
Topology-preserving Graph Coarsening: An Elementary
Collapse-based Approach

Yuchen Meng
Beijing Institute of Technology

Beijing, China
meng_yc@163.com

Rong-Hua Li
Key Laboratory of Intelligent Supply
Chain Technology, Shenzhen, China

Beijing Institute of Technology
Beijing, China

lironghuabit@126.com

Longlong Lin
Southwest University
Chongqing, China

longlonglin@swu.edu.cn

Xunkai Li
Beijing Institute of Technology

Beijing, China
cs.xunkai.li@gmail.com

Guoren Wang
Beijing Institute of Technology

Beijing, China
wanggrbit@126.com

ABSTRACT
Graph coarsening techniques aim at simplifying the graph structure
while preserving key properties in the resulting coarsened graph,
have been widely used in graph partitioning and graph neural net-
works (GNNs). Existing graph coarsening techniques mainly focus
on preserving cuts or graph spectrums. In this paper, we propose a
new method that focuses on preserving graph topological features.
In particular, we develop a novel graph coarsening approach, called
Graph Elementary Collapse (GEC), by extending the concept of
elementary collapse in algebraic topology to graph analysis. With
this novel method, we can ensure a kind of equivalence relationship
called homotopy equivalence of the graph during the coarsening
process, thereby preserving numerous topological properties, in-
cluding connectivity, rings, and voids. To enhance the scalability,
we also propose several carefully-designed optimization techniques
to reduce the time and memory consumption of our approach. Ex-
tensive experiments on several real-world datasets demonstrate the
effectiveness and efficiency of our proposed method across various
GNN prediction tasks.

PVLDB Reference Format:
Yuchen Meng, Rong-Hua Li, Longlong Lin, Xunkai Li, and Guoren Wang.
Topology-preserving Graph Coarsening: An Elementary Collapse-based
Approach. PVLDB, 17(13): 4760 - 4772, 2024.
doi:10.14778/3704965.3704981
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Shiina-Mashiro-M/GEC.

1 INTRODUCTION
Graph coarsening refers to the operation of reducing a graph to
a smaller one while preserving certain graph characteristics. This
technique finds applications in diverse fields including graph par-
titioning [20, 40] and scaling up graph neural networks (GNNs)

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704981

training [23, 29]. Perhaps, the current most prevalent application
of graph coarsening is to enhance the scalability of GNNs.

Indeed, GNNs have achieved remarkable performance in nu-
merous real-world applications, including node classification, link
prediction, and graph clustering [6, 12, 19, 31–33, 37, 45, 54]. How-
ever, most existing methods cannot handle massive graphs because
of the prohibitively high time and space costs. For instance, the
vanilla GNNs [27] rely heavily on the unwieldy message-passing
mechanism between neighboring nodes for iteratively updating
each node embedding vector. On top of that, the vanilla GNNs also
require storing redundant intermediate node embedding vectors for
subsequent training, which consumes huge GPU memory spaces.
Therefore, how to extend the vanilla GNNs to massive graphs has
become a hot topic for both industrial and academic communities.

Many strategies have been proposed to improve GNN’s scala-
bility. One crucial direction is to implement message-passing only
between the neighbors within a sampled mini-batch, thereby re-
ducing the receptive fields. For example, the seminal GraphSAGE
[18] aggregates a limited subset of neighboring nodes, usually be-
tween 10 and 25, per target node. Subsequently, several follow-up
works have attempted to enhance GraphSAGE through optimized
sampling processes, improved stochastic estimations, and other
extensions [7, 57]. Another related technique is subgraph sampling,
where a small subgraph is carefully sampled in each training it-
eration, followed by full-batch training on this subgraph [10, 55].
However, performing random sampling in each epoch requires mul-
tiple random memory accesses, which is not GPU-friendly [39].
The second approach is to decouple the feature propagation and
transformation by removing the intermediate nonlinear activation
functions [49]. Thus, this approach can simplify the vanilla GNNs
to a graph diffusion process followed by a classifier. The graph
diffusion process can be pre-computed and stored, facilitating the
training of the classifier using naive stochastic optimization [2].
However, the decoupling of graph diffusion and nonlinear feature
transformation restricts the full expressive power of GNNs [50].

In addition to the aforementionedmethods which aim to improve
the scalability of GNNs at the model level, other researchers have
explored a more direct and generic approach to further improve
the scalability of GNNs by reducing the size of the graph (Section

4760

https://doi.org/10.14778/3704965.3704981
https://github.com/Shiina-Mashiro-M/GEC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704981
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Topology
Based

Spatial
Based

Spectral
Based

（ b ）

（ a ）

（ c ）

Figure 1: Illustration of different graph coarsening methods.
The nodes enclosed by dashed lines in the original graph are
mapped to a super node in the coarsened graph.

6). By combining this approach with those above sampling-based
or decoupled methods, they can achieve greater improvements in
scalability [26, 56]. Among them, the graph coarsening technique
has gained significant attention recently due to its nice structure
properties and solid theoretical foundation [23, 42, 46, 47]. By em-
ploying graph coarsening techniques, they can generate a coarsened
graph that approximately preserves some of the spectral or spatial
properties of the original graph. Subsequently, they train a GNN
exclusively on this coarsened graph and transfer the trained model
parameters from this downsized model to the GNN defined on the
original graph to perform inference.

Despite the significant success, we observe that most existing
graph coarsening approaches mainly focus on specific graph prop-
erties, such as cuts, eigenvectors, or eigenvalues [23, 34] while
neglecting several effective topological properties (e.g. connectivity,
rings, and voids). An example is illustrated in Figure 1. For the
Spatial method shown in Figure 1(a), we employed the well-known
“Variational Neighborhood" [23] approach, while the “kron" algo-
rithm [34] is picked as the Spectral method as illustrated in Figure
1(b). “Variational Neighborhood" and “kron" lost rings (formed by
the red edges in the figure) during the coarsening process leading
to the loss of critical topological structures. On the other hand,
the coarsening result of our proposed topology-based method is
illustrated in Figure 1(c), which perfectly preserves all rings. These
overlooked topological structures hold significant functions. For
example, in the field of algebra, they can be viewed as the basis
of groups formed by data points and play a crucial role in data
analysis [38]. Besides, many researchers have empirically demon-
strated the importance of these topological features for downstream
tasks. For example, [51, 52] demonstrated that rings can facilitate
more accurate graph representation learning and relationship pre-
diction; [1, 9, 59] showcased the powerful capability of topological
structures in graph classification tasks, especially in the field of
biomedical research. Furthermore, Figure 2 also provides evidence
for the importance of these topological features. Specifically, in
Figure 2, the “Cut Bridges" means we randomly removed a certain
proportion of bridges in the graph to disrupt the connectivity be-
tween nodes; the “Cut edges in ring" means we randomly prune
edges to breach a certain proportion of rings in the graph; the “Cut
other edges" served as the control group, where the same number
of edges were randomly removed. The training performance of the
“Cut other edges" is apparently better than the results in the other

PubmedCora

Figure 2: Experiments on topological structures.

two experiments , thereby demonstrating the importance of the
topological structures.

Therefore, preserving the graph’s topological properties during
the graph coarsening may enhance performance but also bring
challenges. To address this dilemma, we propose a novel Graph
Elementary Collapse (GEC) operator based on topological theory
[36], which can achieve a continuous transformation on the graph,
allowing the graph to maintain a kind of equivalence relationship
called homotopy equivalence with the original graph while reducing
the graph scale. Homotopy equivalence is an equivalence relation-
ship widely employed in the field of algebraic topology that can
maintain a series of homotopy type invariance, including connec-
tivity, rings, and voids. By ensuring homotopy equivalence between
the coarsened graph and the original graph during the graph coars-
ening process, we can achieve a more comprehensive preservation
of properties within the graph.

To our knowledge, we are the first to develop a topological
method for graph coarsening. Moreover, to accommodate mas-
sive graphs, we develop several carefully-designed optimization
strategies for the graph elementary collapse operator. These opti-
mizations have resulted in a significant reduction in the required
runtime. In a nutshell, we highlight our main contributions as fol-
lows: (1) Novel Perspective. We propose a new graph coarsening
method that focuses on preserving graphs’ topological structures.
Our method introduces a novel topological perspective, which is
commonly used in the field of algebraic topology, known as ho-
motopy equivalence to ensure the preservation of structural infor-
mation in the graph. To the best of our knowledge, our approach
is the first graph coarsening method that can preserve the topo-
logical features of the original graph. (2) New Operator and its
Optimizations.With the help of topological theory, we propose
a novel graph analysis operator, called graph elementary collapse,
which can achieve continuous changes on the graph and guarantee
the preservation of the graph’s high-dimensional topological struc-
tures. Besides, we also optimize the memory and time consumption
of the proposed graph elementary collapse operator to enhance
its scalability for massive graphs. (3) Extensive Experiments.
We extensively evaluate our solutions on various real-world net-
works, demonstrating their superiority over existing state-of-the-
art graph coarsening methods across diverse applications. Notably,
our method achieves 5% improvement in accuracy and 100× reduc-
tion in memory usages compared to the state-of-the-art methods.

4761

2 PRELIMINARIES
2.1 Basic Concepts
A graph is denoted as G =(V, E), where V ={v1, v2, ..., vn} represents
the node set and E ∈ R |V |× |V | is the edge set. Let n = |𝑉 | andm = |𝐸 |
be the number of the nodes and edges of G respectively. In the
context of graph learning methods, a graph dataset is represented
by T = (G,X, Y), where X ∈ R |V |×f is a matrix of node features, f
denotes the dimension of feature and Y ∈ {0, ...,𝐶 − 1} |V | denotes
the label of nodes. The constants 𝑓 and 𝐶 are the dimensions of
node features, and the number of classes respectively.

