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ABSTRACT
In this paper, we present ELEET, a novel execution engine that al-
lows one to seamlessly query and process text as a first-class citizen
along with tables. To enable such a seamless integration of text and
tables, ELEET leverages learned multi-modal operators (MMOps)
such as joins and unions that seamlessly combine structured with
unstructured textual data. While large language models (LLM) such
as GPT-4 are interesting candidates to enable such learned multi-
modal operations, we deliberately do not follow this trend to enable
MMOps, since it would result in high overhead at query runtime.
Instead, to enable MMOps, ELEET comes with a more efficient small
language model (SLM) that is targeted to extract structured data
from text. Thanks to our novel architecture and pre-training proce-
dure, the ELEET-model enables high-accuracy extraction with low
overheads. In our evaluation, we compare query execution based
on ELEET to baselines leveraging LLMs such as GPT-4 and show
that ELEET can speed up multi-modal queries over tables and text
by up to 575× without sacrificing accuracy.
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1 INTRODUCTION
More than Tables. Decades of research have turned relational
databases into highly optimized systems for managing tabular data.
However, modern data applications need to deal with other data
modalities as well that are often used in addition to tabular data,
such as texts or image data [7, 19, 36]. Unfortunately, traditional
relational databases are not well-equipped to handle these multi-
modal scenarios. Instead, practitioners are forced to process modal-
ities other than tables outside the database or integrate them by
manually transforming such modalities into tabular form first.
Query Execution over Multi-modal Data. At the same time,
rapid advancements in natural language processing and computer
vision have made it easier to extract insights from texts, images, as
well as other modalities. In light of these developments, we believe
it is time to bring these innovations to the world of databases and
enable users to seamlessly query multi-modal data. Although some
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examinationspatients

name age gender path

Alice 42 f alice.txt

Bob 23 m bob.txt

Alice was
diagnosed

with fever ...

⨝

SELECT patients.age, examinations.diagnosis
FROM patients JOIN examinations

result

age diagnosis

42 fever

23 cough

=

alice.txt

Figure 1: Example of a query that executes a multi-modal
join between a patient table and examination reports. ELEET
analyzes the texts and extracts values for each queried at-
tribute, such as the diagnosis from each examination report.

extensions have been integrated into commercial database systems
such as full-text search or pattern matching for textual data [18],
modalities such as text do by far not allow for the same level of
querying as tabular data. Our work aims to fill this gap. Hence, we
propose ELEET, an approach that leverages query plans with learned
operators that allow us to seamlessly process data of modalities
other than tables as if they were available in tabular form.
A Simple Example. Figure 1 illustrates how we envision how ELEET
can be used by applications. In the example, the database stores
structured patient information (using a table) alongside textual
patient reports that contain additional diagnostic information per
patient. If the diagnostic information were stored in tabular form
as well, a SQL query, as shown at the top of Figure 1, could easily
be used to analyze the correlation between the patient’s age and
her diagnosis. If the information is, however, stored inside textual
reports, today a data scientist would need to write many lines of
code to create a data extraction pipeline that retrieves the diagnostic
information from text. Only after extraction would it be possible to
query this information at a similar level to tabular data.
LearnedMulti-Modal Operators. The goal of our work is to chal-
lenge this need for a “special treatment” for modalities other than
tables, allowing users to query them seamlessly and declaratively
as if they were tables. To enable seamless querying of multi-modal
data, we propose to extend relational query plans with so-called
learned multi-modal operators (MMOps). The basic idea of MMOps
is that they extend the set of operators used in traditional query
engines by new operators that can natively process data sources of
other modalities. As shown in Figure 1, for example, a multi-modal
join operator for tables and texts allows users of ELEET to join the
patient table directly with the linked patient reports. As such, the
data analyst can correlate the relationship between the patient’s
age and their diagnoses in a simple and efficient manner.
Multi-Modal Query Plans. The rationale behind MMOps, such
as the multi-modal join, is that they can accept data sources of
other modalities as input and produce tables as an output. Thus,
MMOps nicely integrate with the existing query processing ca-
pabilities of traditional databases since MMOps can be composed
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Figure 2: Overview of ELEET. In an offline phase, the ELEET-model can be fine-tuned for unseen domains 1○. Fine-tuning the
ELEET-model for an unseen domain is a one-time effort and requires a small sample of a few labeled texts. 2○ For query
execution, ELEET uses multi-modal query plans that contain traditional (white) and multi-modal database operators (purple).
To compute the result of a multi-modal operation such as a join over texts, the ELEET-model is used (see a○ to c○): During the
execution of a multi-modal operation, the ELEETmodel first computes embeddings of the query attributes, texts, and table input
a○, using its encoder b○. Afterwards, the ELEET-model matches text token embeddings to query attribute embeddings to extract
the output table from the text using its extractive decoder c○, which decides which tokens qualify for a given query attribute.

