Vk (𝑤) |) =
𝑂 (𝜏 ′ · 𝑘) time (line 16). At the same time with retrieving S′, the
vertex 𝑣 ′ with the smallest distance from S′ can be achieved (line

17). Line 18 requires 𝑂 (1) time, since dist(𝑣, 𝑣 ′) ≤ dist(𝑣, 𝑣𝑘 ) and
𝑣 ′ should be inserted into the end of Vk (𝑣). Therefore, the time

complexity of processDel(𝑣,BNS(𝑣),Vk (·) (line 15-18) is 𝑂 (𝜏 ′ · 𝑘).
In the for loop (line 9-10), deleting 𝑢 from Vk (𝑣) requires𝑂 (𝑘), and
the loop stops in Δ iterations. Therefore, the for loop (line 9-10)

requires𝑂 (Δ · 𝜏 ′ ·𝑘) time. In summary, the overall time complexity

of Algorithm 4 is 𝑂 (Δ · 𝜏 ′ · (1 + 𝑘)) = 𝑂 (Δ · 𝜏 ′ · 𝑘). �

7 EXPERIMENTS
In this section, we compare our algorithms with the state-of-the-art

method. All experiments are conducted on a machine with an Intel

Xeon CPU and 384 GB main memory running Linux.

Table 1: Datasets in Experiments

Dataset Name 𝑛 𝑚 𝜂 𝜏 𝜌

New York City NY 264,346 733,846 725 56 116

San Francisco Bay Area BAY 321,270 800,172 388 45 100

Colorado COL 435,666 1,057,066 524 65 122

Florida FLA 1,070,376 2,712,798 556 49 85

Northwest USA NW 1,207,945 2,840,208 619 49 119

Northeast USA NE 1,524,453 3,897,636 1096 81 149

California and Nevada CAL 1,890,815 4,657,742 795 93 204

Great Lakes LKS 2,758,119 6,885,658 1674 124 327

Eastern USA EUS 3,598,623 8,778,114 1089 102 233

Western USA WUS 6,262,104 15,248,146 1356 128 276

Central USA CTR 14,081,816 34,292,496 2811 234 531

Full USA USA 23,947,347 58,333,344 3315 257 587

Datasets.We use twelve publicly available real road networks from

DIMACS
1
. In each road network, vertices represent intersections

between roads, edges correspond to roads or road segments, the

weight of an edge is the physical distance between two vertices.

Table 1 provides the details about these datasets. Table 1 also shows

the value of 𝜂, 𝜏 and 𝜌 for each road network. Clearly, 𝜂, 𝜏 and 𝜌

are small in practice.

1
http://users.diag.uniroma1.it/challenge9/download.shtml

Algorithms. We compare the following algorithms:

• TEN-Index: The state-of-the-art algorithm for𝑘NNqueries queries,

which is introduced in Section 3.

• KNN-Index: Our proposed algorithms for 𝑘NN queries. For the

index construction algorithms, we further distinguish between

KNN-Index-Cons (Algorithm 2) andKNN-Index-Cons+(Algorithm
3) for comparison.

• GLAD: Another algorithm for 𝑘NN queries proposed in [26],

which is introduced in Section 8.

• Dijkstra-Cons: Using Dijkstra’s Algorithm to compute top-𝑘

nearest neighbors for all vertices in a given graph𝐺 to construct

the KNN-Index as discussed in Section 5.

• TEN-Index-Cons: Using TEN-Index to compute top-𝑘 nearest

neighbors for all vertices in a given graph 𝐺 to construct the

KNN-Index as discussed in Section 5.

All the algorithms are implemented in C++ and compiled in GCC

with -O3. The time cost is measured as the amount of wall-clock

time elapsed during the program’s execution. If an algorithm cannot

nish in 6 hours, we denote the processing time as NA.
Parameter Settings. Following previous 𝑘NN works [17, 26, 33],

we randomly select candidate objects in each dataset with a density

𝜇 = |M|/|𝑉 |. The candidate density 𝜇 and the query parameter 𝑘

settings are shown in Table 2, default values display in bold and

italic font.