Graph coarsening can generate a smaller graph G′ = (𝑉 ′, 𝐸′)
with 𝑛′ (<< n) nodes while preserving some essential characteris-
tics of the original graph G as much as possible. To illustrate this
process, we provide a toy example as shown in Figure 1. A distinc-
tive characteristic of graph coarsening is that each node vi ∈ V is
mapped to a specific node 𝑣 ′i ∈ 𝑉

′ and forms a super node. Pre-
vious studies on graph coarsening focus primarily on preserving
some of the spectral or spatial graph properties of the coarsened
graph (Section 6). In this work, we mainly focus on the problem of
graph coarsening by preserving the topological features of the input
graph. In the following, we introduce several important topological
definitions that will be frequently used in our method.

2.2 Elementary Collapse on Simplicial Complex
Definition 2.1. (Simplex [13]) In the Euclidean space Rn, for any

k > 0, if a set 𝑃 of k + 1 affinely independent points can form a
convex hull, it is called a k-simplex, k is called the dimension of the
simplex. For 0 ≤ k′ ≤ k, a 𝑘′-face of k-simplex 𝜎 is a 𝑘′-simplex
that is the convex hull of a nonempty subset of 𝑃 .

Definition 2.2. (Simplicial Complex [13]) A simplicial complex
K is a set containing finitely many simplices that satisfy the follow-
ing two restrictions: K contains every face of each simplex in K ;
For any two simplices 𝜎, 𝜏 ⊆ K , their intersection 𝜎 ∩ 𝜏 is either
empty or a face of both 𝜎 and 𝜏 .

The dimension of K , denoted by 𝑑𝑖𝑚(K), is determined by the
maximum dimension among the simplices in K . When the maxi-
mum dimension of the simplices inK is k, we denote it as simplicial
k-complex. Another crucial concept in our method is the free face.

Definition 2.3. (Free Face) LetK be a simplicial complex. If there
are two simplices 𝜎, 𝜏 ∈ K satisfy the following two conditions:
𝜏 ⊆ 𝜎 and 𝑑𝑖𝑚(𝜏) < 𝑑𝑖𝑚(𝜎); 𝜎 is a maximal face (i.e. a face is not
contained by any other face) of K and no other maximal face of K
contains 𝜏 . then 𝜏 is called a free face.

Definition 2.4. (Elementary Collapse) For a maximal face 𝜎 ∈
K , if we remove two simplices 𝜏 and 𝜎 where 𝜏 ⊆ 𝜎 is a free face
and 𝑑𝑖𝑚(𝜏) = 𝑑𝑖𝑚(𝜎) − 1, it is called an elementary collapse. We
say K collapses to L if L can be obtained from K via a sequence
of elementary collapse.

In the rest of this paper, the term “collapse” specifically refers
to elementary collapse (Definition 2.4). Such a collapse method
possesses a crucial characteristic, as stated in the following lemma.

Lemma 2.5. (Homotopy Equivalence [36]) Let L ⊂ K be a
subcomplex collapsed from K via an elementary collapse, we can
derive that L and K are homotopy equivalent.

A

C

B

E

D

F

HI

G

4-Clique ABCD

3-Clique ABD ACD BCDABC CDE

A

C

B

E

D

F

HI

G

(a) Example Undirected Graph (b) Example Clique Complex

(c) Relationship Graph of Cliques Inside the Graph

2-Clique AB CDAC BCAD BD CE DE DG EF FG GH HI

1-Clique DA B C E F G H I

Figure 3: An example of the definitions used in our proposed
graph elementary collapse method.

We now provide a simple explanation of homotopy equivalence.
Homotopy equivalence refers to a type of weak equivalence ob-
served between topological spaces. When two topological spaces
are homotopy equivalent, they share certain invariant topological
properties, from neighborhood relationships and global connectiv-
ity to Betti numbers, fundamental groups, and homology groups.
From a graph perspective, we can roughly describe it as follows:
if two graphs are homotopy equivalent, it means that any corre-
sponding routes between the two graphs can be transformed into
each other through continuous topological deformations. While
the individual characteristics of specific nodes may vary between
these spaces, the preserved high-dimensional features mentioned
above enable the collapsed graph to retain essential information
about the original graph. This preservation allows us to study the
neighborhood relationships and global connectivity of the nodes
by examining the collapsed graph.

3 THE PROPOSED SOLUTIONS
In this section, we first propose a novel operator called Graph
Elementary Collapse (GEC), which extends the abstract concepts
involved in elementary collapse to graphs (Section 3.1). Then, we
explain how GEC is applied to graph coarsening (Section 3.2).

3.1 Graph Elementary Collapse
In the previous section, we provided a generalized definition of
Elementary Collapse. To apply them as graph coarsening and to
facilitate readers’ understanding of the concepts involved, we will
use the Clique Complex (a specific common type of simplicial com-
plex) for subsequent discussions. Specifically, given a graph G =

(V, E), we can transform G into a clique complex K according to
the following rules: The 0-simplices of K correspond to the nodes
in V; The 1-simplices of K correspond to the edges in E; For any
k > 1, a k-simplex 𝜎 of K corresponds to the (k+1)-clique in G.

By defining clique complex on the graph, we can treat all (k+1)-
cliques as 𝑘-simplices. To facilitate readers’ understanding, we di-
rectly use the term ‘clique’ to interpret the definitions in the fol-
lowing paper. Next, we use several examples to illustrate how to
combine the concept of cliques with the definitions in Section 2.2.

4762

A

D

GB

F

C

E

DA B C E F

AB CDAC BC CE EFDF FG

G

ABC

Clique
Complex

Relationship
Graph

DA B C E F

AB CDAC CE EFDF

DC E F

CD CE EFDF

D

C
E

A

D

B
C

E

F

F

A

D

GB

F

C

E

D

A, B, C E
A

D

B
C

E

F, G

F, G

Undirected
Graph

Figure 4: Example of graph elementary collapse. The “Undi-
rected Graph” part shows the change of G during the collapse
process. The “Clique Complex” part represents the clique
complex K corresponding to graphs. The “Relationship
Graph” shows the inclusion relationships between cliques.

Algorithm 1: Build up the Relationship Graph
Input: G =(V, E)
Output: The relationship graph R of the cliques in G.

1 Initialize relationship graph R ← (V𝑅 = ∅, E𝑅 = ∅) ;
2 Initialize nodes in current clique𝑄 ← ∅;
3 Initialize common neighbors of the nodes in the clique N ← V;
4 R ← 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (G, R,𝑄, V) ;
5 Procedure 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (G, R,𝑄,N)
6 Let N be {𝑣1, 𝑣2, ...}, R be (V𝑅 , E𝑅) ;
7 for 𝑖 = 1 to |N | do
8 𝑄′ ← 𝑄 ∪ {𝑣𝑖 } ;
9 Let N𝑣𝑖

be the neighbors of 𝑣𝑖 ;
10 N′ ← N ∩ N𝑣𝑖

\ {𝑣1, ..., 𝑣𝑖 } ;
/* Update the nodes and edges in the relationship graph, (Q’, Q)

means that Q is a face of Q’ */

11 V𝑅 ← V𝑅 ∪ {𝑄′ } ;
12 E𝑅 ← E𝑅 ∪ { (𝑄′,𝑄) };
13 R ← 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 (G, R,𝑄′,N′) ;
14 return R

Example 3.1. Figure 3(a) displays an undirected graph G =(V, E),
while Figure 3(b) illustrates the corresponding Clique Complex of
graph G. The large cliques {𝐴, 𝐵, 𝐶 , 𝐷} and {𝐶 , 𝐷 , 𝐸} correspond
to the yellow 3-simplex and the green 2-simplex in Figure 3(b). In
Figure 3(c), we enumerate all cliques that exist in the graph G.
Figure 4 illustrates the process of elementary collapse on the clique
complex. We can observe that not all maximal cliques can undergo
collapse. For example, {𝐶 , 𝐷} cannot collapse because its faces {𝐶}
and {𝐷} are also faces of {𝐴, 𝐵, 𝐶} and {𝐷 , 𝐹 }, respectively. In the
first graph, there are two maximal cliques with free faces: {𝐹 , 𝐺 }
which has only one free face {𝐺 } and {𝐴, 𝐵, 𝐶} that have three free
faces including {𝐴, 𝐵}, {𝐴, 𝐶}, and {𝐵, 𝐶}. The cliques undergoing
collapse are marked with red arrows.

Build Up the Clique Relationship. From Example 3.1, we can see
that the graph elementary collapse relies heavily on the relationship
graph of cliques. Therefore, we propose Algorithm 1 to construct
the relationship graph of cliques. Note that Algorithm 1 is self-
explanatory, so we omit its explanation for brevity.

Once the graph G has been transformed into a relationship
graph R, we can proceed with a series of elementary collapses on
R. During this process, we observe a simultaneous reduction in the
number of nodes and edges while ensuring homotopy equivalence.

Collapse

Shorten Rings
and ChainsA

D

C

B

G

F

E K

JI

A

D, E

C

B
H, K

JF, I

A-K

Cut Cut

A

D

C

B

G

F

E

H

JI

DA B C E F G H I J

AB CDAC BD DE EF FG GH GJ IJHI

AB AC BC CEBD BEAD AF CF DE DF EF

ABC BDEABD ACF ADFBCE CEF DEF

DA B C E F

(a)
(b)

A

D

C

B

E

F

(c)

A

D, E

C

B
H, K

JF, I

Breach Rings

H

Figure 5: Illustration of possible reasons why collapse cannot
proceed further and how we address this obstacle.

Additionally, since our goal is graph coarsening, during the collapse
process, when we are going to remove a node from the graph, we
will map it to its only neighbor, resulting in a smaller graph G′ =
(𝑉 ′, 𝐸′) with supernodes. This process directly provides the map-
ping relationship which is useful for graph coarsening applications
shown in the following sections. The “Undirected Graph” part in
Figure 4 shows how we build up the supernode. When we are going
to collapse the clique pair {𝐴, 𝐵} and {𝐵}, we also map the node 𝐵 to
its neighbor 𝐴, forming a super node.

