
GastCoCo: Graph Storage and Coroutine-Based Prefetch
Co-Design for Dynamic Graph Processing

Hongfu Li∗
Northeastern Univ., China

lihongfu@stumail.neu.edu.cn

Qian Tao∗
Tongyi Lab, Alibaba Group
qian.tao@alibaba-inc.com

Song Yu
Northeastern Univ., China
yusong@stumail.neu.edu.cn

Shufeng Gong
Northeastern Univ., China
gongsf@mail.neu.edu.cn

Yanfeng Zhang
Northeastern Univ., China
zhangyf@mail.neu.edu.cn

Feng Yao
Northeastern Univ., China

yaofeng@stumail.neu.edu.cn

Wenyuan Yu
Tongyi Lab, Alibaba Group

wenyuan.ywy@alibaba-inc.com

Ge Yu
Northeastern Univ., China
yuge@mail.neu.edu.cn

Jingren Zhou
Tongyi Lab, Alibaba Group

jingren.zhou@alibaba-inc.com

ABSTRACT
An efficient data structure is fundamental to meeting the growing
demands in dynamic graph processing. However, the dual require-
ments for graph computation efficiency (with contiguous structures)
and graph update efficiency (with linked list-like structures) present
a conflict in the design principles of graph structures. After exper-
imental studies of state-of-the-art dynamic graph structures, we
observe that the overhead of cache misses accounts for a major por-
tion of the graph computation time. This paper presents GastCoCo,
a systemwith graph storage and coroutine-based prefetch co-design.
By employing software prefetching via stackless coroutines and
designing a prefetch-friendly data structure CBList, GastCoCo sig-
nificantly alleviates the performance degradation caused by cache
misses. Our results show that GastCoCo outperforms state-of-the-
art graph storage systems by 1.3× - 180× in graph updates and 1.4×
- 41.1× in graph computation.
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1 INTRODUCTION
With the increase in data scale and diversification of data types,
dynamic graph processing has become a critically important issue
in various domains such as e-commerce, financial technology, and
social networks [4, 45, 49]. Specifically, dynamic graph processing
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(a) Algorithm execution time and graph update time.
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(b) CPU cache stall count.

Figure 1: The execution time for graph algorithms (and graph
updates) and the CPU cache stall count on different data
structures (T.O.: graph updates cannot finish in 24 hours).

involves executing graph computation algorithms on graphs that
experience frequent structural changes, such as millions of edge
updates per hour [24, 42]. For instance, there are more than 400 mil-
lion behaviors per day [1] between users and items on Taobao [2].
The platform should employ a combination of graph analytics and
interactive graph traversals for fraud detection or interactive pat-
tern mining [17]. Such applications on dynamic graphs require not
only efficient graph computations but also supporting the large
volume of updates per second [23, 38, 43].

Regrettably, the need for computation efficiency and frequent
update support presents a contradictory challenge, leading to a
dilemma in designing storage structures for dynamic graphs. Take
the widely used graph storage structures, Adjacency List (AL) and
Compressed Sparse Row (CSR) [41], as an example. AL is a graph
data structure where the neighbors of each vertex are stored in a
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linked list. Since the nodes in the linked list are non-contiguous
memory fragments connected by pointers, it is easy to insert/delete
nodes without data movements on the AL structure, which is suit-
able for graph updates. On the other hand, CSR has been widely
used for graph storage in static graphs due to its memory and com-
putational efficiency. Figure 1a reports the execution time for graph
computations (PageRank, SSSP, Triangle Count, and Edge Query)
and updates (Insertion) under a single thread on the LiveJournal
dataset [5]. We could observe that CSR is more efficient than AL
on graph algorithms, but spends more time for updating graphs.

To effectively support both graph computation and graph up-
dates, some efforts propose designing graph structures that main-
tain a moderate degree of contiguity [18, 22, 30, 36, 52]. For example,
Adjacency Array (AA) [52] stores all neighbors of each vertex in a
separate array and Block-based Adjacency List (BAL) [18] stores
the neighbors of each vertex in a block-based linked list (i.e., a node
contains more than one neighbors). The degrees of contiguity in
these two structures fall between CSR and AL. More recently, more
complex and detailed implementations, e.g., the state-of-the-art
dynamic graph storage systems like GraphOne [30], Stinger [18],
Terrace [36], and Sortledton [22], maintain the graphs with a linked
data structure fragmented in memory with various degrees of conti-
guity as a halfway house. However, such a halfway-house solution
can only balance the performance of graph computation and graph
updates, which sacrifices the efficiency of graph computation to
enhance graph update throughput, or vice versa.

To avoid differences in optimization and implementation across
systems, we use uniformly implemented simple data structures for
the cache stall count experiments in Figure 1b. As representatives of
“halfway-house solutions”, BAL and AL exhibit a large number of
cache misses in graph computation tasks. This motivates us to seek
a novel perspective to improve both the efficiency and dynamic
graph support of dynamic graph processing: Can we mitigate the
overhead of cache misses from the linked data structures to improve
the efficiency for both computation and updating?

To answer the question, we consider a co-design of the prefetch-
ing techniques and graph structures. Prefetching techniques allow
us to load data, which will be accessed later, from memory into
the CPU cache, thereby reducing the data access latency. These
techniques consist of both hardware prefetching, where the CPU
automatically loads data and instructions, and software prefetch-
ing, where programmers explicitly insert instructions into the code
to prefetch data. Although hardware prefetching techniques are
commonly equipped on standard hardware, software prefetching
techniques have recently demonstrated their effectiveness in many
applications [9, 25, 50]. However, when it comes to the practical
dynamic graph processing domain, there are still challenges.
Our approach. This paper presents GastCoCo, an in-memory sys-
temwith GrAph STorage and COroutine-based prefetch CO-design,
which is designed for dynamic graph processing applications to alle-
viate the performance overhead caused by cache misses. ①In terms
of hardware prefetching, the prefetching effectiveness varies across
different data structures. GastCoCo proposes a prefetch-aware data
structure CBList for dynamic graph processing.②Software prefetch-
ing is used to compensate for cases where hardware prefetching
fails, so the benefits of applying software prefetching are our focus.
GastCoCo develops a set of hybrid prefetching strategies to avoid

fetching reduplicated data by both software and hardware prefetch-
ing. To minimize the overhead of applying software prefetching and
increase the prefetch success rate, GastCoCo leverages C++20 [27]
stackless coroutines to prefetch the graph data that the program
requires to access, benefiting both graph computation and graph
updates by mitigating the cache miss overhead. ③Finally, GastCoCo
designs a set of adaptive coroutine scheduling and task allocation
strategies tailored to different graph tasks, allowing graph process-
ing using software prefetching to perform better on GastCoCo.
Contributions. To sum up, the contributions of this paper include:
• The first to employ the instruction stream interleaving execution

mode composed of coroutines and software prefetching to reduce
cache misses in dynamic graph processing, thereby enhancing
the performance of both graph computation and graph updates.

• A dynamic graph data structure CBList, specifically designed
for efficient dynamic graph processing, which not only improves
the effectiveness of hardware prefetching but also facilitates the
implementation of software prefetching via coroutines.

• An efficient graph storage system GastCoCo that is equippedwith
a set of optimizations, e.g., task allocation, coroutine scheduling,
and hybrid prefetching, to minimize the overhead of software
prefetching via coroutine as much as possible on different graph
tasks and runtime environments. Our results show that GastCoCo
outperforms state-of-the-art graph storage systems by 1.3× -
180× in graph updates and 1.4× - 41.1× in graph computation.

2 PRELIMINARIES
In this section, we first summarize the data access patterns in
graph computations and then discuss how hardware and software
prefetching work in graph processing.