into query plans along with relational operators to enable complex
analytical queries. For example, after the multi-modal join operator
shown in Figure 1, other relational operators, such as a projection
or a filter, can be applied to provide rich query functionality to
users. Moreover, as we elaborate later in the paper, in addition to
multi-modal joins, ELEET implements a wide spectrum of different
MMOps, including multi-modal scans, unions, and aggregations.
Realizing Multi-Modal Operators using LLMs? The key idea in
realizing such multi-modal operators for text and tables is to build
on recent advances in the area of language models. In fact, recent
language models (e.g., GPT-3 [4], GPT-4 [29], LLaMA [37, 38], PaLM
[2, 8] or Gemini [35]) have shown remarkable results on a wide
range of text-processing tasks. While it has been shown that recent
language models can be used out-of-the-box to transform a text into
a table, we argue that such language models are not readily usable
for efficient query execution. In particular, due to their immense
size (i.e., GPT-4 has more than a trillion parameters), they are very
computationally expensive. Each call for a single text can take
several seconds, leading to query runtimes of multiple minutes
even for small text collections as we show in our experiments.
Small Language Models to the Rescue? Therefore, in this paper,
we take a different route: instead of building ELEET on large lan-
guage models (LLMs) such as GPT, we instead base multi-modal
operators on a small language model (SLM) to achieve a more ef-
ficient execution of multi-modal operators. A key to this SLM is
that we use a model architecture that targets table extraction from
text and pre-train the model to learn the essential skills to perform
MMOps. Thanks to this pre-training, the ELEET-model can provide
high accuracy and efficiency at the same time. For example, our
model architecture avoids using costly autoregressive decoding,
which is prominent in LLMs and requires many passes through the
model to construct the output rows from texts. Instead, our model
uses an extractive approach using embeddings of text and query
attributes, which can extract data from text in a single model pass.
More than table extraction from text. Finally, a last important
property of our model is that it can incorporate additional signals
from tabular data sources when extracting structured data from

text, which can improve the extraction quality. For example, when
executing a multi-modal join between a table and a text collection,
as discussed before in our example, the multi-modal join can take
structured data (e.g., the name of a patient) as input to extract the
correct diagnosis from the text. This might be particularly helpful
in scenarios where the text contains information about multiple
patients. Moreover, providing such signals from structured data can
also reduce the runtime of multi-modal joins, as we discuss later.
Contributions. To summarize, in this paper, we present three
major contributions: (1) As the core contribution, we present the
ELEET-model. For realizing the ELEET-model we use a novel SLM
that targets table extraction from text. For pre-training the SLM, we
construct a new parallel pre-training corpus of tables and texts. (2)
As a second contribution, we show how MMOps can be realized us-
ing a pre-trained ELEET-model. We present a wide range of different
MMOps such as a multi-modal scan that can turn text collections
into tables or more complex operations like joins, unions, selec-
tions, and aggregations operating on texts and tables. (3) Finally, we
provide an extensive evaluation using four data sets to challenge
our approach and evaluate how accurate and efficient multi-modal
query plans are executed with ELEET. The evaluation uses data sets
from different domains and a wide range of multi-modal query
plans. Using these workloads, we compare ELEET against strong
baselines, including some that leverage LLMs such as GPT-3 or 4.
Outline.We first provide an overview of ELEET in Section 2, before
we define its data model and algebra in Section 3. Then, we explain
the details of the ELEET-model in Section 4 and how it can be used
to realize MMOps in Section 5. Finally, we present our evaluation
in Section 6, related work in Section 7 and conclude in Section 8.