3.2 GEC-based Graph Coarsening
Section 3.1 has introduced the key ideas and steps of the proposed
graph During the collapse process, based on the theoretical sup-
port provided by Lemma 2.5, our GEC method can effectively pre-
serve rings and voids of the original graph, enabling more effective
preservation of the graph’s topological features. However, such
preservation also means GEC cannot arbitrarily reduce the number
of nodes and edges in G to any desired percentage. The following
example illustrates such situations.

Example 3.2. Figure 5 illustrates situations that may prevent
further collapse by two graphs that cannot be collapsed further.
We can see the 2-cliques in Figure 5(b) compose rings 𝐴𝐵𝐶𝐷 and
𝐺𝐻𝐼 𝐽 in the graph, leading to an absence of free faces. Similarly,
larger cliques can also compose such “rings”, referred to as voids,
which impede further collapse of the graph. Figure 5(a) shows one
of such voids. It can be observed that all the 2-cliques belonging to
two maximal cliques. Furthermore, as illustrated in Figure 5(b), the
rings in the graph also impede the collapse of the chains connecting
them. We can see although 𝐷𝐸, 𝐸𝐹 , and 𝐹𝐺 are not included in the
ring, none of them have a free face to collapse with.

Therefore, in scenarios where all nodes are either part of rings or
voids, or they lie on chains connecting them, it indicates that further
collapse of nodes is no longer possible. Moreover, even if there
exists an optimal collapse sequence that allows collapsing down G
to a single node, we are usually unable to quickly determine this

4763

sequence, because determining an optimal collapse sequence of a 𝑘-
complex (𝑘 ≥ 3) is NP-hard [14]. To overcome the aforementioned
obstacle, we can shorten the ring structure by collapsing nodes
inside it and identify the chain-like structures between the rings or
voids and collapse nodes inside them. The graph obtained through
these operations also remains homotopy equivalent to the original
graph, thereby further enhancing the graph coarsening capability.
We also employ a strategy to disrupt the integrity of rings, voids, or
chains by isolating a few edges within the graph. The information
of these isolated edges can be preserved and regained once the
collapse of the graph is complete if desired. By formally relaxing the
restrictions of the elementary collapse operation, we can overcome
the constraint mentioned above.

Example 3.3. Figure 5(c) demonstrates how we further collapse
the graph when there are no nodes to collapse. This graph contains
two rings and a chain between them that cannot be collapsed. To
further collapse the graph, we first shorten the large ring (𝐼 𝐽𝐺𝐻𝐾)
and the chain structure (𝐷𝐸𝐹𝐼) inside the graph by collapsing the
nodes inside it to their neighbors. After that, we isolate two of the
2-cliques to break the rings. As a consequence, the graph can now
be collapsed into a single node.

GEC on Attributed Graph. Since many real-world graphs have
node features 𝑋 and labels 𝑌 , we also propose a method for GEC
to handle attributed graphs. Specifically, for the resulting graph
G′ = (𝑉 ′, 𝐸′) with super nodes, the features of the super nodes are
defined as the average of all the features of the nodes mapped to
them, while the labels are determined as the label that occurs most
frequently among all nodes mapped to the supernodes.

With the aforementioned modifications, we can now use GEC
as a graph coarsening method. However, we will find that this
method cannot be applied directly to large graphs at present. The
primary reason for such limitation is that the relationship graph R
can become excessively large, containing an overwhelming number
of cliques that our method struggles to handle. To address this
challenge, we propose two powerful strategies to limit the number
of cliques within the clique complex and R, which enable our GEC-
based coarsening to be applied to large-scale graphs.
Reduce the Maximum Dimension. One intuitive approach is to
limit the maximum size of the clique, which sets a lower dimension
as the maximum dimension for the clique complex. Specifically, if
we set the maximum dimension as d, we consider a k-clique in the
graph as a (k-1)-simplex if k-1 ≤ d. For k-clique with k-1 > d, we
treat it as a void surrounded by d-simplex and will not add it into
the relationship graph R. Yet the following example illustrates that
setting a low maximum dimension may hinder the collapse.

Example 3.4. Figure 6 illustrates a simple example of how a
low maximum dimension hinders the collapse. When setting the
maximum dimension of the clique complex to 1, the 3-clique in the
graph cannot be collapsed because we consider it as a ring. But,
if we change the maximum dimension to 2 or higher, we can see
they all belong to a 2-simplex (shown in green), enabling further
collapse of the graph. That’s how reducing the value of 𝑑 may result
in misjudgments of the collapsibility of cliques in the graph.

Thus, in practical applications, it is crucial to select an appro-
priate maximum dimension that is neither too high, resulting in

Higher
Dimension

Max Dimension = 1

Collapse

A B C

AB AC BC

ABC

A

B

C

D E

F

Max Dimension = 2

A

B

C

D E

F
A, B, C

F

E
D

A B C

AB AC BC

A B C

AB AC
A

Figure 6: An example of how a low dimension may impede
the graph elementary collapse.

Algorithm 2: Graph Splitting
Input: G =(V, E), one integer �̃�
Output: Subgraphs𝐺 = {G1, ..., Gg }

1 Initialize𝐺 ← ∅, 𝑛𝑢𝑚 ← 1 ;
2 Let V be {𝑣1, 𝑣2, ...} ;
3 for 𝑖 = 1 to |V | do
4 if 𝑣𝑖 not in any subgraph in𝐺 then
5 Initialize G𝑛𝑢𝑚 ←(V𝑛𝑢𝑚 = ∅, E𝑛𝑢𝑚 = ∅) and an empty queue 𝑞 ;
6 Enqueue 𝑣𝑖 into 𝑞;
7 while 𝑞 is not empty do
8 Get a node𝑢 from 𝑞 ;
9 V𝑛𝑢𝑚 ← V𝑛𝑢𝑚 ∪ {𝑢} ;

10 if |V𝑛𝑢𝑚 | == �̃� then
11 break;

12 Let N𝑣𝑖
be the neighbors of 𝑣𝑖 ;

13 for 𝑤 in N𝑣𝑖
do

14 if 𝑤 not in any subgraph in G or V𝑛𝑢𝑚 then
15 Enqueue 𝑤 into the queue 𝑞;

16 for 𝑒𝑑𝑔𝑒 (𝑢, 𝑤) in E do
17 if 𝑢, 𝑤 ∈ V𝑛𝑢𝑚 then
18 E𝑛𝑢𝑚 ← E𝑛𝑢𝑚 ∪ { (𝑢, 𝑤) } ;

19 𝐺 ← 𝐺 ∪ {G𝑛𝑢𝑚 } ;
20 𝑛𝑢𝑚 ← 𝑛𝑢𝑚 + 1 ;

an excessive number of cliques in R, nor too low, hindering the
collapse process by causing misjudgments of the collapsibility.
Constrain the Graph Size. Although we have limited the number
of cliques in the graph by setting a maximum dimension, it may not
be sufficient in practical applications. For instance,a graph with ten
thousand nodes and 50 million edges can leads to over 50 million
cliques in the relationship graph R. To address this challenge, we
propose a solution that randomly splits the graph based on its
connectivity into multiple subgraphs containing at most �̃� nodes.
Specifically, we employ the BFS coloring method (Algorithm 2) to
perform graph splitting, and we find it does achieve good results
as observed in our empirical results. Therefore, we directly adopt
the BFS coloring method for graph partitioning instead of using
more cumbersome approaches. This allows us to strike a balance
between efficiency and effectiveness. Note that Algorithm 2 is self-
explanatory, we omit its explanation for brevity. Once the collapse
is partially complete, we can easily reconnect the subgraphs with
edges between them.

With the two strategies for limiting clique quantity mentioned
above, we present our GEC-based graph coarsening algorithm, as
shown in Algorithm 3. Specifically, we first split the graph into
subgraphs 𝐺 = {G1, ...,Gg} and get the corresponding relationship
graphs 𝑅 = {R1, ...,Rg} with a maximum dimension 𝑑 (Lines 1-2).
Then we initialize the map relationship𝑀 (Lines 3-4). Subsequently,
we can proceed to implement the GEC on each R𝑖 . Specifically, we

4764

Algorithm 3: GEC-based Graph Coarsening (GEC-B)
Input: G = (V, E), the maximum dimension of clique complex 𝑑 , the maximum number of

nodes �̃� for each subgraph
Output: Coarsened graph G′ = (V’, E’), map relationship𝑀 .

1 Split G into a collection of subgraphs𝐺 = {G1, ..., Gg } with each has at most �̃� nodes;
2 Get relationship graph 𝑅 = {R1, ..., Rg } including at most (d+1)-clique of graphs in𝐺 ;
3 for node𝑢 in V do
4 𝑀 [𝑢] ← 𝑢;

5 for Ri in 𝑅 do
6 while coarsening ratio has not been achieved do
7 for each pair of (j+1)-clique 𝜎 ∈ Ri and j-clique 𝜏 ⊆ 𝜎 do
8 if 𝜏 and 𝜎 meet the conditions of collapse then
9 Gi, 𝑀, Ri ← 𝑈𝑝𝑑𝑎𝑡𝑒 (Gi, 𝑀, Ri, 𝜏) ;

10 Gi, 𝑀, Ri ← 𝑈𝑝𝑑𝑎𝑡𝑒 (Gi, 𝑀, Ri, 𝜎) ;

11 if Ri unchanged during the collapse in this iteration then
12 Gi, 𝑀, Ri ← 𝑆ℎ𝑜𝑟𝑡𝑒𝑛𝑅𝑖𝑛𝑔𝑎𝑛𝑑𝐶ℎ𝑎𝑖𝑛 (Gi, 𝑀, Ri) ;
13 Uniformly pick a 2-clique 𝜎 from Ri ;
14 for clique 𝜏 that have 𝜎 ⊆ 𝜏 do
15 Ri ← Ri \ {𝜏 };
16 Let 𝜎 be {𝑣1, 𝑣2 }, Gi be (Vi, Ei) ;
17 Ei ← Ei \ { (𝑣1, 𝑣2) } ;