2.1 Graph Operations and Data Access Patterns
There are numerous types of dynamic graph processing tasks and
their performances are usually regarded as memory access bounded
[7, 19]. Most of these tasks can be deconstructed into a bunch of
data access operations on vertices and edges. The operations to
access vertices are listed as follows.
• scan_vertices() traverses all vertices in the entire graph.
• scan_vertices(cond) makes certain conditional filtering during

the traversal, and the vertices that meet the conditions 𝑐𝑜𝑛𝑑 can
undergo subsequent operations.

• read_vertex(v) reads a specific vertex 𝑣 .
Processing edges can be considered as first locating the edges via
the source vertex 𝑣𝑠𝑟𝑐 and then processing the neighbors of 𝑣𝑠𝑟𝑐 .
Since locating the source vertex can be achieved by read_vertex(v),
our focus is exclusively on the process of neighbors.
• scan_edges(𝑣𝑠𝑟𝑐 ) traverses all neighbors of a vertex 𝑣𝑠𝑟𝑐 .
• read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) reads a particular edge from a source vertex

𝑣𝑠𝑟𝑐 to a destination vertex 𝑣𝑑𝑠𝑡 .
For example, in each iteration, Single Source Shortest Path (SSSP)
algorithm [10] requires processing all neighbors of vertices whose
statuswas updated in the previous iteration. This can be represented
as a combination of scan_vertices(cond) and scan_edges(𝑣𝑠𝑟𝑐 ). The
edge query [42] between two vertices involves read_vertex(v) and
read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) operations.
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Figure 2: Hardware prefetching.

In summary, these operations can be categorized as sequential
and random memory access.

Sequential Data Access. Some tasks require sequential data access,
i.e., to access the storage structure in a fixed order (e.g., the lexico-
graphical order). If the structure is physically contiguous inmemory,
sequential data access can be regarded as sequential memory access.
For example, scan_vertices() and scan_edges(𝑣𝑠𝑟𝑐 ) can be regarded
as sequential data access or memory access on arrays.

Random Data Access. Random data access refers to accessing the
storage structure (or part) in a random order. Since the access is
unpredicted, performing random data access on either contiguous
or non-contiguous memory can be considered as random memory
access. Correspondingly, scan_vertices(cond) can be regarded as
random data access because 𝑐𝑜𝑛𝑑 is unpredictable. read_vertex(v)
and read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) also access data in a random order.

2.2 Hardware Prefetching in Graph Processing
Hardware prefetching is a predefined mechanism in the processor
that, based on the data stream requested by the running program,
identifies and prefetches the subsequent elements that the program
might need, loading them into the processor’s cache beforehand [6].
However, its effectiveness is affected by different data structures.
Dynamic graph storage generally incorporates contiguous and non-
contiguous memory structures to support efficient graph compu-
tation and updates. Specifically, Array-like structures [32, 41, 47]
use contiguous memory, while Linked List-like [18, 22, 30] and
Tree-like structures [16, 22, 36] use non-contiguous memory.

Hardware prefetching in Array-like structures. The data in an Array-
like structure is stored contiguously in the main memory. As shown
in Figure 2 1 , when scan_edges(𝑣𝑠𝑟𝑐 ) is performed on an array, the
hardware prefetchers prefetch the next several segments adjacent
to the requested segment into the cache from the main memory.
Here, the size of a segment matches that of a cache line [6, 20,
44]. Therefore, when performing sequential memory access on
array-like structures (e.g., scan_edges(𝑣𝑠𝑟𝑐 ) in CSR), most of the

required data will be hit in the CPU cache. However, if the operation
randomly accesses data, most of the data will be missed.

Hardware prefetching in Linked List-like structures. The data stored
in the Linked List-like structure is discontiguous, and pointers
in memory connect the data. Under the sequential data access
pattern, the data to be accessed next can be known in advance
via the fixed access paths. Modern hardware prefetchers prefetch
data in the sequential data access pattern by jump-pointer mecha-
nism [12, 20, 33, 39, 40]. In Figure 2 2 , the jump-pointer mechanism
prefetches Node 2 when the processor reads Node 1, preventing
a cache miss when the processor reads Node 2. However, such a
jump-pointer mechanism does not work for the head of a linked list.
For instance, upon initially entering the linked list in Figure 2 2 ,
Node 1 can not be prefetched, leading to a cache miss. We offer the
following explanation regarding the occurrence of cache misses: i)
The first node is not located in the caches with a high possibility
while accessing a linked list. Therefore, it results in a cache miss (in
fact, the front few nodes might trigger cache misses, depending on
howmany nodes the jump-pointer mechanism prefetches ahead). ii)
Even if the memory address of the next node is far from the current
block, the jump-pointer mechanism can load the afterward nodes
in advance while traversing on a linked list as shown in Figure 2.
Therefore, fewer cache misses occur in the subsequent process.

Hardware prefetching in Tree-like structures. Several previousworks,
like Aspen [16] and Terrace [36], utilize tree-like structures to store
the high-degree vertices. In these structures, there is little inherent
spatial locality between accessed nodes since they are dynamically
allocated from the heap and can have arbitrary addresses [33]. The
hardware prefetching no longer works for such structures [20, 25] as
blocks may contain more than one pointer, and hardware prefetch-
ers cannot predict the path that will be selected. Therefore, both
scan_edges(𝑣𝑠𝑟𝑐 ) and read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) (sequential and random
data access in a tree) result in a large number of cache misses.

In summary, hardware prefetching mechanisms provide more
direction for our data structure design. However, the unexpected
performance of hardware prefetching inspires us to employ other
modern techniques to eliminate some of the cache misses from data
fetching, such that a fragmented data structure for dynamic graph
computing could also achieve better performance.

2.3 Software Prefetching via Coroutines
Although hardware prefetching relieves the access time for contigu-
ous data, it performs badly on graphs. In response, recent efforts
utilize coroutines [15, 28] to mitigate cache misses. For example,
prior works [11, 25, 28, 37] propose optimizing the overhead of
cache misses caused by random memory access, by introducing
software prefetching via coroutines. Software prefetching tech-
niques [11, 28, 29, 37] leverage workload semantics to issue prefetch
instructions [26] to explicitly bring data into CPU caches [25].

This solution enables the overlapping of data loading and com-
putation. Data can be explicitly loaded using prefetch instructions
as needed. However, given the delay involved in moving data from
memory to cache, the CPU switches to another task to compute
to overlap with data loading time. We need a tool to finish the
switching between tasks. While the multithreading approach is
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straightforward, it has much heavy overhead on thread switching
relative to the cost of LLC cache miss. To this end, we need new
techniques to switch between tasks.

C++20 Stackless Coroutine are special functions that can be sus-
pended voluntarily and resumed later at low cost during the ex-
ecution [14, 15, 25]. The efficient suspension and resumption of
stackless coroutines make it possible to implement the interleaving
execution mode. Specifically, when issuing a software prefetch-
ing instruction, we can suspend the coroutine, switch to another
coroutine for computing, and later resume the previous coroutine
to continue the corresponding task. Stackless coroutines are es-
sentially state machines, i.e., coroutine switching simply involves
changing the instruction pointer register. All coroutines within a
physical thread share the system stack, and it is unnecessary to
save the states of registers explicitly. The stackless coroutines in
C++20 [27] standard exhibit low overhead in terms of construction
and context switching [25], and GastCoCo is constructed based on
C++20 stackless coroutines.

Hardware prefetching is an automatic prefetching technique
executed by the processors but shows inefficiency in many cases
(as discussed in subsection 2.2). We apply software prefetching
to complement hardware prefetching, achieving a more effective
performance. Switching between coroutines can cause considerable
cost, and our work focuses on how to implement effective software
prefetching for dynamic graphs.