2 OVERVIEW OF ELEET
In the following, we first explain the overall procedure of executing
queries with ELEET. Afterwards, we discuss its key design principles
in detail.
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2.1 Overall Procedure
ELEET executes a multi-modal query plan containing traditional
database operators andMMOps. Such amulti-modal query plan con-
sumes data from tables and text collections that can be seamlessly
treated as tables (called latent tables) using our ELEET-model. ELEET
supports different MMOps in multi-modal query plans. For instance,
the query 𝜋name,diagnosis ((patients ⋈︁ to_reports)⋈̈︁diagnoses) in
Figure 2 uses a multi-modal join to combine text with table data. In
the following, we sketch how this join can be realized by using our
ELEET-model in Figure 2 2○.
A Sketch of a Multi-Modal Join. The join in Figure 2 needs to
extract the diagnosis for each patient tuple coming from the first
join of the patients and to_reports table (i.e., each patient can have
multiple reports). For executing this query, we feed the attributes
to extract from text (i.e., diagnosis; called latent attribute) together
with the patient data from the first join and the text documents to
be joined into the ELEET-model. For example, for joining the patient
tuple of Bob with his patient report in Figure 2 a○, ELEET feeds
the patient tuple (containing name, height, ...), the latent attribute
diagnosis, and the patient report of Bob into the ELEET-model. For
extracting the diagnosis, the encoder of our ELEET-model maps
all inputs into a joint latent space b○. Afterwards, the decoder
identifies spans of texts in the report that qualify as diagnosis, such
as the text span sore throat in Figure 2 c○. Finally, the result row
{name ↦→ Bob, diagnosis ↦→ sore throat} with the extracted values
from the text is materialized. One assumption we make in ELEET is
that there exists a foreign key relationship between the tuples in
the relational table and the text collection, i.e., patient reports are
linked to a patient tuple. In Section 3 we discuss the data model of
ELEET more formally.
Fine-Tuning for unseen Domains. While the ELEET model is
pre-trained to learn table extraction from text, it clearly benefits
from fine-tuning on texts of domains unseen during pre-training
(see 1○ in Figure 2). To do so, in a model preparation phase (offline),
the user labels a few example texts by marking text spans that are
extractions for potential query attributes. Based on a pre-trained
ELEET-model, only a few fine-tuning samples are necessary. In our
evaluation, we show that only a small number of labeled documents
are typically sufficient to achieve high accuracy for unseen domains.

2.2 Key Design Principles
Efficiency of Extraction. The efficiency of query execution is a
major concern for ELEET. We tackle this using three key design
principles for the ELEET-model: (1) Firstly, regarding the ELEET-
model, we use a small language model with only 140 million pa-
rameters that we optimize for performing query operations. The
ELEET-model is multiple orders of magnitudes smaller than recent
LLMs (e.g., GPT-3 has 175 billion and GPT-4 has 1.76 trillion pa-
rameters) and thus provides much lower inference latencies. (2)
Secondly, in our model architecture as we discuss next, we avoid
costly autoregressive decoding that LLMs typically use, which re-
quires many passes through a transformer-based decoder and thus
leads to high inference times [41]. Instead, the ELEET-model uses
an extractive approach that computes its output in a single pass
through the model. (3) Finally, beyond the model itself, optimal
physical operator implementations of MMOps in ELEET can help

to improve the efficiency of query execution further. For example,
for a multi-modal selection that applies a filter on attributes from
the texts, we leverage an index-based implementation to avoid the
high scan cost of scanning all texts in the text collection.
AccuracywithoutRegrets.Another key design principle of ELEET
is that we do not trade efficiency for accuracy. Instead, as we spe-
cialize our model for the task of extracting structured data from
text, it is highly accurate on this task and often even more accurate
than much larger general-purpose language models such as GPT-4.
We achieve this through our pre-training procedure, which teaches
the model the necessary skills to perform table extraction from text.
This allows ELEET to be highly accurate while being more efficient
than LLMs, as we show in our evaluation.
Online and Offline ExecutionWhile this paper aims to enable
online execution of multi-modal query plans, ELEET can also be
used to pre-compute extractions from text offline (i.e., constructing
a materialized view of a multi-modal query). However, we think
there are many scenarios where the ability to execute multi-modal
query plans online is crucial. For example, in a setting where text
collections are continuously updated, online query execution is im-
portant to provide up-to-date query results and can avoid the high
cost of view maintenance. Moreover, online query execution can
also be attractive in a setting where queries only need to process a
few texts, and materializing a table of a potentially huge text collec-
tion would cause high overheads. In these cases, online processing
saves the additional high storage and pre-processing overheads of
materialization. Finally, materialization prevents ad-hoc queries
where query attributes are not known in advance.