Table 2: Parameter Settings
Parameters Values

𝜇 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001
𝑘 100, 80, 60, 40, 30, 20, 10
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Figure 7: Query Processing Time by Varying 𝑘

Exp-1: Query Processing Time when Varying 𝑘 . In this exper-

iment, we evaluate the query processing time of our algorithms

KNN-Index, the SOTA solutions TEN-Index and GLADby varying

the parameter 𝑘 . We randomly generate 10, 000 queries and report

average running time of each algorithm in Figure 7. Due to the

limited space, only the results on four largest datasets are shown,

and the remainings can be found in the technique report [51].

As shown in Figure 7, our algorithm is the most ecient one

compared with TEN-Index and GLADand the growth for query

processing time of TEN-Index and GLADis sharper than that of

KNN-Index with increase of 𝑘 . This is consistent with our analysis
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in Section 4.2. For GLAD, it runs out of memory on USA, which
means it is unable to handle large road networks. Thus, experimental
results of GLAD on USA are not shown afterwards.
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Figure 9: Query Processing Time by Varying 𝜇 = |M|/|𝑉 |

Exp-2: Query Processing TimewhenVaryingM.We also com-

pare ourKNN-Indexwith the SOTA solutions TEN-Index andGLAD
by varying objectM (the density 𝜇 = |M|/|𝑉 |, therefore, we vary
M by changing 𝜇). We randomly generate 10, 000 queries for every

dataset. We report the average processing time of each algorithm

in Figure 9.

As shown in Figure 9, the query processing time of our algorithm

is stable with the decrease of candidate objectM. However, the

query processing time of TEN-Index and GLAD increases signi-

cantly with the decrease of candidate density 𝜇. For example, when

𝜇 = 0.0001, KNN-Index achieves 2 orders of magnitude speedup

compared with TEN-Index, and KNN-Index achieves up to 4 orders

of magnitude speedup compared with GLAD. Moreover, the more

sparsely the object set distributes, the larger speedup is. This is

because our proposed algorithm is optimal regarding query pro-

cessing as analyzed in Section 4.2.

Exp-3: Indexing Time. In this experiment, we evaluate the in-

dexing time for KNN-Index-Cons+, TEN-Index, TEN-Index-Cons,
GLAD, KNN-Index-Cons and Dijkstra-Cons. Figure 8 shows that
KNN-Index-Cons+ is the fastest in all datasets, and achieves up to 2

orders of magnitude speedup compared with TEN-Index andGLAD.
For example, KNN-Index-Cons+ only takes 283.78s for USA while

TEN-Index costs 19655.68s. TEN-Index-Cons and TEN-Index takes
the similar indexing time as TEN-Index-Cons depends on the TEN-
Index. They both rely on H2H-Index. Also, the indexing time of

GLADand TEN-Index are similar, since GLADconstructs the addi-
tional grid index on the basis of H2H-Index. As shown in Figure 8,

KNN-Index-Cons cannot complete the index construction within

10-2
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KNN-Index
TEN-Index

GLAD

Figure 10: Index Size (GB)

6 hours for CTR and USA. And for USA GLADis out of memory.

Dijkstra-Cons cannot nish index construction within 6 hours for

NE, LKS, EUS,WUS, CTR and USA. Although index construction

frameworks in KNN-Index-Cons and KNN-Index-Cons+ are simi-

lar, KNN-Index-Cons consumes much more time compared with

KNN-Index-Cons+. For example, forWUS,KNN-Index-Cons+ only
costs 50.15s, but KNN-Index-Cons costs 42061.20s. This is because
KNN-Index-Cons rst uses BFS to construct G′> (𝑢) for each ver-

tex 𝑢 ∈ 𝑉 (𝐺), and then uses Dijkstra’s Algorithm to compute

dist(𝑢, 𝑣) for ∀𝑣 ∈ 𝑉 (G′> (𝑢)) when constructing the index. How-

ever, KNN-Index-Cons+ adopts a bidirectional construction strat-

egy to avoid the time-consuming BFS search and the computation

of Dijkstra’s Algorithm during the index construction. The experi-

mental results demonstrate the eciency of our proposed algorithm

regarding index construction.