3 OVERVIEW OF GASTCOCO
This paper proposes GastCoCo, an in-memory system for dynamic
graph processing that employs an interleaved execution mode
combining coroutines and software prefetching. GastCoCo focuses
on graph storage and coroutine-based prefetch co-design, propos-
ing a novel dynamic graph data structure friendly to prefetching
techniques. Besides, GastCoCo comprises various task allocating,
prefetching, and scheduling strategies to mitigate the overhead of
cache misses, thereby delivering robust performance for different
graph processing tasks across various hardware environments.

As shown in Figure 3, GastCoCo is primarily composed of three
layers: storage layer, execution layer, and adaptation layer. Given
a graph processing task (i.e., graph computation or graph update),
user execution begins by calling GastCoCoAPI, as shown in Table 1.

GastCoCo API activates the dynamic graph processing engine,
at which point the system configuration probe in the adaptation
layer detects the hardware environment to configure the system

Table 1: GastCoCo APIs.

Name Parameters Description

LoadGraph (file_path) Load graph data files.
UpdateVertex (obj_v, update_mode) Add, delete, and modify vertices.
UpdateEdge (obj_e, update_mode) Add, delete, and modify edges.
BatchUpdate (update_content) Handle batch update tasks.

ProcessVertex (f, active) Process vertices task.
ProcessEdge (dense_f, sparse_f, active) Process edges task.

parameters of GastCoCo, e.g., the numbers of coroutines per thread
and hybrid prefetching strategy. To process tasks using software
prefetching, graph data should be partitioned into several parts
and allocated to a coroutine within a coroutine pool. All coroutines
collaborate according to the scheduling strategy to produce the
final results. The execution strategy tuner tailors the partition and
scheduling strategy to suit the specific task to achieve better per-
formance. The task allocator partitions the graph data according to
the partition strategy and constructs the coroutine pool, while the
coroutine scheduler schedules coroutines according to the sched-
uling strategy. Finally, the executor performs all read and write
operations on the storage layer.
Storage Layer (§4). This layer is our specially designed data struc-
ture CBList, which supports efficient graph computation and fre-
quent graph updates. The design of CBList is made to align as
closely as possible with hardware prefetching mechanisms (as dis-
cussed in subsection 2.2) for reducing cache misses.
Execution Layer (§5). The execution layer includes the task alloca-
tor which breaks down a task into multiple subtasks and allocates
them to coroutines, the coroutine scheduler which controls the
interleaving execution and prefetching, and the executor which ex-
ecutes the computation tasks according to the scheduling strategy.
Adaptation Layer (§6). The adaptation layer includes two compo-
nents: the system configuration probe and the execution strategy
tuner. They utilize prefabricated programs to probe the optimal
coroutine parameters (e.g., number of coroutines per thread) and
the most suitable execution and prefetching strategy for the current
tasks and runtime environment.

4 PREFETCH-AWARE STRUCTURE CBLIST

4.1 Overview
For dynamic graph processing tasks, we have the following expec-
tations for an ideal data structure. It should: (1) maintain cache
locality as possible to produce efficient graph computation; (2) be
easy to dynamically adjust for frequent graph updates. To enhance
the performance from both perspectives, a basic idea is to tailor as
closely as possible to fit the hardware prefetching mechanisms and
prepare for the implementation of software prefetching.

Figure 4 presents the proposed data structure CBList and we
elaborate on its details as follows. For storing vertices, we employ
an ID-map table and a vertex table (array of vertex structures), as
shown in Figure 4 1 and 2 , to map the vertex’s original ID to the
logical ID (unique number identifier used in graph computation). A
record contains multiple fields as presented in Figure 4 3 , which
includes two pointers to the neighbors (i.e., traversal pointer and
update/query pointer), size (number of adjacent edges), delete flag,
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Figure 4: Prefetch-aware structure CBList. (The capacities of
small chunks and B+ tree nodes are set as 2 and 3 edges.)

and the level. Here, we use a level variable to distinguish the struc-
ture of the vertex’s neighborhood. A value 0 represents using small
chunks for edge storage, while other numbers indicate using B+
trees and the value represents the number of leaf nodes in the tree.

For storing edges, we design the update-read balanced edge stor-
age with hierarchical structures, as shown in the lower right of
Figure 4. The details will be introduced in subsection 4.2. The edges
of each edge block structure are organized as shown in Figure 4
4 . Two pointers, namely the traversal pointer and update/query
pointer, are utilized to link each edge storage and the vertex table.
We provide two edge property storage modes: AOE (Array Of Edge)
and AOA (Adjacency Of Array), as depicted in Figure 4 4 .

Finally, we also design a prefetch-friendly global traversal chain
to fully take advantage of hardware prefetching for graph traversal,
the details of which can be found in subsection 4.3.

4.2 Update-Read Balanced Edge Storage
Array-like structure, e.g., CSR, suffers from poor graph update per-
formance due to data movements. However, we found that for small
data volumes, the data movement cost is negligible since only a
few data moves. Meanwhile, the continuous memory Array takes
full advantage of CPU cache performance to significantly improve
graph computing efficiency. For larger data volumes, incorporating
non-contiguous memory designs should be considered to mitigate
the cost of data movements. This means we can construct a hierar-
chical structure to achieve the update-read balance. In real-world
graph scenarios, the number of edges per vertex varies, thus a
refined design for edge storage is necessary.

Basic Idea. We use small chunks (i.e., yellow capsule-shaped
structures in Figure 4) to store low-degree vertices, and employ B+
trees [13] (i.e., green capsule-shaped structures in Figure 4) to store
high-degree vertices. The capacities of small chunks and B+ tree
nodes are set as integer multiples (usually 1-4) of the cache line size.
Specifically, we set the multiples as 4 and the destination nodes are
inserted into the chunk with the update of the graph. When the

Edge Storage (A Shared Structure)CSR-like

ADJ-like

Prefetch-friendly

Physically Contiguous

E.S.

Logically Continuous

Mutually Independent

E.S. E.S. E.S. E.S.

E.S. E.S. E.S. E.S. E.S.

V 0 V 1 V 2 V 3 V 4

V 0 V 1 V 2 V 3 V 4

V 0 V 1 V 2 V 3 V 4

Array Any Data Structure (e.g., List, Array and Tree.)

(a)

(b)

(c)

Figure 5: (a) CSR-like physically contiguous store; (b)
prefetch-friendly logically contiguous store via pointers; (c)
ADJ-like mutually independent store (E.S.: Edge Storage).

data exceeds the capacities of small chunks, we reorganize it in a
B+ tree with tree node size also multiples of cache line size. For
better readability, we set the capacities of small chunks and B+ tree
nodes to 2 and 3 edges, respectively, in Figure 4. While in practice,
we make the size of the chunks and tree nodes aligned with the
cache line, such that the structure can provide better cache locality
and enhance cache utilization for graph computation.

We enumerate the advantages of our Edge Storage design as fol-
lows. Firstly, we use independent edge structures (refer to ADJ-like
structures in Figure 5) for each vertex to store its neighborhood to
promote parallel updates of edges and facilitate different implemen-
tations like chunks and B+ trees for different nodes. In contrast,
in CSR-like structures (e.g., PCSR [47] and Teseo [32]), nodes are
stored in identical and shared edge structure (refer to the CSR-like
structures in Figure 5), and to update neighbors of one vertex may
affect the vertex records and memory locations of other edges. Sec-
ondly, scan_edges(𝑣𝑠𝑟𝑐 ) accessed from Traversal pointer in a B+ tree
can be considered as sequential data access on a linked list, which
can effectively utilize hardware prefetching as discussed in subsec-
tion 2.2. Thirdly, read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) accessed from update/query
pointer completes in 𝑂 (𝑙𝑜𝑔(𝑛)).