3 DATA MODEL AND ALGEBRA DEFINITION
In this section, we explain which types of queries are supported by
ELEET by formally defining its data model and ELEET’s algebra.

3.1 Data Model of ELEET
The data model of ELEET builds upon the relational data model and
extends it by text collections and latent tables.
Text collections. A text collection 𝐷 = {𝑑1, . . . , 𝑑 |𝐷 | } is a set of
text documents. Similar to how different rows in database tables
follow the same schema defining a set of attributes 𝐴 per table, we
assume that different documents 𝑑 of a text collection𝐷 also expose
the same attributes. For instance, in a text collection of patient
reports, each document contains information about the patient’s
name and the diagnosis. Furthermore, each document is uniquely
identified by its file path 𝑝𝑎𝑡ℎ(𝑑) and can contain an arbitrary
number of tokens: 𝑑 = 𝑤1 . . .𝑤 |𝑑 | . In ELEET, text collections can
be queried standalone but can also be linked to traditional tables.
Traditional tables can be linked to text collections by storing their
file paths as an additional attribute in the tables, essentially creating
a foreign key relationship between tables and text collections. In
fact, many real-world datasets today already use this model to link
text documents and tables. For example, we analyzed the GitTables
corpus [20], a collection of 1M tables, and found that 15k tables
already contain paths to externally stored text files.
Latent Tables. In ELEET, users register latent tables over a text
collection𝐷 to make it available for query processing. Similar to reg-
ular tables, the user has to define a schema 𝐿𝐴 = {𝑙𝑎1, . . . , 𝑙𝑎 |𝐿𝐴 | }
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Table 1: Overview of ELEET’s data model.

Symbol Name

𝑇𝐴 Table with attributes 𝐴
𝐷 Text collection

𝐷.𝐿𝑇𝐿𝐴 Latent table with latent attributes 𝐿𝐴

for a latent table 𝐷.𝐿𝑇 . We assume that the user knows the data
well and can specify a reasonable schema. We denote such a latent
table as 𝐷.𝐿𝑇𝐿𝐴 . The schema defines the attributes that can be ex-
tracted from text (e.g., name and diagnosis of medical reports). A
tuple 𝑡 ∈ 𝐷.𝐿𝑇 thus contains a value 𝑣 = 𝑤𝑣

1 . . .𝑤𝑣
|𝑣 | that can be

extracted from text 𝑑 = 𝑤1 . . .𝑤𝑣
1 . . .𝑤𝑣

|𝑣 | . . .𝑤𝑛 for each attribute
in 𝐿𝐴. Furthermore, each tuple contains the file path to the doc-
ument 𝑑 . Importantly, defining a latent table does not yet extract
any values from the text. Instead, a latent table is merely a handle
that can be used in query plans. The values are extracted on the fly
during query execution as explained in Section 2.2.
Single-row and Multi-row Latent Tables. Finally, in ELEET we
distinguish between single-row andmulti-row latent tables. A single-
row latent table is where the user knows that each document 𝑑 ∈ 𝐷
contributes exactly one tuple 𝑡 to a latent table 𝐷.𝐿𝑇 (e.g., each
patient report always contains a single diagnosis and treatment).
On the other hand, amulti-row latent table is the general case where
each document can contribute an arbitrary number of tuples to
a latent table. In case of a multi-row latent table, the user has to
define a document-level key 𝑙𝑎𝑘𝑒𝑦 ∈ 𝐿𝐴 such that each latent tuple 𝑡
coming from the same document𝑑 is uniquely defined by the values
for 𝑙𝑎𝑘𝑒𝑦 . For example, if a medical report contains information
about multiple diagnoses, the diagnosis name would be a sensible
document-level key. Note that defining the schema, the type of latent
table (single-row vs. multi-row) and the document-level key needs
to be done only once per latent table and not per document, thus
causing the same overhead as creating a schema for a normal table.
Moreover, defining a latent table can also be automated [41].