Exp-4: Index Size. In this experiment, we evaluate the index size

forKNN-Index, TEN-Index andGLAD. The experimental results for

the 12 road networks are shown in Figure 10. Figure 10 shows the in-

dex size of KNN-Index is much smaller than that of TEN-Index and
GLAD. For example, for the dataset USA, the KNN-Index size is

only 3.57 GB while TEN-Index size is 169.28 GB, which is 47.42

times smaller than that of TEN-Index.
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Exp-5: Object Update. In this experiment, we evaluate the perfor-

mance of our update algorithms. To generate updated objects, we

randomly select an object 𝑢 with either insertion or deletion. We

skip the update if 𝑢 ∉M for deletion and 𝑢 ∈ M for insertion. For

each dataset, we repeat this step until 10, 000 updates are generated.

The average time for each update is reported in Figure 11. The

update time of KNN-Index is slower than that of TEN-Index and
that of GLAD, since our update algorithm needs more time to com-

pute the distance between each vertex and the updated objects. As

analyzed in Section 3, TEN-Index contains H2H-Index, H2H-Index
can compute the distance between any two vertices eciently.

Therefore, based on H2H-Index, TEN-Index can nish insertion or
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deletion in the shorter time. As GLAD only needs to update objects’

grid index, the update performance is better than other approaches.
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Figure 12: Indexing Time of Dierent Vertex Orders (s)

Exp-6: Indexing Time of Dierent Vertex Total Orders. We

evaluate index construction performance using dierent total or-

ders. We adopt three total orders: (1) degree-based total order in

which the vertex with the smallest degree is processed rst; (2)

id-based total order in which the vertex with the smallest id is pro-

cessed rst; (3) and our proposed total order. As shown in Figure 12,

the performance of our order is much better than others, which are

consistent with our analysis in Section 5.2.

8 RELATEDWORK
With the proliferation of graph applications, research eorts have

been devoted to many problems in analyzing graph data [6, 56–

58]. As a fundamental problem in graph data analysis, a direct

approach to answer a 𝑘NN query is the Dijkstra’s algorithm [15].

Nevertheless, this approach is inecient obviously. Therefore, a

plethora of index based Dijkstra-search enhanced solutions [11,

23, 26, 34, 40, 60] are proposed in the literature, which generally

adopts the following search framework for a given query vertex 𝑢:

(1) Initialize the distance for vertices 𝑣 it connected as their edge

weights and other vertices as +∞. (2) Maintain two vertex sets

𝑆 and 𝑇 . 𝑆 contains vertices whose distance to 𝑢 is computed. 𝑇

contains vertices whose distance to 𝑢 is not computed yet, but have

neighbors in 𝑆 . Initially, 𝑢 is inserted in 𝑆 and the neighbors of 𝑢

are inserted in 𝑇 . (3) Select one node 𝑣 with the smallest distance

to 𝑢 from 𝑇 , and add it to 𝑆 . Then, the neighbors of 𝑣 are inserted

into 𝑇 . Here, dierent indexing methods add dierent restrictions,

pruning unnecessary vertices to be inserted in 𝑇 , to improve the

query processing performance. (4) Repeat (3) until |𝑆 | = 𝑘 .

Specically, IER [34] uses Euclidean distance as a pruning bound

to acquire the 𝑘NN results. INE [34] improves IER’s Euclidean dis-

tance bound by expending searching space from the query location.

[11] adapts a Euclidean restriction-based method to deal with con-

tinuous𝑘 nearest neighbor problem. [11] divides themap into𝑁×𝑁
grids and records which vertices and edges belong to some grid.