4.3 Prefecth-Friendly Global Traversal Chain
In graph computation, a significant portion of tasks (e.g., PageR-
ank [35]) require all vertices and edges in the graph to be involved
in the computation. Their data access patterns can be represented
as a combination of scan_vertices() and scan_edges(𝑣𝑠𝑟𝑐 ). This com-
bination equates to sequential data access over the entire graph.

From a global graph perspective, although CSR-like structures
with shared edge structures impact update performance, they store
all graph data in contiguous memory as shown in Figure 5. In
contrast, ADJ-like structures, despite their independently stored
vertex neighborhoods being update-friendly, result in complete
fragmentation of the entire graph data in memory.

Basic Idea.We consider a transitional form: based on the data
structure, we connect the neighborhoods of vertices with adjacent
logical IDs to form a linked list (the chain formed by red dashed lines
in Figure 4) that represents the entire graph named Global Traversal
Chain (GTChain). Consequently, it can naturally leverage hardware
prefetching to significantly improve the performance during se-
quential access (composed of scan_vertices() and scan_edges(𝑣𝑠𝑟𝑐 ))
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to entire graph data. Additionally, it provides assistance in load
balancing for coroutines, as will be detailed in subsection 5.2.

We have also considered the overhead of forming GTChain. One
of the reasons we chose B+ trees is the ease of forming GTChain.
Each B+ tree inherently contains a traversal chain formed by leaf
nodes. Its implementation for GTChain simply involves using point-
ers to link the leaf node chain to the global chain. However, most
tree structures (e.g., balanced binary trees, B-trees, and red-black
trees) require manual implementation of a traversal chain and the
additional traversal chain is challenging to form as a singly linked
list (each node has only one outgoing pointer) to support the jump-
pointer mechanism of hardware prefetching.

5 INTERLEAVED EXECUTIONWITH
COROUTINE

5.1 Coroutine with Software Prefetching

Sequential execution and interleaved execution. This paper focuses
on reducing the cache miss overhead based on the interleaving exe-
cution mode [37]. Figure 6 illustrates the difference between sequen-
tial execution and interleaving execution of traversal on a graph in
Figure 6 1 . We first demonstrate an example of scan_edges(𝑣𝑠𝑟𝑐 )
on AL (adjacency list) in Figure 6 2 for clarity: In the sequential
execution mode, when the CPU accesses Node 1, the first neighbor
of vertex A, a cache miss is likely to occur in the non-contiguous
memory linked by pointers, making the CPU stalled, i.e., waiting
until the data is fetched. Such stalling [25] occurs whenever cache
misses happen due to non-contiguous memory access and pointer
chasing. Alternatively, in interleaved execution mode, the CPU will
issue a prefetch for Node 1 and switch to another task (i.e., accessing
Node 3, the first neighbor of vertex B). Each coroutine handles a
linked list and is in charge of computing the corresponding task.
The algorithm starts from an arbitrary computation task. It switches
to another task whenever it encounters a software prefetching in-
struction to fetch data (the instruction is set before accessing the
next node in the linked list). When switching back to the previous
task, the CPU does not need to wait for the needed data as they
have been loaded into the cache. Thus, the process of fetching data
and computations can be overlapped and the time of cache misses
due to pointer chasing can be avoided. Note that switching tasks
also causes time costs [37]. We choose C++20 stackless coroutines
and design scheduling strategies, such that the switching time is
minimal, thereby achieving performance enhancements.

Coroutine in Graph Computation. Next, we present the coroutine
pool constructor and scheduler in graph computation. As we pre-
viously mentioned, C++20 stackless coroutines are a special kind
of function and it requires manual intervention to schedule these
functions. ①In algorithm 1 (line 1 - line 3), we present the basic
logic of the coroutine pool constructor. The time complexity of the
constructor is 𝑂 (𝑚), where𝑚 is the number of coroutines in the
coroutine pool. The coroutine pool relies on the for loop (line 2)
to initialize each coroutine as Func. Func defines the graph access
operations (as proposed in subsection 2.2) which will be detailed
in algorithm 2. ②In algorithm 1 (line 5 - line 11), we present a
polling scheduler implementation. The overhead generated by the
scheduler itself is also a cost of using coroutines. Therefore, we
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design it as simply as possible to reduce the cost of using coroutines.
Its core logic includes checking if the coroutine pool has finished
through a while loop (line 6) and polling each coroutine via a for
loop (line 7). If a coroutine is not completed, the polling scheduler
resumes execution from the suspension point (line 9). If a coroutine
is completed, the polling scheduler will destroy it (line 11). Assum-
ing the number of suspensions for the 𝑖-th coroutine in the polling
scheduler is 𝑘𝑖 , the time complexity for the entire polling scheduler
is𝑂 (∑︁𝑚

𝑖=1 𝑘𝑖 ). If the tasks are evenly distributed and each coroutine
is suspended approximately 𝑘 times, the overall time complexity
is 𝑂 (𝑚𝑘). ③We detail the logic of edge access operations in algo-
rithm 2. GetNeighbors(𝑣𝑒𝑟𝑡𝑒𝑥) and GetNeighbors(𝑐ℎ𝑎𝑖𝑛) corre-
spond to the scan_edges(𝑣𝑠𝑟𝑐 ) operation for accessing edges and
their usage and difference will be elaborated in subsection 6.1. The
time complexities of the two operations are 𝑂 (𝐷) and 𝑂 (𝐸𝑐ℎ𝑎𝑖𝑛)
respectively, where 𝐷 is the degree of the vertex, and 𝐸𝑐ℎ𝑎𝑖𝑛 is the
number of edges in the chain. FindNeighbor(𝑒𝑑𝑔𝑒) corresponds
to read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ). Based on CBList, regardless of whether
using a binary search on small chunks or searching within a B+
tree, the time complexity for FindNeighbor(𝑒𝑑𝑔𝑒) is𝑂 (log𝐷). The
user can specify the search algorithm either on small chunks or
B+ tree leaf nodes (refer to line 25, line 31). Here, all edge access
operations are constructed using coroutines and prefetch(𝑝𝑡𝑟)
denotes prefetching the content pointed to by the pointer in line 8,
line 16, and line 28. This is in the form of software prefetching. In
line 9, line 17, and line 29, co_await is a keyword in C++20 and its
invocation of suspend_always means that this coroutine actively
entering an always suspended state. Coroutines in the suspended
state will be resumed by the scheduler (line 9 in algorithm 1).

Coroutines in Graph Update. GastCoCo primarily aims to enhance
performance in the context of batched edge updates by utilizing
coroutines. For other updates, we have the following discussions.
(1) For individual updates, as previously mentioned, there is no
overlapping execution with other tasks to diminish the data load-
ing overhead. Therefore, it cannot form an interleaved execution
mode and leverage coroutines to optimize performance. However,
GastCoCo can still rely on the inherent efficiency of CBList for
handling individual updates. (2) Furthermore, graph updates can
be divided into vertex updates and edge updates. For vertex up-
dates, the vertex table in CBListmakes it efficient to query a vertex
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Algorithm 1: Constructor & Polling Scheduler
1 Function Constructor(𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑛𝑢𝑚, 𝐹𝑢𝑛𝑐):
2 for 𝑖 ← 1 to 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑛𝑢𝑚 do
3 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 .append(𝐹𝑢𝑛𝑐)

4

5 Function Scheduler(𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙):
6 while not 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 .finish() do
7 for 𝑖 ← 1 to 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 .𝑠𝑖𝑧𝑒 do
8 if not 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .done() then
9 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .resume()

10 else
11 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .destroy()

by the operation read_vertex(v). The vertex insertion operation in
the vertex table can be achieved by an append operation because
we can align the new vertex to the maximum logical ID based on
the ID-map table. In this way, we do not use coroutines for vertex
updates in the vertex table either.