18 G′ ← 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 (G,𝐺) ;
19 Procedure 𝑆ℎ𝑜𝑟𝑡𝑒𝑛𝑅𝑖𝑛𝑔𝑎𝑛𝑑𝐶ℎ𝑎𝑖𝑛 (G, 𝑀, R)
20 for each node𝑢 that have only two neighbor 𝑣,𝑤 do
21 if 𝑣,𝑤 are not neighbors of each other and have only one coneighbor then
22 Let 𝜎 be {𝑢} ;
23 G, 𝑀, R ← 𝑈𝑝𝑑𝑎𝑡𝑒 (G, 𝑀, R, 𝜎) ;
24 Let G = (𝑉 , 𝐸) , R be (V𝑅 , E𝑅) ;
25 V𝑅 ← V𝑅 ∪ {{𝑣, 𝑤}}, 𝐸 ← 𝐸 ∪ { (𝑣, 𝑤) };
26 E𝑅 ← E𝑅 ∪ { ({𝑣, 𝑤}, {𝑣}), ({𝑣, 𝑤}, {𝑤}) };

27 return G, 𝑀, R ;

28 Procedure𝑈𝑝𝑑𝑎𝑡𝑒 (G, 𝑀, R, 𝜎)
29 Let G be (V, E) ;
30 R ← R \ {𝜎 };
31 if |𝜎 | == 2 then
32 Let 𝜎 be {𝑣1, 𝑣2 };
33 E← E \ { (𝑣1, 𝑣2) } ;
34 if |𝜎 | == 1 then
35 Let 𝜎 be {𝑣1 }, 𝑣2 be one of the neighbor of 𝑣1 ;
36 V← V \ {𝑣1 } ;
37 for𝑢 have𝑀 [𝑢] == 𝑣1 do
38 𝑀 [𝑢] ← 𝑣2 ;

39 return G, 𝑀, R
40 Procedure 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 (G = (V, E),𝐺 = {G1, ..., Gg })
41 Let Gi be (Vi, Ei) , V’← V1 ∪ V2 ∪ ... ∪ Vg , E’← E1 ∪ E2 ∪ ... ∪ Eg ;
42 for edge (𝑢, 𝑤) in E do
43 if 𝑢, 𝑤 in different subgraph in𝐺 then
44 Let𝑢, 𝑤 been mapped to𝑢′, 𝑤′ respectively;
45 E’← E’ ∪ (𝑢′, 𝑤′) ;

46 return (V′, E′)

check all the clique pairs inR𝑖 to find whether they can be collapsed
(Lines 7-10). If they can be collapsed, we remove them from R𝑖 and
simultaneously update the G𝑖 and 𝑀 (Lines 29-40). If no collapse
is possible, we first shorten chains and rings in the graph (Lines
12, 19-28). After that, we uniformly pick a 2-clique from R𝑖 and
remove all the cliques that take it as their face (Lines 13-17). After
achieving the desired coarsening ratio (the proportion of nodes in
the coarsened graph relative to the original graph), we rebuild the
graph with subgraphs and edges between them (Lines 18, 41-49).
ComplexityAnalysis ofAlgorithm3. Let �̃� = max{|𝑉 (G𝑖) | |G𝑖 ∈
𝐺} be the maximum number of nodes in the subgraph set 𝐺 and d
be the maximum dimension. Thus, there are most 𝑛/�̃� subgraphs
in 𝐺 , where 𝑛 is the number of nodes in the original graph. We
know that the worst-case time complexity on each subgraph Gi

is O(�̃�d |E|), this is because there are at most �̃�d cliques stored in
Ri and each clique can be checked at most |E| times. The space
complexity on each subgraph Gi is O(𝑑�̃�d), this is beacue there are
at most �̃�d cliques stored in Ri and each 𝑘-clique store at most 𝑑
(k-1)-cliques as its faces. As a result, the overall time complexity is
O(𝑛�̃�(d-1) |E|) and the space complexity is O(𝑛𝑑�̃�(d-1)).

4 OPTIMIZATIONS
So far, we have introduced the GEC-based graph coarseningmethod.
However, it still has several limitations when applied to massive
graphs due to its prohibitive time and memory cost. Specifically, the
expensive complexity arises from two key factors: (1) Themaximum
dimension constraint𝑑 poses difficulties in eliminating large cliques
through collapse. As the coarsening ratio increases, the graph may
tend to be denser (mainly because GEC eliminates many chain-like
structures, leading to tighter cohesion of the cliques that cannot
be collapsed), resulting in the significant proliferation of cliques.
(2) After the random isolation of edges on the graph, traversing all
cliques becomes necessary to determine the possibility of further
collapse which leads to high time and space complexity. Therefore,
we propose a more efficient collapse method, called Bottom-Up
GEC, to further optimize the scalability of GEC.

4.1 Relationship Graph with Maximal Clique
Recall that since the limitations of elementary collapse, we need
expensive space and time to enumerate all 1 to (d+1) cliques and
form the relationship graph. Although we partition the graph into
many smaller subgraphs and limit the size of the cliques to be
searched, it is still not very efficient as shown in our experiments.
On the other hand, if we reduce the value of 𝑑 , it would lead to
misjudgments of clique collapsibility as described in Example 3.4,
thereby significantly affecting the effectiveness of the proposed
method. To alleviate these issues, we propose a new relationship
graph that enables us to performGECmore effectively and precisely.

Before introducing the new optimizations, we need to briefly
extend the graph elementary collapse. In previous sections, we
mentioned that graph elementary collapse requires two cliques 𝜏
and 𝜎 to satisfy |𝜏 | = |𝜎 | − 1. However, we discover that for any
𝑘-clique 𝜏 that is a free face of maximal clique 𝜎 , even if 𝜎 is not a
(k+1)-clique, when we remove 𝜏 and all other cliques containing 𝜏 ,
this operation can always be decomposed into a series of elemen-
tary collapses. This means when we want to collapse a 𝑘-clique 𝜏 ,
we can simply check whether 𝜏 belongs to exactly one maximal
clique and then collapse 𝜏 with all the cliques that contain it. We
can use maximal cliques to reconstruct a simpler relationship graph
based on this new collapse approach. In this new graph, we set
edges only between the 𝑘-cliques (𝑘 = 1, ..., 𝑑 + 1) and the maximal
cliques they belong to. The problem of maximal clique enumera-
tion is challenging, which has received much attention and many
fast algorithms have been developed [5, 11, 15, 25], allowing us to
quickly find all maximal cliques. Here, we choose the pivote-based
Bron-Kerbosch algorithm [25], one of the fastest algorithms, to
enumerate the maximal cliques.

Example 4.1. Figure 7 shows how we build up the relationship
graph R with maximal cliques when set d = 1. In Figure 7, the

4765

A

C

B

E

D

F

HI

G

(a) Example Clique Complex

DA B C E F G H I

AB AC BCAD BD CD CE DE

DG EF FG GH HIABCD CDE

(b) Relationship Graph using Maximal Clique

Figure 7: An example of how we build the relationship graph
using only node, edge, and maximal clique.

maximal cliques are highlighted in red and we associate the max-
imal cliques with their faces, indicated by green lines. With this
simplified relationship graph, we significantly reduce the size of
the Relationship graph that needs to be stored.

Note that when using themaximal clique to build the relationship
graph R, if we use the original collapse sequence (i.e., from (𝑑 +
1)-cliques to 1-cliques) may introduce several new problems. For
example, whenever we attempt to collapse an existing 𝑘-clique
𝜏 as a free face of maximal clique 𝜎 , it leads to the splitting of
𝜎 into at most k-1 new maximal cliques, resulting in the need to
preserve an increasing number of maximal cliques. In such cases,
collapsing cliques starting from (𝑑 + 1)-cliques to 1-cliques would
lead to a significant increase in the number of maximal cliques
which goes against our intention to reduce the memory cost. Thus,
we choose to reverse the order of collapse, starting from 1 cliques
and collapsing the existing cliques. This approach aims to minimize
the increase in maximal cliques caused by the collapse of larger
cliques. Also, another benefit using maximal cliques to store the
relationship graph is that we can accurately describe the current
clique complex without the need to store all cliques. As mentioned
before, setting a maximum dimension 𝑑 may lead to misjudgments
of the collapsibility of cliques (see Example 3.4). Taking an extreme
example of a complete graph with 100 nodes and setting d = 1,
when using maximal cliques in the relationship graph, we no longer
consider the 100-clique as a series of rings where no collapse can
be performed. Instead, we can easily realize each clique within it
belongs to only one maximal clique, thereby easily collapsing the
graph into a single node. On the other hand, even though the use
of maximal cliques helps avoid misjudgments of collapsibility, it
does not mean that reducing the value of 𝑑 has no impact on the
effectiveness. It simply makes the occurrence of negative impacts
more stringent, thus reducing their frequency. Figure 8 provides an
example to elaborate on such a situation. Thus, limiting 𝑑 to a low
value still results in potential loss of collapse for certain nodes or
edges. In practical applications, we have found that setting the value
of 𝑑 to 2 still yields excellent empirical results, thereby significantly
reducing memory consumption.

4.2 Finding Collapse Pairs
Since traversing a large number of cliques can directly lead to an
increase in time complexity, this subsection proposes the approach
of collapse pairs to narrow down the range of cliques that need to
be traversed after removing an edge. The details of this approach
are provided in Lines 18-33 of Algorithm 4. Specifically, given the
graph G, relationship graph R, map relationship 𝑀 , maximum
dimension 𝑑 and the k-simplex 𝛾 need to be removed or isolated,

A

C

B

E

D

F
H

G

DEFCDE

Higher

Dimension

Max Dimension = 0

A

C

B

E

D

F
H

G

Max Dimension = 1

Collapse

EC D F

DEFCDE

EC D F

CE DE DF EFCD

DE DFCD

EC D F

DFCD

C D F

A

B

D

H

G

Max Dimension = 1

C

F

Figure 8: An example of how a low dimension may impede
the graph’s elementary collapsewhen usingmaximal cliques.