3.2 Algebra of ELEET
ELEET uses an algebra to compose multi-modal query plans. The
algebra extends the traditional relational algebra with MMOps
shown in Table 2. For an extended formal definition, see [41].
Multi-modal Scan. The most important operator is the multi-
modal scan operator. Amulti-modal scan takes a latent table𝐷.𝐿𝑇𝐿𝐴
as input and materializes a normal table 𝑇𝐿𝐴∪{path} as output by
extracting values 𝑣 = 𝑤𝑣

1 . . .𝑤𝑣
|𝑣 | for each latent attribute from all

text documents. The output table of a multi-modal scan can thus be
used as input to normal relational operators such as joins and filters.
The multi-modal scan is sufficient for expressing all possible multi-
modal queries in ELEET. As such, the other multi-modal operators
in Table 2 do not enrich the expressivity of queries in ELEET but
instead improve the quality of query results or the efficiency of
query execution (or both). In the following, we briefly explain each
multi-modal operator’s interface, its role, and how it can optimize
a multi-modal query plan. More details follow in Section 5.
Multi-modal Join. The second operator is a multi-modal join
𝑇 ⋈̈︁𝐷.𝐿𝑇 , which can replace a combination of a scan with a tradi-

Table 2: Summary of the multi-modal operators.

Name Expression Output Type

Scan 𝑆𝑐𝑎𝑛 (𝐷.𝐿𝑇𝐿𝐴 ) 𝑇𝐿𝐴∪{path}
Join 𝑇𝐴 ⋈̈︁ 𝐷.𝐿𝑇𝐿𝐴 𝑇𝐴∪𝐿𝐴
Union 𝑇𝐴 ∪̈ 𝐷.𝐿𝑇𝐿𝐴 𝑇𝐴

Projection 𝜋𝐿𝐴′⊆𝐿𝐴 (𝐷.𝐿𝑇 ) 𝐷.𝐿𝑇𝐿𝐴′

Selection 𝜎̈𝑐𝑜𝑛𝑑 (𝐷.𝐿𝑇𝐿𝐴 ) 𝐷.𝐿𝑇𝐿𝐴

Aggregation 𝜒𝐹,𝐴′⊆𝐴 (𝑇𝐴 ) 𝑇𝐴

tional join 𝑇 ⋈︁𝑇 .𝑝𝑎𝑡ℎ=𝐷.𝐿𝑇 .𝑝𝑎𝑡ℎ 𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 ). For the multi-modal
join, the table 𝑇 must be linked to the document collection 𝐷 by
storing file 𝑝𝑎𝑡ℎ as an additional attribute in 𝑇 , which is used as
a join key. The task of the multi-modal join is to extract values
from text linked to a tuple in 𝑇 by leveraging attribute values from
the tuple. The multi-modal join patients ⋈̈︁ reports.examinations,
for example, extracts for each patient (stored in a table) values for
the latent attributes of the latent examinations table (e.g., diagnosis,
treatment, etc.) from the textual reports. The multi-modal join is an
optimization over using patients ⋈︁ 𝑆𝑐𝑎𝑛(reports.examinations)
as the multi-modal join can use the data in the patients table during
extraction from the textual reports. For example, the patient table
containing the patient name can help extract the relevant parts of
the medical report text, which is particularly helpful if the reports
contain information about multiple patients.
Multi-modal Union. The third multi-modal operation is the union
𝑇 ∪̈𝐷.𝐿𝑇 , which can be used to replace a traditional union and a
scan𝑇 ∪𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 ). For instance, when a hospital stores its patient
information in tabular form, while another stores it as reports, one
could combine both with a multi-modal union. Important is that the
attributes exposed by the normal and latent table are compatible in
types, meaning they store the same type of information (e.g., both
store patient name and diagnosis). Again, the difference to a scan is
that the union can use the tabular data 𝑇 as additional context for
the model. In the case of a union, this additional context is example
values (e.g., example names and diagnoses) for each latent attribute,
which can help extract values from the text.
Multi-modal Projection& Selection.Themulti-modal projection
𝜋𝐿𝐴′ (𝐷.𝐿𝑇 ) projects the columns from a latent table withoutmateri-
alizing it. As such, it is an optimization over using traditional projec-
tion after a multi-modal scan 𝜋𝐿𝐴′ (𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 )), which would need
to materialize values for all columns. In contrast, the multi-modal
selection 𝜎̈𝑐𝑜𝑛𝑑 (𝐷.𝐿𝑇 ) as shown in Table 2 reduces the number of
texts using a filter condition 𝑐𝑜𝑛𝑑 on a latent attribute. The text
documents are filtered without materializing them as output table.
As such, it is an optimization over using traditional selection after
a multi-modal scan 𝜎𝑐𝑜𝑛𝑑 (𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 )), which would first need to
extract rows for all documents before filtering. Moreover, another
feature of the multi-modal selection is that it improves selection
quality since it can detect matches of text values similar to the
value used by the filter condition 𝑐𝑜𝑛𝑑 (e.g., diagnosis=fever can
also match the synonym high temperature in text). Finally, the alge-
bra of ELEET can be extended to also allow for semantic similarity
based selections on tables already extracted from text [41].
Multi-modal Aggregation. Finally, the multi-modal aggregation
𝜒𝐹,𝐴′ (𝑇 ) operates on a normal table but can group similar values
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and traditional table values 1○ using 12 (11+1) transformer
layers 2○ a○, all embeddings corresponding to the same cells
or latent attributes are pooled, before vertical attention lets
signal flow between groups of k rows b○. A separate final
transformer layer computes a second set of text embeddings
optimized for detecting duplicates c○. The decoder 3○ con-
sists of several heads for the different sub-tasks for extracting
table data from texts. For instance, the row-detect head is
used to find extractions in the text. For this, it pairs the em-
bedding of each text token with the embedding of a masked
cell (i.e., the attribute to be extracted) and classifies whether
the token is part of the attribute or not. The tokens that are
marked to be extracted are inserted into the output table 4○.