Specifically, in GastCoCo, no matter whether an update is an
insertion, deletion, or modification, the process is divided into two
steps: locating and operating. We first locate the position to be
updated through a query operation, and then proceed with the
specific update operation. Thus, we formulate the query operation
read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 ) as a coroutine, as shown in algorithm 2 (line 21).
During the queries in CBList, whenever we meet a pointer for data
loading, we issue a software prefetch (line 28) and switch back later
to hide the overhead of loading data into the cache.

5.2 Load Balancing of Coroutines
Aswe have described in the example of interleaving executionmode
in Figure 6, each coroutine in a graph processing task represents
a unit of concurrent execution that processes the subgraph from
the overall task. We can reduce the overhead of cache misses by
overlapping the time of fetching data through the switching of
different coroutines. However, switching coroutines also causes an
overhead. Suppose a coroutine requires much more switch times
than other coroutines. Under the scheduling by polling scheduler
(line 5 in algorithm 1), it will occupy themost time of the algorithm’s
execution, with other coroutines having no overlapping with it. In
such case, it will lead to an unbalanced interleaving execution mode,
as illustrated in “Vertex Table Partition” in Figure 7 3 .

To this end, two solutions can solve the issues. The first is to
avoid the unbalanced partition by ensuring that each coroutine has
approximately the same switch times, and another is to optimize
the polling scheduler to avoid the repeated suspension and resump-
tion of the remaining single coroutine after all other coroutines
have been destroyed. Correspondingly, we propose two techniques
to address the issue: a graph partition strategy to ensure partition
evenness and a trimmed-polling scheduler with fine-grained check-
points. “Vertex Table Partition” is the basic graph partition strategy
by dividing the vertex table into continuous chunks, which could
maintain the natural locality of the graph data [51]. This approach
may also lead to unbalance in some extreme cases, as partitioning

Algorithm 2: Edge Access Operation
1 // scan_edges(𝑣𝑠𝑟𝑐 )
2 Function GetNeighbors(𝑣𝑒𝑟𝑡𝑒𝑥):
3 𝑛 ← 1
4 if 𝑉𝑒𝑟𝑡𝑒𝑥𝑇𝑎𝑏𝑙𝑒 [𝑣𝑒𝑟𝑡𝑒𝑥] .𝑙𝑒𝑣𝑒𝑙 ≠ 0 :
5 𝑛 ← 𝑉𝑒𝑟𝑡𝑒𝑥𝑇𝑎𝑏𝑙𝑒 [𝑣𝑒𝑟𝑡𝑒𝑥] .𝑙𝑒𝑣𝑒𝑙
6 𝑝𝑡𝑟 ← 𝑉𝑒𝑟𝑡𝑒𝑥𝑇𝑎𝑏𝑙𝑒 [𝑣𝑒𝑟𝑡𝑒𝑥] .𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑒𝑟
7 for 𝑖 ← 0 to 𝑛 do
8 prefetch(𝑝𝑡𝑟)

9 co_await suspend_always
10 compute(𝑝𝑡𝑟)

11 𝑝𝑡𝑟 ← 𝑝𝑡𝑟 .𝑛𝑒𝑥𝑡

12 // scan_edges(𝑣𝑠𝑟𝑐 )
13 Function GetNeighbors(𝑐ℎ𝑎𝑖𝑛):
14 𝑝𝑡𝑟 ← 𝑐ℎ𝑎𝑖𝑛.𝑠𝑡𝑎𝑟𝑡

15 while 𝑝𝑡𝑟 ≠ 𝑐ℎ𝑎𝑖𝑛.𝑒𝑛𝑑 do
16 prefetch(𝑝𝑡𝑟)

17 co_await suspend_always
18 compute(𝑝𝑡𝑟)

19 𝑝𝑡𝑟 ← 𝑝𝑡𝑟 .𝑛𝑒𝑥𝑡

20 // read_edge(𝑣𝑠𝑟𝑐 ,𝑣𝑑𝑠𝑡 )
21 Function FindNeighbor(𝑒𝑑𝑔𝑒):
22 𝑆𝑚𝑎𝑙𝑙𝐶ℎ𝑢𝑛𝑘_𝑙𝑒𝑣𝑒𝑙 ← 0
23 𝑝𝑡𝑟 ← 𝑉𝑒𝑟𝑡𝑒𝑥𝑇𝑎𝑏𝑙𝑒 [𝑒𝑑𝑔𝑒.𝑠𝑟𝑐] .𝑄𝑢𝑒𝑟𝑦_𝑝𝑜𝑖𝑛𝑡𝑒𝑟
24 if 𝑉𝑒𝑟𝑡𝑒𝑥𝑇𝑎𝑏𝑙𝑒 [𝑒𝑑𝑔𝑒.𝑠𝑟𝑐] .𝑙𝑒𝑣𝑒𝑙 = 𝑆𝑚𝑎𝑙𝑙𝐶ℎ𝑢𝑛𝑘_𝑙𝑒𝑣𝑒𝑙 :
25 Return search(𝑝𝑡𝑟 , 𝑒𝑑𝑔𝑒.𝑑𝑠𝑡)

26 else
27 while 𝑝𝑡𝑟 ≠ 𝑛𝑢𝑙𝑙𝑝𝑡𝑟 do
28 prefetch(𝑝𝑡𝑟)

29 co_await suspend_always
30 if 𝑝𝑡𝑟 .𝑇𝑦𝑝𝑒 = 𝐿𝑒𝑎𝑓 𝑁𝑜𝑑𝑒 :
31 Return search(𝑝𝑡𝑟 , 𝑒𝑑𝑔𝑒.𝑑𝑠𝑡)

32 else
33 𝑝𝑡𝑟 ← locate(𝑝𝑡𝑟 , 𝑒𝑑𝑔𝑒.𝑑𝑠𝑡)

34 Return 𝐹𝑎𝑙𝑠𝑒

on the vertex table means that the smallest granularity of the parti-
tion is the edge block of a single vertex. For example, if a vertex is a
super vertex (e.g., having 95% of the edges), the approach may fail.

A Fine-grained Graph Partition Strategy, on the other hand,
controls the balance by partitioning GTChain into continuous sub-
chains, as shown in Figure 7 2 . Suppose there are 𝑁 coroutines
and CBList contains 𝑋 edge structure blocks, then each coroutine
will process a sub-chain (cut from GTChain) containing 𝑋/𝑁 edge
blocks. While this strategy achieves nearly perfect balance, it re-
quires the participation of all the vertices and edges in the entire
graph computation, just like the conditions for using GTChain.
However, even though we evenly divide the data before computa-
tion, if certain edge blocks are not involved in the computation, it
still cannot form a balanced interleaving executionmode at run time.
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As a result, “GTChain Partition” can only be used for scan_vertices()
with scan_edges(𝑣𝑠𝑟𝑐 ). In summary, we design and employ two
graph partition strategies in GastCoCo, and their specific usage will
be detailed in subsection 6.1.

A Trimmed-Polling Scheduler. Compared with the polling
scheduler, a more proper approach would be to pass the number of
uncompleted coroutines to the resumed coroutine such that it can
decide when to switch. If the coroutine is the only one that remains
working, it would not issue a suspension operator, as shown in
algorithm 3. On the contrary, this may introduce extra overhead
because of the additional checks in practice.