AC ACF

ADF

DF

A

DEF

BDED

BCEB

CEFC

E EF

ABC

ABD

ABLine 21 in Algorithm 4

Line 32 in Algorithm 4

F

AB AC BC CEBD BEAD AF CF DE DF EF

ABC BDEABD ACF ADFBCE CEF DEF

DA B C E F

A

D

C

B

E

A, B, C,

D, E, F

(a) (b) (c)

Cut

F

Figure 9: An example of how Bottom-up GEC find collapse
pairs. Figures (a-b) show the graph and the relationship graph
before and after invoking Algorithm 4. Figure(c) shows the
order in which Algorithm 4 removes each pair of cliques.

we first remove the clique𝛾 fromR (Line 19). Subsequently, for each
maximal clique 𝜆 with 𝛾 ⊆ 𝜆, we first remove 𝜆 from R and split
𝜆 into new maximal cliques, then add them into R (Lines 20-27).
After that, we check each clique 𝜏 as 𝜆’s face, if it can be collapsed
as a free face, we further clear the collapsible clique 𝜏 (Lines 28-32).
By employing the aforementioned methods, we can significantly
reduce the running time of the Bottom-up GEC method.

Example 4.2. Figure 9 illustrates how Bottom-up GEC traverses
all possible collapse pairs. In Figure 9(a), there is no clique pair
available for collapse. After an edge removed, it can be observed
that no new maximal clique is generated in this step. Next we
check if there is any new free face within the cliques and collapse
it. The order of collapse is shown in Figure9(c). It is worth noting
some cliques, such as {𝐴, 𝐷}, do not appear in the sequence. This is
because when we collapse {𝐴} and {𝐴, 𝐷 , 𝐹 }, {𝐴, 𝐷} also collapses
simultaneously, but it is omitted in Figure 9(c). Through the process
shown in Figure 9(c), we can efficiently traverse all cliques and
collapse them into a single super node, as shown in Figure 9(b).

Based on the above in-depth analysis, we can now provide the
pseudocode of the Bottom-up GEC algorithm, outlined in Algo-
rithm 4. Specifically, given the graph G, the maximum dimension
of simplex 𝑑 , the maximum number of nodes �̃� for each subgraph,
we first split G into subgraphs𝐺 and build up the map relationship
𝑀 and relationship graph R𝑖 including only maximal cliques and
nodes (Lines 1-4). After that, we iteratively add the 𝑘-cliques (𝑘 = 1,
..., 𝑑 + 1) into R𝑖 and collapse the collapsable cliques (Lines 5-11).
Subsequently, we shorten all chain-like structures (Line 14). When

4766

Algorithm 4: Bottom-up Graph Elementary Collapse (Bottom-
up GEC)
Input: G = (V, E), the maximum dimension of clique complex 𝑑 , the maximum number of

nodes �̃� for each subgraph
Output: Coarsened graph G′ = (V’, E’), map relationship𝑀 .

1 Split G into a collection of subgraphs𝐺 = {G1, ..., Gg } with each has at most �̃� nodes;
2 Get relationship graph 𝑅 = {R1, ..., Rg } including at most (d+1)-clique of graphs in𝐺 ;
3 for node 𝑣 in V do
4 𝑀 [𝑢] ← 𝑢;

5 for Ri in 𝑅 do
6 for j in 1, ..., d do
7 if 𝑗 -cliques are not included in Ri then
8 Add j-clique and its relationship into Gi ;
9 for each 𝑗 -clique 𝜏 do
10 if 𝜏 is a subset of exactly one maximal clique in Ri then
11 Gi, 𝑀, Ri ← 𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝐶𝑙𝑒𝑎𝑟𝑆𝑖𝑚𝑝𝑙𝑒𝑥 (Gi, 𝑀, Ri, 𝜏, j) ;

12 while coarsening ratio has not been achieved do
13 for Ri in 𝑅 do
14 Gi, 𝑀, Ri ← 𝑆ℎ𝑜𝑟𝑡𝑒𝑛𝑅𝑖𝑛𝑔𝑎𝑛𝑑𝐶ℎ𝑎𝑖𝑛 (Gi, 𝑀, Ri) ;
15 Pick a 2-clique 𝜎 from Ri ;
16 Gi, 𝑀, Ri ← 𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝐶𝑙𝑒𝑎𝑟𝑆𝑖𝑚𝑝𝑙𝑒𝑥 (Gi, 𝑀, Ri, 𝜎,𝑑) ;

17 G′ ← 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 (G,𝐺) ;
18 Procedure𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝐶𝑙𝑒𝑎𝑟𝑆𝑖𝑚𝑝𝑙𝑒𝑥 (G = (V, E), 𝑀, R, 𝛾, 𝑑)
19 G, 𝑀, R ← 𝑈𝑝𝑑𝑎𝑡𝑒 (G, 𝑀, R, 𝛾) ;
20 for maximal clique 𝜆 that have 𝛾 ⊆ 𝜆 do
21 G, 𝑀, R ← 𝑈𝑝𝑑𝑎𝑡𝑒 (G, 𝑀, R, 𝜆) ;
22 for node 𝑣 in 𝛾 do
23 𝜖 ← 𝜆 \ {𝑣} ;
24 if 𝜖 is a maximal face then
25 R ← R ∪ {𝜖 };
26 for 𝜏 ⊆ 𝜖 that have |𝜏 | ≤ 𝑑 + 1 do
27 R ← R ∪ { (𝜖, 𝜏) };

28 for maximal clique 𝜆 that have 𝛾 ⊆ 𝜆 do
29 𝐶 ← {𝜏 ∈ R |𝜏 ⊆ 𝜆, |𝜏 | ≤ 𝑑 + 1};
30 for 𝜏 in𝐶 do
31 if 𝜏 is a free face of the maximal clique 𝜇 then
32 G, 𝑀, R,← 𝑀𝑎𝑥𝑖𝑚𝑎𝑙𝐶𝑙𝑒𝑎𝑟𝑆𝑖𝑚𝑝𝑙𝑒𝑥 (G, 𝑀, R, 𝜏, 𝑑)

33 return G, 𝑀, R

the collapse cannot go on, we uniformly pick a 2-clique from R𝑖
and remove all the cliques and take it as a face (Lines 15-16) to make
further collapse possible. After we achieve our coarsening ratio,
we can rebuild the graph with the subgraphs and edges between
them (Lines 17). Through this procedure, Algorithm 4 can minimize
memory consumption and computational time as much as possible,
while providing a more accurate collapse sequence.
Complexity Analysis of Algorithm 4. We let �̃� = max{|𝑉 (G𝑖) | |
G𝑖 ∈ 𝐺} be the maximum number of nodes in the subgraph set𝐺 .
Thus, there are most 𝑛/�̃� subgraphs in 𝐺 , where 𝑛 is the number
of nodes in the original graph. For each subgraph G𝑖 , the time
complexity of maximal clique enumeration is O(3�̃�/3) [25]. Besides,
let 𝑞 be the number of maximal cliques of G𝑖 and d be the maximum
dimension, the time complexity of the collapse process is O(𝑞�̃�𝑑).
This is because there are at most �̃�d cliques stored in R𝑖 and each
clique need to be checked at most 𝑞 times for its collapsibility. As
a result, the time complexity of Bottom-up GEC is O(𝑛3�̃�/3/�̃� +
𝑛𝑞�̃� (𝑑−1)). In terms of the space complexity, the space complexity of
the collapse process on each subgraph G𝑖 is O(𝑞�̃�𝑑). This is because
at most 𝑞 maximal cliques are stored for each subgraph G𝑖 and each
maximal clique needs to be stored at most �̃�𝑑 times by its faces.
Thus, the space complexity of Bottom-up GEC is O(𝑛𝑞�̃� (𝑑−1)).

Table 1: Statistics of datasets

Datasets |𝑉 | |𝐸 | Ave. Degree #Features #Classes
Cora 2,708 5,429 3.88 1,433 7

Citeseer 3,327 4,732 2.84 3,703 6
DBLP 17,716 52,867 5.97 1639 4

PubMed 19,717 44,338 4.50 500 3
Coauthor Physics 34,493 247,962 14.38 8,415 5

Ogbn-ArXiv 169,343 1,166,243 13.77 128 40
Reddit 232,965 57,307,946 491.98 602 41

Ogbn-products 2,449,029 61,859,140 50.52 100 47
com-youtube 1,134,890 2,987,624 5.27 - -
cit-Patent 3,774,768 16,518,948 8.75 - -
dblp-v5 1,572,277 2,084,019 2.65 - -
dblp-v7 2,244,021 4,354,534 3.88 - -

5 EXPERIMENTS
5.1 Experimental Setup

Datasets.We evaluate our solutions on several publicly available
real-world datasets with different statistics (Table 1). First eight
datasets are attributed graphs widely used for evaluating GNN’s
performance [3, 21, 27, 41]. The last four graphs are non-attributed.
The first two are different versions across time for the DBLP citation
network (dblp-v5, dblp-v7) [44], and the last two are from SNAP
[30]. For node classification on Ogbn-ArXiv and Ogbn-products, we
use the split from [22]. while others use the split from [53]. For the
link prediction task, we randomly sampled 85% edges for training,
5% for validation, and the remaining 10% for testing.
Tasks and Evaluation Metrics. The main objective is to validate
the performance of our proposed GEC-B and Bottom-up GEC as a
graph coarsening method for the node classification task. To assess
the applicability of Bottom-up GEC across different downstream
tasks, we also perform experiments on the link prediction task. For
both tasks, we conduct training and validation processes on the
coarsened graph G′ and evaluate the training results on the original
graph G. We utilize accuracy as the main evaluation metric for the
node classification task and ROC-AUC for the link prediction task.
Baselines. To establish a comprehensive comparison, we select
several baselines for our experiments. Specifically, for the graph
coarsening methods, we choose Variation Neighborhoods [23, 34],
Variation Edges [23, 34], Algebraic JC [23, 34], Affinity GS [23, 34],
kron [23, 34], and FGC [29] as the state-of-the-art methods. We
also compare our method with graph condensation methods and
graph sparsification methods. For graph condensation, we select
GCOND [26] and SFGC [58] as the baseline methods. For graph
sparsification, we choose UGS [8] and random split as the baselines.