for attributes coming from text extractions. It replaces a traditional
aggregation over a multi-modal scan or join, which is less robust if
extracted values contain synonyms. Like traditional aggregation,
multi-modal aggregation takes parameters 𝐹 for the aggregation
function over one of the attributes in 𝑇 and 𝐴′ for the group-by
attributes.

4 THE ELEET-MODEL
At the core of ELEET is the ELEET-model which is used for extracting
structured tuples from text. In the following, we show the model
architecture and how the model is pre-trained.

4.1 Model Architecture
Our ELEET-model uses an encoder-decoder architecture as depicted
in Figure 3 that follows the design principles outlined in Section 2.2.
In ourmodel, the encoder first computes embeddings from the input.
The decoder then consists of several lightweight decoder heads
that use these embeddings to perform the different subtasks for

transforming texts to tables (e.g., value extraction, deduplication).
For the sake of presentation, we explain the design of our model
and how it can be used to execute multi-modal joins or unions
on a single-row latent table. For single-row latent tables, for each
text document, we only need to extract a single value for each
latent attribute (i.e., for each patient report, we need to extract one
diagnosis, one treatment, etc.). More details about all operations
and multi-row latent tables are explained in Section 5.
Encoder. The encoder computes embeddings for the inputs re-
quired to extract values from text documents. Figure 3 1○ shows
an example of a multi-modal join. The input to the encoder consists
of the text tokens coming from a text document (orange) and the
latent attributes 𝐿𝐴 for which values need to be extracted from text
(purple), which is the diagnosis attribute in Figure 3. Additional
non-latent context can be fed into the model (yellow) that comes
from the tabular operand of a multi-modal join or union (this is gen-
erally optional). For the multi-modal join example, the additional
context is the tuples linked to the textual report. In Figure 3, we see
two tuples (e.g., Alice and Bob) and two separate reports shown
as text input (i.e., one per patient) from which we aim to extract
the diagnoses. For unions, we use two rows randomly picked from
the tabular operand of the union. The ELEET-model can use the
additional values from the table as context for extractions, as we
explain below. We use the same linearization of name | type |
value for the latent attributes and non-latent table values but use
a MASK token for latent attributes to indicate that a value needs to
be extracted for them, as shown in Figure 3 1○. As shown in Figure
3 2○, after linearization, the inputs are fed into the 12 transformer
layers (see a○) to compute their representations (i.e., embeddings).
Multiple input sequences are fed into the model in a batch to in-
crease efficiency. After running the input through 11 transformer
layers, there are different paths for different decoder subtasks. In
particular, the paths use different final transformer layers:

For extracting values, after running the individual rows through
the transformer layers and obtaining embeddings for all input to-
kens, we pool all token embeddings belonging to the same table cell
(i.e., the embeddings for attribute name, type, and value / MASK)
into one cell embedding (cell pooling). For unions, it is important
that signal flows from the rows containing example values to the
embeddings of the masked cells to compute optimal embeddings
for extraction. Hence, we apply vertical self-attention [49] across
different rows, i.e., across the cell embeddings of the same column
(see b○ in Figure 3). In ELEET, we feed the sequences in groups of
𝑘 = 3 into vertical self-attention [49]. Hence, for unions, we pair
all sequences with MASK tokens and text with both sequences
containing example values, meaning we extract values for a single
text per vertical self-attention call.