6 ADAPTATION LAYER
6.1 Execution Strategy Tuner
In this subsection, we explain how the execution strategy tuner tai-
lors partition and scheduling strategies based on graph processing
tasks and how the task allocator allocates tasks to coroutines. It is
noteworthy that modeling each task as a coroutine and creating the
interleaved execution mode among multiple tasks is feasible and
easy. Thus, we focus on building interleaved execution patterns
among multiple coroutines within a single task in this subsection.
We present the logic of the execution strategy tuner in Figure 8 for
a better understanding.

Graph Computation Tasks. For a specific graph computation task,
it is necessary to analyze the patterns of vertex and edge access to
determine the most suitable strategy. As we have described in the
example of interleaving execution mode in Figure 6, each coroutine
in a graph processing task represents a unit of concurrent execution
that processes the subgraph within the overall task.

Graph Update Tasks. In GastCoCo, we support both individual up-
dates and batch updates, depending on the specific requirements of
the application scenario. However, it is important to note that the
coroutine optimization scheme used in GastCoCo can only optimize
batch edge updates. Specifically, for individual updates, we apply
vertex-level locks on the CBList to ensure accuracy. For batch up-
dates, similar to systems that support batch updates (e.g.,Aspen [16]
and Terrace [36]), we classify update tasks by source vertex before
updating to avoid the overhead of locks caused by data conflicts.
Each vertex that is waiting to be updated will have a collection
of update tasks. The task allocator models each vertex’s task col-
lection as a coroutine, which is similar to FindNeighbor(𝑒𝑑𝑔𝑒) in

Algorithm 3: Trimmed-Polling Scheduler
1 𝑟𝑒𝑚𝑎𝑖𝑛_𝑛𝑢𝑚 ← 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 .𝑠𝑖𝑧𝑒
2

3 Function Scheduler(𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙):
4 while 𝑟𝑒𝑚𝑖𝑎𝑛_𝑛𝑢𝑚 ≠ 0 do
5 for 𝑖 ← 1 to 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 .𝑠𝑖𝑧𝑒 do
6 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .resume()
7 if 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .finish() then
8 𝑐𝑜𝑟𝑜𝑢𝑡𝑖𝑛𝑒_𝑝𝑜𝑜𝑙 [𝑖] .destroy()
9 𝑟𝑒𝑚𝑎𝑖𝑛_𝑛𝑢𝑚 ← 𝑟𝑒𝑚𝑎𝑖𝑛_𝑛𝑢𝑚 − 1

10

11 Function Coroutine_Func(...):
12 // code segment 1
13 if 𝑟𝑒𝑚𝑎𝑖𝑛_𝑛𝑢𝑚 ≠ 1 then
14 co_await suspend_always

15 // code segment 2

algorithm 2. Since insertions may modify the structure making it
difficult to estimate the number of suspension points before the
update, we opt for the trimmed-polling scheduler for batch updates.

6.2 Hybrid Prefetching
Hardware prefetching fetches data silently to users. However, if
hardware prefetching succeeds, it will lead to additional overhead
to repeatedly operate software prefetching. Accordingly, the ideal
scenario is to use software prefetching when the hardware prefetch-
ing fails to fetch data and to avoid using software prefetching when
hardware prefetching is effective.

Assume that the cost of a cachemiss is𝐶𝑚 and the probability of a
cache miss being resolved by hardware prefetching is 𝑃ℎ . This prob-
ability varies based on the memory layout of the data. The software
prefetching solution via coroutines incurs a certain overhead,𝐶𝑐𝑜𝑟𝑜 .
If the cost 𝐶𝑚 × (1 − 𝑃ℎ) < 𝐶𝑐𝑜𝑟𝑜 , then the software prefetching
becomes redundant. To avoid this overhead of redundant data fetch-
ing, we aim to avoid employing software prefetching on data that
is highly likely to be prefetched by the hardware prefetchers. We
also need to consider the phenomenon caused by the skewed graph
structures from three perspectives discussed in subsection 2.2.

Therefore, we aim to use software prefetching to complement
hardware prefetching for better performance. However, implement-
ing software prefetching via coroutines also has overhead, as shown
in section 5. To better utilize hardware and software prefetching,
we design four prefetching strategies, as shown in Figure 9.

All Hard. This strategy uses hardware prefetching exclusively.
The performance of applying All Hard depends on how much the
data structure supports hardware prefetching. In CBList, designs
like cache alignment, B+ trees, and GTChain aim to support hard-
ware prefetching better.

All Soft. This strategy uses software prefetching exclusively. Al-
though it may conflict with hardware prefetching in various tasks,
subsection 7.7 proves it is an effective strategy.
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Hybrid strategy I (Hybrid prefetching based on the block size).
In the implementation of CBList, all small chunks are arranged
contiguously in memory, resulting in a high probability of being
prefetched by the hardware prefetcher. In this case, we skip software
prefetching for small chunks and instead rely on the hardware
prefetcher’s inherent capability to prefetch these small chunks. In
most cases, this strategy is more effective than the previous “All
Soft” strategy. This strategy is more suitable for scenarios where
small chunks have a high cache hit rate.

Hybrid strategy II (Hybrid prefetching based on the hotness). To
further prevent redundant data fetching, we consider the cold start
issue of the jump-pointer mechanism described in Section 2.2. Based
on Hybrid I, we use software prefetching at the beginning of the
linked list. For the latter part of the linked list, we solely rely on
the hardware prefetcher’s jump-pointer mechanism. In summary,
this strategy utilizes software or hardware prefetching based on
the cache’s “cold” and “hot” data status. Under ideal conditions, this
strategy achieves optimal results. However, it requires iterative tun-
ing and adjustments to determine the optimal threshold parameters
of using hardware or software prefetching based on the cache’s
state. Thus, the strategy is particularly suitable for scenarios where
repeated fine-tuning of computations is possible.

7 EVALUATION
This section introduces the experimental setup, and then validates
the efficiency of the proposed system through various evaluations.
7.1 Experimental Setup
We run the experiments on a server equipped with one Intel Xeon
Platinum 8269CY CPU whose clock speed is 2.5GHz. The server
contains 26 cores (52 hyper-threads) and 371GB of main memory.

Table 2: Description of graph datasets.

Graph #V #E 𝐷

Livejournal [5] 4,846,609 68,475,391 14.12
UK-2002 [8] 18,484,117 298,113,762 16.13
Com-friendster [48] 65,608,366 1,806,067,135 27.53
Orkut [48] 3,072,441 117,185,083 38.14
Hollywood [8] 1,139,905 116,050,145 101.81
SNB-sf1000 [3] 3,144,492 202,282,791 64.33
Ogbl-citation2 [46] 2,927,963 30,561,187 10.44

The sizes of the L1-cache, L2-cache, and L3-cache of the CPUs are
832KB(data cache)+832KB(instruction cache), 26MB, and 35.8MB,
respectively. We compiled all systems with the O3 optimization flag
using GCC v10.3. All experiments are conducted with 52 worker
threads by default unless otherwise stated, with each test running
five times to report the average outcome.
Datasets.We used five real-life graphs in our evaluation (see Ta-
ble 2), including social networks Livejournal [5], Hollywood [8] and
Com-friendster [48], and web graph UK-2002 [8] and Orkut [48].
The detailed information of the datasets is shown in Table 2, which
includes the name of the dataset, the number of vertices, the number
of edges, and average degrees. To simulate the realism of dynamic
graph processing scenarios in practice, the datasets are shuffled.
This is because other structures that contain pointers may be pe-
nalized during loading due to the inherent order of the data. To
ensure fairness, all systems load datasets using the weighted graph
mode, and random weights are generated for those unweighted
datasets. Besides, we used the SNB-sf1000 dataset [3] to test the sys-
tem’s update performance in real-world scenarios. The SNB-sf1000
dataset includes timestamped person nodes and their relationships,
along with 7,285 vertex deletions and 39,877,751 edge insertions.
We also used the Ogbl-citation2 [46] dataset, which includes 128-
dimensional word2vec features, to test graph attribute updates.
Workloads.We conduct three types of workloads. (i) Graph Query:
we randomly query 5% edges of the data set. (ii) Graph Algorithms:
we use five typical graph analysis algorithms, i.e., BFS, Single Source
Shortest Path (SSSP) [10], PageRank (PR) [35], Connected Compo-
nents (CC) and Label Propagation (LP). (iii) Graph Update: we
synthetically generate 10,000 random graph updates in the form of
edge insertions and edge deletions.
Competitors. We compare GastCoCo with state-of-the-art solu-
tions including LLAMA [34], PCSR [47], LiveGraph [52], GraphOne
[30], RisGraph [21], Teseo [32], Sortledton [22] and Terrace [36].