Given a query vertex, the xed distance between grids is used to

lter a proximate range. ROAD [23] separates the input graph 𝐺

into many subgraphs hierarchically and skips the subgraphs with-

out candidate objects to speedup 𝑘NN query processing. G-tree
[60] adapts a binary tree division method to divide a graph into

two disjoint subgraphs recursively until the number of vertices in a

tree node is smaller than a predened parameter. In each subgraph,

G-tree maintains a distance matrix which stores distance between

borders and vertices, which is used to prune unnecessary vertex

exploration during the Dijkstra search. V-tree [40] constructs a

similar structure as G-tree but adds additional 𝑘 nearest objects for

borders, which leads to a faster query processing thanG-tree. Based
on the contraction hierarchy (CH) [16], TOAIN [26] constructs a

𝑘DNN index recording the top-𝑘 nearest neighbors for each vertex

𝑢 from objects whose ranks are lower than 𝑢, where the rank is

dened by the contraction hierarchy. To answer a 𝑘NN query with

vertex 𝑢, TOAIN performs Dijkstra search from 𝑢 following the CH
and maintains a candidate result set 𝑅. When visiting a vertex 𝑣 , if

there is a vertex 𝑤 in the 𝑘DNN of 𝑣 such that the distance of 𝑤

and 𝑢 is smaller than the 𝑘-th distance to 𝑢 in 𝑅, TOAIN updates

𝑅. The processing nishes when the Dijkstra search is far enough

or all vertices are explored. Although the methods design dierent

pruning algorithms to reduce the Dijkstra search space in step (3),

the number of explored vertices cannot be well-bounded. In worst

case, these methods degenerate into Dijkstra’s algorithm, which

leads to long query processing delay unavoidably. For TOAIN, asit
constructs 𝑘DNN based on CH, which causes a relatively huge

index size. Additionally, the vertex ranking method in TOAIN em-

ploys Dijkstra’s Algorithm, which incurs an expensive time cost

regarding index construction. The experimental results of [33] also

verify above discussions.

Apart from the Dijkstra-search enhanced solutions, [24] exploits

the massive parallelism of GPU to accelerate the 𝑘NN query pro-

cessing. GLAD [17] partitions the road network into 2
𝑥 × 2𝑥 girds

based on the geographical coordinate of each vertex. When an-

swering a 𝑘NN query, it starts the search from the grid containing

the query vertex and updates the candidate result via probing ver-

tices in neighbor grids iteratively. It avoids the exploration to the

vertices in a grid if the minimum Euclidean distance between any

vertex inside the grid and the query vertex is not less than the

largest distance in the candidate result. As GLAD needs to use

H2H-Index to compute the exact shortest distance to select the

nal exact 𝑘NN results, the query processing is long. Moreover,

since GLAD depends on H2H-Index, the index size of GLAD is

huge and the indexing time of GLAD is long, which are similar to

TEN-Index [33]. TEN-Index [33] is the state-of-the-art approach to

𝑘NN query in road network, which has been discussed in Section 3.

[25] extend TEN-Index [33] and GLAD [17] onto time-dependent

road networks. [19] extends tree decomposition method [32] to

deal with 𝑘NN search on ow graph. Besides, continuous 𝑘NN

query problem on road network is also studied in the literature

[8, 9, 12, 19–22, 28, 39, 59]. Dierent from our setting, these stud-

ies generally assume that the query vertex is moving on the road

network, and thus are orthogonal to ours.

9 CONCLUSION
Motivated by existing complex-index-based approaches for classical

top 𝑘 nearest neighbors search in road networks suers from the

long query processing delay, oversized index space, and prohibitive

indexing time, we embrace minimalism and design a simple index

for 𝑘NN query. The index has a well-bounded space and supports

progressive and optimal query processing. Moreover, we further

design ecient algorithms to support the index construction. Ex-

perimental results demonstrate the signicant superiority of our

index over the state-of-the-art approach.
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