Models and Hyper-parameter Settings. Following previous re-
search [16, 23, 29, 41], we also adopt the Graph Convolutional
Network (GCN) [27] and APPNP [28] as our evaluated models, and
use their corresponding default settings. For GEC-B and Bottom-up
GEC, unless otherwise stated, we set d = 6 and �̃� = 1000.

5.2 Empirical Results

Exp-1: Node Classification with Graph Coarsening Methods.
Table 2 reports the experimental results. An issue we need to men-
tion is that, although we can obtain a graph G′ = (𝑉 ′, 𝐸′) using
the GEC-B and Bottom-up GEC, the graph G′ may not meet the

4767

Table 2: Node classification with graph coarsening methods. Each value is shown in terms of average classification accuracy
and standard deviation (in percent) over 20 runs on different datasets. The horizontal line (i.e., -) in the table signifies that the
method cannot be applied. The best and second-best results in each metric are marked in bold and underlined, respectively.

Dataset Coarsening Method c=1.0 c=0.5 c=0.3 c=0.2 c=0.1

GCN APPNP GCN APPNP GCN APPNP GCN APPNP GCN APPNP

Cora

Variation Neighborhoods

81.1±0.4 83.3±0.4

81.7±0.4 81.9±0.3 80.5±0.6 81.7±0.6 78.5±0.8 81.0±0.8 72.9±1.3 66.4±0.8
Variation Edges 81.6±0.4 83.4±0.5 79.0±1.0 81.3±1.0 72.5±1.5 72.8±1.7 – –
Algebraic JC 81.3±0.3 82.7±0.5 79.5±0.5 80.3±0.9 79.0±0.4 82.1±0.6 66.5±0.9 69.7±2.0
Affinity GS 81.4±0.5 82.5±0.5 79.8±0.5 79.5±1.0 80.1±0.7 80.3±0.7 74.0±1.0 70.7±1.7
kron 81.4±0.3 83.0±0.7 79.8±0.6 80.0±0.7 79.9±0.8 76.9±0.7 64.2±0.7 66.9±0.4
FGC 79.8±2.2 78.7±1.4 77.6±2.4 77.8±2.5 77.1±1.4 76.8±2.4 70.7±1.8 68.8±3.5
GEC-B 79.1±0.5 81.4±0.7 79.8±0.7 81.2±0.6 80.2±0.5 82.2±0.6 79.7±0.6 81.5±0.7
Bottom-up GEC 80.7±0.4 82.2±0.3 80.9±0.5 83.1±0.3 81.0±0.7 82.6±0.6 81.2±0.4 82.8±0.7

Citeseer

Variation Neighborhoods

71.6±0.4 71.9±0.4

71.8±0.5 71.6±0.6 70.3±0.5 71.1±0.3 70.1±0.7 70.6±0.6 56.8±7.0 58.2±6.0
Variation Edges 72.2±0.5 71.6±0.6 70.0±0.5 72.3±0.4 54.8±6.1 60.9±4.8 47.0±11. 47.6±17.
Algebraic JC 71.2±0.5 71.3±0.7 70.2±0.4 72.7±0.5 56.9±1.3 67.2±1.1 60.0±7.3 58.4±8.2
Affinity GS 70.3±0.7 71.5±0.4 70.3±0.2 71.2±0.5 69.5±0.9 70.7±0.7 59.2±7.5 59.9±4.9
kron 72.4±0.5 72.2±0.1 70.3±0.6 71.2±0.4 70.1±1.4 70.6±0.2 63.6±1.2 66.4±0.4
FGC 70.1±1.4 71.5±1.9 68.8±1.7 70.7±1.3 67.3±2.1 70.5±2.2 66.9±1.5 66.8±2.1
GEC-B 70.7±0.5 71.1±0.3 70.6±0.4 71.3±0.3 70.2±0.9 70.8±0.7 70.9±0.4 71.0±0.8
Bottom-up GEC 70.2±0.4 70.9±0.6 71.1±0.5 71.1±0.3 71.5±0.7 71.6±0.5 71.6±0.7 72.0±0.4

Ogbn-ArXiv

Variation Neighborhoods

70.4±1.1 64.7±1.2

64.8±2.0 56.8±1.2 65.1±3.4 60.9±0.4 57.0±1.3 56.5±0.8 44.2±2.9 53.6±0.6
Variation Edges 65.7±1.1 62.2±0.7 61.6±0.9 56.4±0.3 54.7±1.4 56.2±1.1 51.4±3.4 55.8±1.0
Algebraic JC 66.2±0.5 64.2±0.9 60.4±1.7 60.2±0.8 53.4±1.4 51.6±0.8 47.3±1.7 60.5±0.8
kron 64.5±1.5 63.5±0.2 56.2±3.1 60.3±0.6 56.4±2.7 54.9±0.9 57.7±0.5 60.7±0.4
Affinity GS / FGC Out of Memory (Over 400GB)
GEC-B 69.1±0.4 64.8±0.1 66.5±0.7 62.3±0.5 65.6±1.1 61.4±0.4 Out of Time (Over 1 day)
Bottom-up GEC 70.4±0.3 64.3±0.3 69.1±0.2 62.6±0.4 68.0±0.4 61.7±0.4 65.3±0.1 60.8±0.7

Reddit

Variation Neighborhoods

94.1±1.1 93.9±0.8
93.5±2.0 93.4±1.7 92.6±3.4 92.0±1.3 91.9±1.3 90.4±2.0 90.3±2.9 90.1±0.9

Var. Edges / Algebraic JC / kron Out of Time (Over 1 day)
Affinity GS / FGC / GEC-B Out of Memory (Over 400GB)
Bottom-up GEC (�̃� = 100) 94.2±0.3 94.0±1.1 93.1±0.4 93.7±1.1 93.1±0.3 93.0±1.1 90.5±0.5 90.2±0.9

Ogbn-products Other methods 71.8±1.1 67.5±0.8 Out of Memory (Over 400GB)
Bottom-up GEC (�̃� = 100) 70.9±2.0 66.2±1.1 70.7±1.0 66.1±1.1 70.6±2.0 66.0±1.1 69.8±2.4 65.4±0.9

Table 3: The HE and RE values obtained by Variation Neibor-
hoods , Algebraic JC, FGC, and our proposed Bottom-up GEC
on different coarsening ratios.

Dataset Metric c Var. Nei. Alg. JC FGC Bottom-up GEC

Cora

HE

0.7 1.40 1.67 0.64 1.48
0.5 2.30 2.34 1.08 1.85
0.3 2.94 3.05 1.98 2.40
0.2 3.56 3.57 2.26 2.83
0.1 4.43 4.30 2.76 3.52

RE in log(·)

0.7 2.93 3.34 1.73 3.13
0.5 3.65 3.68 2.59 3.37
0.3 3.77 3.79 3.48 3.61
0.2 3.81 3.82 3.72 3.72
0.1 3.84 3.83 3.79 3.78

requirements of graph coarsening. This is because, in addition to
mapping nodes to super nodes, we may also remove additional
edges during the collapse process which is prohibited in the coarse
step. For a fair comparison, we get the coarse result only using
the mapping relationship𝑀 instead of using G′. Here, ‘𝑐’ denotes
the coarsening ratio, indicating the proportion of nodes in the
coarsened graph relative to the original graph. As can be seen, we
have GEC-B and Bottom-up GEC consistently outperformed the
other methods in most cases. Also, these two methods maintain
compatible performance even at higher coarsening ratios, where
other methods have significant degradation. Specifically, on the
Ogbn-ArXiv, Bottom-up GEC achieves more than 5% improvement
compared with other methods. We also examine the differences
between GEC-B and Bottom-up GEC: Bottom-up GEC, which con-
structs the relationship graph using maximal cliques, eliminates
misjudgments of clique collapsibility. This enables the Bottom-up
GEC method to achieve slightly better results than GEC-B in most

CiteseerCora

Figure 10: Betti number obtained by various methods.

cases. Besides, Bottom-up GEC has demonstrated great scalability.
As observed, only Bottom-up GEC and the Variational Neighbor-
hoods can run on the relatively dense dataset Reddit. When facing
a larger dataset ogbn-products, Bottom-up GEC becomes the only
capable method. Therefore, we primarily use Bottom-up GEC as
our method for comparison with other baselines.
Exp-2: RE, HE, and Betti Number Analysis. We also employ
Reconstruction Error (RE), Hyperbolic Error (HE), and Betti number
to further evaluate the performance of Bottom-up GEC method.
RE and HE are the metrics used in previous work [29] to evaluate
coarsening algorithms. Due to the space limits, we only report the
results on Cora (Table 3). Other datasets can also obtain similar re-
sults. Although our algorithm is not a spectral-based method, it still
achieves favorable outcomes in traditional evaluation metrics (RE
and HE). The Betti number is an evaluation metric to validate the
ability of the coarsening method to preserve rings and voids in the

4768

Table 4: Evaluation with other reduction method

Dataset c GCOND SFGC FGC Bottom-up GEC

Cora
0.3 81.5±0.6 82.3±0.3 85.7±0.2 84.7±0.2
0.2 79.3±0.6 80.5±0.2 82.3±1.3 83.7±0.3
0.1 81.3±0.4 79.8±0.5 81.4±0.7 82.5±0.3

Citeseer
0.3 72.4±0.9 68.8±0.1 74.6±1.3 75.3±0.2
0.2 72.0±0.4 69.5±0.4 72.1±0.7 76.6±0.3
0.1 70.4±0.4 66.8±0.4 73.3±0.5 73.3±0.3

PubMed
0.05 78.1±0.3 79.2±0.2 80.7±0.4 79.5±0.8
0.03 78.0±0.4 78.2±0.5 79.9±0.3 80.1±0.7
0.01 77.2±0.2 78.6±0.1 78.4±0.4 78.9±0.6