LLAMA, Teseo, and PCSR utilize structures similar to CSR to en-
hance data locality. LiveGraph employs a log-structured approach
for data insertion to achieve faster insertion performance. Gra-
phOne and RisGraph adopt block-based adjacency lists and adja-
cency arrays, respectively, to support rapid data insertion. Sortled-
ton and Terrace employ different structures for storing neighbor
data based on vertex degree, striking a balance between insertion
performance and graph analysis capabilities.

7.2 Performance of Graph Query
We first evaluate the performance of edge queries by GastCoCo
on all datasets in Table 2, which plays a crucial role in multiple
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Figure 10: Query execution time.

domains such as social network analysis, recommendation systems,
and transportation networks. For example, in social networks, edge
queries can be utilized to check whether there is a direct friendship
between two users or not.

Figure 10 shows the normalized time for each system to execute
queries on different datasets. Here the response time of GastCoCo
is treated as the baseline, i.e., finishes in unit time. We can ob-
serve that GastCoCo outperforms others in all the cases. Specifically,
GastCoCo achieves an average 13.7× (up to 16.8×) speedup over
Terrace, 7.4× (up to 12.0×) speedup over LLAMA, 2.8× (up to 7.2×)
speedup over PCSR, 10.9× (up to 20.4×) speedup over GraphOne,
4.7× (up to 8.5×) speedup over RisGraph, 6.0× (up to 9.1×) speedup
over LiveGraph, 4.6× (up to 6.2×) speedup over Teseo, and 5.6×
(up to 7.6×) speedup over Sortledton. For Terrace, LLAMA, and
GraphOne, they experienced a slowdown exceeding 10× on the
Hollywood dataset. This can be attributed to the dataset’s vertices
having the highest average degree (i.e., 101.81), which leads to sig-
nificant query overhead for vertices with high degrees due to the
storage structures of these three systems during retrieval. Specif-
ically, Terrace adopts a hierarchical structure. When the degree
of a vertex is large, its neighbors will be distributed in multiple
layers of data structures, which results in the need to search across
multiple storage structures when querying. For GraphOne, it uses
a block-based adjacency list to store the neighbors of each vertex.
Therefore, for vertices with a high degree, this necessitates travers-
ing a longer chain, thereby extending the query time. Compared
with other systems, GastCoCo also achieves better performance,
mainly because GastCoCo adopts more “stubby” structures, i.e., B+
Tree, as part of our edge storage. The B+ tree, due to its strict re-
balance rules, has fewer levels, meaning that we encounter fewer
pointers and experience fewer cache misses during queries. We
can offset the benefits with software prefetching via coroutines to
amortize the rebalance overhead during updates.

7.3 Performance of Graph Analysis
We next evaluate the performance of graph analysis, including
the execution time of five graph analytics algorithms, by compar-
ing GastCoCo with competitors. Figure 11 shows the normalized
time for each system to execute graph analysis algorithms on dif-
ferent datasets. Here the response time of GastCoCo is treated as
the baseline, i.e., finishes in unit time. We can see that GastCoCo
outperforms others in most cases. Specifically, GastCoCo achieves
an average 1.4× (up to 3.9×) speedup over Terrace, 41.1× (up to
243.8×) speedup over LLAMA, 11.0× (up to 39.7×) speedup over
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Figure 11: The execution time of graph algorithms on differ-
ent datasets.
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Figure 12: The throughput of graph updates.

PCSR, 21.7× (up to 79.4×) speedup over GraphOne, 4.9× (up to
22.3×) speedup over RisGraph, 4.2× (up to 16.0×) speedup over
LiveGraph, 5.8× (up to 21.7×) speedup over Teseo, and 2.8× (up to
6.8×) speedup over Sortledton. As shown in Figure 11, LLAMA and
GraphOne exhibit the most significant slowdown. LLAMA employs
a multi-version array to store the neighboring edges of vertices.
As data is inserted, the edges of a vertex may be distributed across
multiple arrays, which is disadvantageous for graph analysis algo-
rithms since they always require access to all neighbors of a vertex.
LLAMA connects the edges of a vertex distributed in different ar-
rays by pointers, thereby reducing search time. However, this still
results in extensive pointer chasing. GraphOne faces similar issues
with expensive pointer chasing due to its use of block-based adja-
cency lists. Furthermore, Figure 11 shows that Terrace, PCSR, and
Sortledton achieved better graph analysis performance compared
to other competitors. This is attributed to Terrace and Sortledton
using arrays to store the neighbors of vertices with low degrees, and
PCSR using arrays to store the neighbors of all vertices, which have
a better spatial locality. However, this design also results in higher
update costs due to data movements caused by insertions/deletions,
which will be detailed in Section 7.4. Additionally, Terrace and
Sortledton employ B-Trees or skip lists to store the neighbors of
high-degree vertices, still leading to extensive pointer chasing. In
contrast, GastCoCo utilizes software prefetching and coroutines to
accelerate data retrieval in graph analysis and reduce cache misses,
thereby achieving superior graph analysis performance.
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Figure 13: The throughput of graph updates with varying
batch sizes on different datasets.

7.4 Performance of Graph Updates
We evaluate the graph update performance of different systems on
LiveJournal, Hollywood and UK-2002 for continuous edge insertion-
s/deletions of 10K edges. Figure 12 shows the throughput (edges per
second) for all systems under different data sets. GastCoCo outper-
forms all competitors in all tests. Specifically, GastCoCo achieves
an average 2.5× (up to 4.5×) speedup over Terrace, 152.4× (up to
180.2×) speedup over LLAMA, 33.3× (up to 35.4×) speedup over
PCSR, 4.3× (up to 5.0×) speedup over GraphOne, 58.2× (up to 75.0×)
speedup over RisGraph, 74.4× (up to 109.4×) speedup over Live-
Graph, 68.8× (up to 87.2×) speedup over Teseo, and 33.3× (up to
35.4×) speedup over Sortledton. It can be observed that Terrace, Gra-
phOne, and GastCoCo have higher throughput. GraphOne utilizes
a block-based adjacency list storage structure, which is particu-
larly advantageous for insertions. However, as demonstrated in
the previous experiment, it performs poorly in graph queries and
graph analysis. Both Terrace and GastCoCo adopt a batch updates
design, i.e., classify update tasks by source vertices before updating,
to avoid lock overhead caused by data conflicts. Moreover, since
Terrace maintains the updated data in an ordered manner, a search
operation is required to determine the position of the new data, lead-
ing to a significant number of cache misses. In contrast, although
GastCoCo also maintains ordered updates, our coroutine-related
design effectively reduces cache misses, thereby achieving better
performance than Terrace.

7.5 Varying Batch Size of Graph Updates
We also conduct experiments to evaluate the impact of batch size
of graph updates on throughput performance. Figure 13 reports
the throughput of the systems on graph updates with different
batch sizes on LiveJournal, Hollywood, Orkut, and UK-2002. For
each batch size from 10 to 107, we report the throughput (edges
per second) for all systems. Figure 13 shows that GastCoCo out-
performs other systems with batch sizes ranging from 103 to 107,
the reason for which is primarily consistent with the analysis pro-
vided in Section 7.4. Moreover, when the batch size exceeds 103,
the throughput of GastCoCo remains relatively stable, indicating
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Figure 14: Performance analysis. (SE represents Sequential
Execution, IE represents Interleaved Execution, and SP rep-
resents Software Prefetching)
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Figure 15: Update properties
on ogbl-citation2.
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Figure 16: Update on SNB-
sf1000.

that GastCoCo possesses excellent scalability. On the other hand,
when the batch size is 10 and 100, Terrace, PCSR, and GraphOne
exceed GastCoCo. This is because the construction and scheduling
overheads in GastCoCo’s CBList are difficult to balance against the
benefits brought by coroutines for smaller batch sizes.

7.6 Real-World Graph Updates
Firstly, we conduct a properties update experiment using the OGB
dataset. The results are shown in Figure 15. Since updating proper-
ties does not cause structural changes, many systems have shown
good performance in this task.

Secondly, we conduct a real-world graph update experiment on
the SNB-sf1000 dataset to test the system’s update performance in
real-world scenarios. Unlike the previous update experiments, this
dataset includes vertex deletions. The SNB-sf1000 dataset includes
timestamped person nodes and their relationships, along with 7,285
vertex deletions and 39,877,751 edge deletions. When deleting a
vertex, we need to delete all its edges at the same time. We test
the throughput of graph updates on different systems using the
SNB-sf1000 dataset. As shown in Figure 16, GastCoCo outperforms
most systems except for GraphOne. GraphOne uses a block-based
adjacency list storage structure and does not actually delete content
during updates, but rather appends deletion records, which is par-
ticularly advantageous for insertions. However, as demonstrated by
the experiments in subsection 7.2 and subsection 7.3, it performs
poorly in graph queries and analysis. In contrast, our system shows
good performance in both graph updates and analysis.

4837



Table 3: Cache miss and cache stall percentage for different
workloads and execution modes.

Workload
Execution
mode Livejournal Hollywood

Cache miss Percentage Cache miss Percentage

PageRank SE 2.09 × 109 50.4% 2.70 × 109 69.5%
IE + SP 2.01 × 109 42.9% 2.26 × 109 49.4%

SSSP SE 1.75 × 109 31.7% 2.64 × 109 45.4%
IE + SP 1.31 × 109 24.4% 2.00 × 109 29.4%

Batch Update SE 1.20 × 109 58.3% 2.95 × 109 81.1%
IE + SP 1.18 × 109 58.2% 2.92 × 109 80.5%

7.7 Performance Analysis
We conduct performance analysis on SSSP and batch insertions for
our designs to understand the performance gains and losses. SSSP
includes GetVertices(𝑐𝑜𝑛𝑑), making the probability of hardware
prefetching failures increase and software prefetching more effec-
tive. Batch insertions utilize update/query pointers in CBList for
locating update positions in the edge storage structure. Hence, the
hybrid strategy I cannot be applied as it is only implementable on
GTChain. In particular, Sequential Execution (SE) means executing
tasks in sequential execution mode (refer to subsection 5.1); Inter-
leaved Execution (IE) means using coroutines to form an interleaved
execution mode (refer to subsection 5.1); Software Prefetching (SP)
means incorporating software prefetching instructions during the
interleaved execution process; Hybrid I and Hybrid II represent
employing hybrid strategy I with hardware failure time and hy-
brid strategy II with the content to be prefetched respectively in
section 6. From Figure 14, we could observe that the interleaved ex-
ecution mode (IE no SP) spends longer running time compared with
the sequential execution mode (SE) due to the additional switch-
ing cost of coroutines. However, if we further employ software
prefetching and hybrid prefetching strategy, GastCoCo achieves at
most 1.83× (graph computation) and 1.62× (graph update) speedup
compared with sequential execution on CBList.

Additionally, we record the cachemiss rates for software prefetch-
ing with interleaved execution and sequential execution. As shown
in Table 3, the application of software prefetching reduced both
cache misses and cache stall percentages. Specifically, in graph
algorithms, cache misses were reduced by up to 35%.

8 RELATEDWORK
Dynamic graph storage systems. There have been graph stor-
age systems developed for dynamic graph storage and process-
ing [16, 21, 22, 30–32, 34, 36, 47, 52]. LiveGraph [52] adopts a log-
structured design, allocating a contiguous edge block to each vertex
for fast neighbor scanning and enabling swift updates through
append-only insertions. However, this method leads to unordered
neighbor storage, impeding the efficient execution of common op-
erations, and data must be copied to larger blocks to maintain
continuity once current edge blocks are full. LLAMA [34] uses
multi-version array storage to enhance spatial locality in graph
analysis. However, continuous data insertion leads to numerous
array versions and scatters a vertex’s neighbors across them, still
causing extensive CPU cache stalls during analysis. Aspen [16] uses
a tree structure for edge data to enable fast insertion and main-
tain ordered storage of neighbors. However, this structure results

in minimal inherent spatial locality among data nodes, leading to
poor access performance. Terrace [36] and Sortledton [22] adopt
different data structures for storing neighbors of vertices of varying
degrees to enhance data locality and minimize cache misses during
access. However, for vertices with a high degree, they are still stored
in discontinuous structures, and neighbors of a single vertex may
span multiple structures, ultimately impacting search and graph
algorithm performance. Teseo [32] and PCSR [47], employing CSR-
like structures, use reserved gaps to prevent severe data movement
overhead. However, they still face the same challenges as CSR when
facing a surge in data updates. Different from existing systems, we
design a novel dynamic graph data structure to facilitate rapid
graph insertions. It integrates the advantages of hardware prefetch-
ing, software prefetching, and coroutines to minimize cache misses,
thereby enhancing graph computation performance.

Prefetching and Coroutines. Due to the significant dispar-
ity between CPU computation speeds and memory access latency,
some existing graph systems [16, 22, 32, 34, 36] employ prefetching
with the aim of reducing CPU cache stalls during graph analysis.
However, these systems merely utilize the prefetching interfaces
provided by the system in a straightforward manner, which does
not guarantee that data is fetched into the cache prior to access. As a
result, they still incur significant CPU cache stall overheads. Further-
more, some works [25, 50] have adopted coroutine-based prefetch-
ing to accelerate existing applications. For example, CoroBase [25]
utilizes coroutines to expedite the transaction processing. In Coro-
Graph [50], coroutine-based prefetching is employed to reduce CPU
cache stalls during the Gather-Apply-Scatter (GAS) process in static
graph systems. Compared to these systems, our approach addresses
the unique challenges brought by data insertion and graph analysis
in dynamic graph scenarios. By integrating the characteristics of
prefetching and coroutines, we design a novel dynamic graph struc-
ture and access pattern that supports rapid graph data insertion
while enhancing graph analysis performance.

9 CONCLUSION

This paper presents GastCoCo, a prefetch-aware graph storage and
software prefetching co-designed system by leveraging coroutines
for dynamic graph processing. C++20 coroutines are introduced to
the system to achieve prefetching randomly stored graph data and
reduce cache misses. To benefit more from the software prefetching,
several workload-balancing strategies and a prefetch-friendly data
structure, CBList, are proposed. Extensive experiments on various
datasets show the superiority of GastCoCo in achieving the balance
of graph computation performance and graph update performance.
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