Co-Phy
0.05 93.0±0.2 94.3±0.4 94.2±0.2 94.3±0.0
0.03 92.8±0.3 92.6±0.5 92.6±0.2 93.7±0.2
0.01 92.7±0.4 93.1±0.3 65.6±0.3 76.5±0.3

graph. Specifically, the 1𝑠𝑡 -Betti and 2𝑛𝑑 -Betti numbers represent
the quantity of rings and voids in the graph, respectively. In Figure
10, we present the 1𝑠𝑡 -Betti number and 2𝑛𝑑 -Betti number of each
method on Cora and Citeseer. It can be observed that our Bottom-up
GEC method can effectively preserve the rings during the coars-
ening process. Meanwhile, unlike other methods, Bottom-up GEC
does not generate additional voids during the coarsening.
Exp-3: Evaluation with Other Reduction Method. Graph Con-
densation methods [17, 26, 58] have emerged as a graph reduction
technique for GNNs in recent years. They generate new nodes by
leveraging the downstream task information from GNN instead
of mapping nodes into others. We select GCOND [26], FGC [29],
and SFGC [58] as the baseline methods, following the experimental
settings outlined in [29]. By Table 4, we can observe that Bottom-
up GEC consistently achieves superior performance in most cases
when contrasted with SFGC and GCOND. However, both FGC and
Bottom-up GEC may experience performance degradation when
confronted with extremely high coarsening ratios. Through analy-
sis, we discovered that in such cases, the label distribution of nodes
in the coarsened graph may exhibit extreme patterns, resulting in
poor training effectiveness for certain labels, leading to inferior
overall results. The graph sparsification method is another graph
reduction method. Since it only modifies the edges without reduc-
ing the number of nodes, we only compare the result of the node
classification task on GCN with the same number of edges in the
reduced graph. Specifically, we compare Bottom-up GEC with UGS
(200 epochs) [8] and random pruning method with a two-layer GCN
[27] on PubMed dataset. Other datasets have similar trends. The
accuracy and the running time of each method are shown in Fig-
ure 11. It is evident that Bottom-up GEC consistently outperforms
random pruning and gets similar or even better results than UGS
while consuming much less time to reduce the number of nodes.
Exp-4: Link Prediction with Graph Coarsening Methods. We
also conduct experiments of the link prediction task with four other
graph coarsening methods to evaluate the effectiveness of Bottom-
up GEC facing variant downstream tasks. The experiment result
is shown in the left part of Figure 12. Based on the experimental
results, it is evident that while the performance of all methods is
similar at low coarsening ratios, akin to the node classification task,
the Bottom-up GEC method outperforms other approaches signifi-
cantly at higher coarsening ratios, particularly when c=0.1/0.2. This

Figure 11: Comparison of the proposed Bottom-up GEC and
the graph sparsification methods on PubMed dataset.

Link Prediction Extreme Sparsity

Figure 12: Experiment results on link prediction with graph
coarsening methods and extreme sparsity scenarios.

provides substantial evidence for the effectiveness of Bottom-up
GEC when confronted with various downstream tasks.
Exp-5: Experiments with Extreme Sparsity. In practical ap-
plication scenarios, we often encounter situations where graphs
exhibit extreme sparsity, such as missing features or a low number
of labeled nodes. To further evaluate the effectiveness of Bottom-up
GEC, we investigate the impact of such sparsity on Bottom-up GEC
and whether it can still achieve satisfactory results in high-sparsity
scenarios. We consider three types of sparsity in our experiments:
label sparsity (ratio of labeled nodes in the sparsified graph to the
full graph), feature sparsity (ratio of remaining features in the spar-
sified graph to the full graph), and edge sparsity (ratio of remaining
edges in the sparsified graph to the full graph). We present the
results in the right part of Figure 12.

Through our experimental analysis, we observe that as the graph’s
sparsity varies, there is a decline in node classification accuracy due
to missing information from the original graph. Interestingly, when
facing high feature sparsity, the performance on the coarsened
graph even surpasses the performance on the original sparsified
graph at high coarsening ratios. However, when facing high-edge
sparsity, its performance is severely affected. These outcomes can
be attributed to Bottom-up GEC’s emphasis on the graph’s topo-
logical structure, where the influence of node labels and features is

4769

（a）Original Graph （b）Bottom-up GEC (c = 0.4) （c） Bottom-up GEC (c = 0.7)

（d）Variation_Edges (c = 0.7) （e）Algebraic_JC (c = 0.7) （f）Affinity_GS (c = 0.7)

Figure 13: Visualization of Bottom-up GEC and other meth-
ods with different coarsening ratios.

Figure 14: Impact of different hyperparameters.

minimal. When facing feature sparsity, the absence of features is
partially compensated by other nodes that are coarse with it, result-
ing in improved outcomes. On the other hand, high edge sparsity
may cause significant alterations in the topological characteristics
of the graph, leading to poor results.
Exp-6: Visualization of Different Coarsened Methods. We
also validate Bottom-up GEC through a case study. We selected
the Dolphins dataset for visualization and the results are shown
in Figure 13. It can be observed that during the collapsing process,
our method preserves a significant number of rings in the graph,
these rings even become more prominent after collapse. For other
methods, at higher coarsening ratios, they contain several nodes
located outside of rings, and significant loss of ring is also observed.
Exp-7: Running Time and Memory Overhead of Different
Coarsening Methods. Firstly, we investigate the efficiency of the
proposed Bottom-up GEC by comparing the processing time with
other graph coarsening methods. Table 5 presents the processing
time onCora andOgbn-ArXiv. Other datasets can also obtain similar
results. We can observe that the computational efficiency of Bottom-
up GEC is close to or even surpasses the existing state-of-the-art
methods in most coarsening ratios. Memory cost is also evaluated
in our experiments. We compare the memory cost of Bottom-up
GEC with different coarsening ratios against other baselines. By
Figure 15, we find that Bottom-up GEC has better performance and
achieves similar or even far more lower memory costs compared to
other methods. Furthermore, it can be observed that compared to
GEC-B, Bottom-up GEC has shown significant improvement in both
runtime and memory cost, thereby demonstrating the effectiveness
of the optimization introduced in Section 4.

Table 5: Running time of different coarsening methods.

Dataset Coarsening Method Time (second)

c=0.7 c=0.5 c=0.3 c=0.2 c=0.1

Cora

Variation Neighborhoods 2.670 1.752 1.638 1.658 1.628
Variation Edges 1.168 1.251 1.124 1.156 1.172
Algebraic JC 0.907 0.907 0.909 0.900 0.944
Affinity GS 3.213 3.186 3.218 3.247 3.157
FGC(50 loops) 78.352 41.445 18.026 11.415 6.456
GEC-B 12.551 20.539 27.553 28.775 29.235
Bottom-up GEC 0.119 0.646 6.286 10.819 15.655

Ogbn-ArXiv

Variation Neighborhoods 353.9 357.1 433.6 429.4 447.7
Variation Edges 415.3 546.8 692.1 767.8 861.2
Algebraic JC 392.8 557.9 710.7 815.1 995.2
Affinity GS / FGC Out of Memory (Over 400GB)
GEC-B 1144.8 1890.2 2171.1 3719.6 > 1day
Bottom-up GEC 65.67 118.9 306.4 883.7 2388.9

Exp-8: Impact of Different Hyperparameters. We also con-
ducted experiments to study the impact of different hyperparame-
ters. The processing time is shown in Figure 14(a), and the accuracy
results are shown in Figure 14(b). We can observe that splitting the
graph into subgraphs does not affect the effectiveness while sig-
nificantly improve the efficiency. This characteristic of Bottom-up
GEC ensures its effectiveness when applied to larger graphs. On
the other hand, as discussed in Section 4.1, when using the maximal
clique in the relationship, reducing the maximum dimension d of
the clique complex from 6 to 2 has little effect on the effectiveness.
Moreover, as discussed earlier, reducing d to 1 can significantly af-
fect the pruning process of Bottom-up GEC, leading to low accuracy.

Exp-9: Scalability Analysis. We further evaluate the scalability of
Bottom-up GEC on 4 different large datasets which contain millions
of nodes. For each dataset, we generate subgraphs by randomly
sampling nodes from 20% to 100% and randomly sampling edges
from 20% to 100%. Figure 16 shows the processing time and memory
cost of Bottom-up GEC on these graphs. The coarsening ratio is
set to be 0.3, and similar results can also be observed with other
coarsening ratios. As can be seen, the runtime and the memory cost
of Bottom-up GEC increase smoothly as the graph size increases on
massive graphs.Moreover, all the curves are nearly linear, indicating
that our algorithm scales very well in practice.

To facilitate comparison with other graph coarsening methods,
we conduct a scalable analysis on a relatively small dataset ogbn-
arxiv which most method can deal with. The coarsening ratio is set
to be 0.3, and the results are illustrated in Figure 17. Affinity GS and
FGC exhibit missing data points due to the space limit (400G). We
can observe that Bottom-up GEC exhibits faster runtime as |𝐸 | in-
creases. This is because it can quickly collapse a 𝑘-clique. However,
in scenarios where only a few edges are removed, the large clique
transform into a complex structure composed of multiple cliques,
leading to longer collapse time. Some other methods also exhibit
faster runtime as |𝐸 | increases. These methods perform the coarse
operation on each connected component of the graph. As number
of edges decreases, the number of connected components increases.
The computation time of each connected component adds up, re-
sulting an increase in computation time. From the experiment, we
can see that our method demonstrates similar scalability in terms of
time compared to other methods, while significantly outperforming
all methods around 100× in terms of space scalability.

4770

Cora Citeseer PubMed

Figure 15: Memory overhead of different coarsening methods with varying coarsening ratios.

Figure 16: Scalability analysis of Bottom-up GEC

6 FURTHER RELATEDWORK

Graph Coarsening. Existing graph coarsening methods mainly
focused on preserving a graph’s spectral or spatial graph properties.
For example, Loukas et al. [35] focused on the restricted spectral
approximation to provide spectrum approximation guarantees dur-
ing coarse. Bravo et al. [4] developed a probabilistic framework to
preserve the inverse graph Laplacian matrix. To boost the scalabil-
ity of GNNs, Huang et al. [23] first apply graph coarsening to scale
up GNNs and analyze the impact of coarsening on GNNs. Kumar et
al. [29] achieved the state-of-the-art performance by incorporating
node features into the coarsening process. However, these methods
do not preserve the topological properties of the graph (such as
rings, and voids), which may lead to the loss of critical topological
structures and obtain unpleasant performance.
Graph Sparsification. Graph sparsification reduces the size of
graphs by sampling nodes or edges from the graph. Conventional
approaches focus on preserving properties of spectrum or centrality.
For example, Wickman et al.[48] defined a reinforcement learning
process and adjusted reward functions to preserve pairwise dis-
tance. Daniel et al. [43] sampled edges using normalized effective
resistance as probabilities. Recently, methods aiming to preserve the
GNN performance have also emerged in the literature. For example,
Neural Sparse [56] extracts weakly relevant edges by receiving
feedback from downstream tasks. UGS [8, 24] applies the Lottery
Ticket Hypothesis to the graph to find the less important edges.
However, the selection of nodes or edges inevitably loss of some
information in the graph, leading to poor performance.
Maximal Clique Enumeration.Maximal clique enumeration is
computationally challenging due to the combinatorial explosion

Figure 17: Scalability analysis of graph coarsening methods

of vertices. Numerous approaches have been proposed to address
this problem. For example, the Bron-Kerbosch algorithm [5] is a
recursive search algorithm with three sets. Three sets are main-
tained in each recursive call: a partially constructed clique, a set
of candidate vertices, and a set of excluded vertices. Pivoting [25]
reduces the search space of the Bron-Kerbosch algorithm based
on the co-occurrence of neighboring vertices in maximal cliques.
Efficiency can also be improved by sorting vertices by increasing
degeneracy [15] to limits the size of the right neighborhood of a
vertex, or create graph cutouts in each recursive call that can reduce
the length of adjacency lists [11].

7 CONCLUSION
In this paper, we propose a novel graph elementary collapse oper-
ator for graph coarsening which extends a concept of elementary
collapse from algebraic topology to the field of graph analysis. Our
method incorporates elementary collapse operations to maintain
the homotopy equivalence of the graph topology, which can pre-
serve the topological properties of the graph. We also devise several
nontrivial optimization techniques to improve the efficiency of our
solution. Finally, we conduct extensive experiments on diverse
graph datasets to evaluate our approach, and the results demon-
strate the high efficiency and effectiveness of ourmethod for various
graph analysis applications.

ACKNOWLEDGMENTS
This work was supported by NSFC Grants U2241211, 62402399 and
62072034. Rong-Hua Li is the corresponding author of this paper.

4771

REFERENCES
[1] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar,

Pietro Lió, and Michael Bronstein. 2021. Weisfeiler and Lehman Go Topological:
Message Passing Simplicial Networks. In Proceedings of the 38th International
Conference on Machine Learning. 1026–1037.

[2] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. In KDD.

[3] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. In ICLR.

[4] Gecia Bravo Hermsdorff and Lee Gunderson. 2019. A Unifying Framework for
Spectrum-Preserving Graph Sparsification and Coarsening. In NeurIPS.

[5] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected
Graph (Algorithm 457). Commun. ACM (1973), 575–576.

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203 (2013).

[7] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

[8] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.
2021. A Unified Lottery Ticket Hypothesis for Graph Neural Networks. In ICMR.
1695–1706.

[9] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. 2019. On the equiv-
alence between graph isomorphism testing and function approximation with
GNNs. In Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada. 15868–15876.

[10] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In KDD. 257–266.

[11] Naga Shailaja Dasari, Desh Ranjan, and Mohammad Zubair. 2014. pbitMCE: A
bit-based approach for maximal clique enumeration on multicore processors. In
IEEE. 478–485.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NeurIPS
(2016).

[13] Tamal Krishna Dey and Yusu Wang. 2022. Computational topology for data
analysis. Cambridge University Press.

[14] Ömer Eğecioğlu and Teofilo F Gonzalez. 1996. A computationally intractable
problem on simplicial complexes. Computational Geometry (1996).

[15] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing All Maximal
Cliques in Sparse Graphs in Near-Optimal Time. In ISAAC. 403–414.

[16] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR (2019).

[17] Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc Viet Hung Nguyen,
Kai Zheng, and Hongzhi Yin. 2023. Graph Condensation for Inductive Node
Representation Learning.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NeurIPS.

[19] Yue He, Longlong Lin, Pingpeng Yuan, Ronghua Li, Tao Jia, and Zeli Wang. 2024.
CCSS: Towards conductance-based community search with size constraints.
Expert Syst. Appl. 250 (2024), 123915.

[20] Bruce Hendrickson, Robert W Leland, et al. 1995. A Multi-Level Algorithm For
Partitioning Graphs. SC (1995), 1–14.

[21] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS. 22118–22133.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv preprint arXiv:2005.00687 (2020).

[23] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling Up Graph Neural Networks Via Graph Coarsening. In KDD. 675–684.

[24] Bo Hui, Da Yan, XiaolongMa, andWei-Shinn Ku. 2023. Rethinking Graph Lottery
Tickets: Graph Sparsity Matters. In The Eleventh ICLR.

[25] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique
Counting. InWSDM ’20: The Thirteenth ACM International Conference on Web
Search and Data Mining, Houston, TX, USA, February 3-7, 2020, James Caverlee,
Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.). 268–276.

[26] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.
2022. Graph Condensation for Graph Neural Networks. (2022).

[27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[28] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[29] Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. 2023.
Featured Graph Coarsening with Similarity Guarantees. In ICML.

[30] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection.

[31] Longlong Lin, Tao Jia, Zeli Wang, Jin Zhao, and Rong-Hua Li. 2024. PSMC:
Provable and Scalable Algorithms forMotif Conductance Based Graph Clustering.
CoRR abs/2406.07357 (2024).

[32] Longlong Lin, Ronghua Li, and Tao Jia. 2023. Scalable and Effective Conductance-
Based Graph Clustering. In AAAI. 4471–4478.

[33] Longlong Lin, Pingpeng Yuan, Rong-Hua Li, Chun-Xue Zhu, Hongchao Qin, Hai
Jin, and Tao Jia. 2024. QTCS: Efficient Query-Centered Temporal Community
Search. Proc. VLDB Endow. 17, 6 (2024), 1187–1199.

[34] Andreas Loukas. 2019. Graph Reduction with Spectral and Cut Guarantees.
Journal of Machine Learning Research (2019), 1–42.

[35] Andreas Loukas and Pierre Vandergheynst. 2018. Spectrally Approximating
Large Graphs with Smaller Graphs. In ICML. 3237–3246.

[36] John Milnor. 1966. Whitehead torsion. Bull. Amer. Math. Soc. (1966).
[37] Federico Monti, Davide Boscaini, JonathanMasci, Emanuele Rodola, Jan Svoboda,

andMichaelMBronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 5115–5124.

[38] James R. Munkres. 1984. Elements of algebraic topology. Addison-Wesley.
[39] Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Anand Sivasubramaniam,

and Mahmut Kandemir. 2020. GCN meets GPU: Decoupling “When to Sam-
ple”from “How to Sample”. In NeurIPS.

[40] Ilya Safro, Peter Sanders, and Christian Schulz. 2014. Advanced Coarsening
Schemes for Graph Partitioning. ACM J. Exp. Algorithmics 19, 1 (2014).

[41] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. CoRR (2018).

[42] David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst. 2016. A
Multiscale Pyramid Transform for Graph Signals. IEEE Transactions on Signal
Processing (2016).

[43] Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective
Resistances. SIAM J. Comput. (2011), 1913–1926.

[44] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: extraction and mining of academic social networks. In SIGKDD. 990–998.

[45] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[46] ChrisWalshaw. 2003. AMultilevel Algorithm for Force-Directed Graph-Drawing.
Journal of Graph Algorithms and Applications (2003).

[47] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. 2014. How to partition a
billion-node graph. In ICDE. 568–579.

[48] Ryan Wickman, Xiaofei Zhang, and Weizi Li. 2022. A Generic Graph Sparsifica-
tion Framework using Deep Reinforcement Learning. In ICDM. 1221–1226.

[49] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML.

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

[51] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. 2022. Cycle
Representation Learning for Inductive Relation Prediction. In ICML. 24895–
24910.

[52] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen, and Yusu Wang.
2023. Cycle Invariant Positional Encoding for Graph Representation Learning.
CoRR (2023).

[53] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-
Supervised Learning with Graph Embeddings. In ICML. 40–48.

[54] Yunfeng Yu, Longlong Lin, Qiyu Liu, Zeli Wang, Xi Ou, and Tao Jia. 2024. GSD-
GNN: Generalizable and Scalable Algorithms for Decoupled Graph Neural Net-
works. In ICMR.

[55] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive LearningMethod.
In ICLR.

[56] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust graph representation learning via
neural sparsification. In ICML. 11458–11468.

[57] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph Neu-
ral Network Training for Billion-Scale Graphs. In 2020 IEEE/ACM 10th Workshop
on Irregular Applications: Architectures and Algorithms (IA3).

[58] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan
Zhu, and Shirui Pan. 2023. Structure-free Graph Condensation: From Large-scale
Graphs to Condensed Graph-free Data. In NeurIPS.

[59] Jinhua Zhu, Kehan Wu, Bohan Wang, Yingce Xia, Shufang Xie, Qi Meng, Lijun
Wu, Tao Qin, Wengang Zhou, Houqiang Li, and Tie-Yan Liu. 2023. \mathcal{O}-
GNN: incorporating ring priors into molecular modeling. In The Eleventh Inter-
national Conference on Learning Representations.

4772

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Elementary Collapse on Simplicial Complex

	3 The Proposed Solutions
	3.1 Graph Elementary Collapse
	3.2 GEC-based Graph Coarsening

	4 Optimizations
	4.1 Relationship Graph with Maximal Clique
	4.2 Finding Collapse Pairs

	5 Experiments
	5.1 Experimental Setup
	5.2 Empirical Results

	6 Further Related Work
	7 Conclusion
	Acknowledgments
	References