The second path is for detecting duplicates, which is needed if
text mentions the same extraction multiple times (e.g., fever and
high body temperature for the same patient). For this, we use a
final transformer layer that is separate from the one for extract-
ing values (see c○ in Figure 3). This is because the two decoder
subtasks benefit from embeddings of different characteristics. For
value extraction, embeddings of text-tokens should be similar to
those of the latent attributes for which they are a value. For detect-
ing semantic duplicates, however, embeddings of text tokens that
belong to different semantic concepts should be dissimilar, even
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Algorithm 1 2○ Decoder of ELEET: Row Detect. The actual im-
plementation computes I-O-B tags for all input sequences at once
using matrix multiplication instead of a loop. Attribute Detect
works analogously, using 𝑎 𝑗 =

∑︁𝑘
𝑖=1 𝑐𝑖, 𝑗 instead of attribute embed-

ding 𝑐 and weights𝑊𝐴𝐷
tag , 𝑡ℎ𝑟𝑒𝑠ℎ𝐴𝐷 instead of𝑊 𝑅𝐷

tag , 𝑡ℎ𝑟𝑒𝑠ℎ𝑅𝐷 .

Require: text 𝑑 = 𝑤1 . . .𝑤𝑛 , token embeddings 𝑤̂𝑉𝐸
1 . . . 𝑤̂𝑉𝐸

𝑛 ,
masked cell embedding 𝑐

1: (tags1, . . . , tags𝑛) ← (𝑂, . . . ,𝑂) ⊲ Initialize tags
2: for all tokens𝑤𝑖 ∈ 𝑤1 . . .𝑤𝑛 with embedding 𝑤̂𝑖 do

3: tags𝑖 ←
argmax

tag∈{𝐼 ,𝑂,𝐵}

{︄
𝑤̂𝑇
𝑖
·𝑊 𝑅𝐷

tag · 𝑐 𝑖 𝑓 tag ∈ {𝐵, 𝐼 }
𝑡ℎ𝑟𝑒𝑠ℎ𝑅𝐷 𝑒𝑙𝑠𝑒

4: end for
5: return I-O-B-decode(𝑑 , tags) ⊲ Return a tag for extraction

though they are a value for the same latent attribute. Hence, this
separate final transformer layer produces embeddings that the de-
coder can use to detect duplicate values more easily. To summarize,
the encoder computes two embeddings per text token𝑤 (one for
value extraction 𝑤̂𝑉𝐸 and one for duplicate detection 𝑤̂𝐷𝐷 ) and
one embedding 𝑐𝑖, 𝑗 per cell, where 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ |𝐿𝐴|.
Decoder. The decoder (Figure 3 3○) generates the output table by
extracting a value for each latent attribute per text. It uses three
lightweight decoder heads and the embeddings from the encoder.

For materializing the output of a join, for example, it is important
to extract only values for the entities described by the tuple linked to
each text. For instance, when we join a patient tuple (e.g., Bob) with
a textual report of this patient, we typically only want to extract
the diagnosis of Bob from the text, even when other patients are
mentioned in the text. To do that, we use the row-detect (RD) head
that is pre-trained to extract only values for the particular entity
mentioned in the input of the model (e.g., Bob) as given by the tuple
from the table. For extracting the output of a union, we want to use
example values and use attribute-detect (AD) as we discuss below.

Both the RD and the AD head extract values from the text to
fill in values for latent attributes (e.g., diagnosis) and thus use the
embeddings for extracting values 𝑤̂𝑉𝐸 ( b○). The RD head pairs
the embedding of each text token 𝑤̂𝑉𝐸 (orange in Figure 3) with
the embedding of a masked cell 𝑐 of a latent attribute (purple)
and classifies whether the token is part of a value for the cell. It
consists of matrices𝑊 𝑅𝐷

𝐼
,𝑊 𝑅𝐷

𝐵
and a learned threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑅𝐷

to perform the classification according to Algorithm 1. We employ
so-called I-O-B (Inside-Outside-Beginning) classification to extract
potentially multiple tokens for each attribute. With I-O-B tags, the
first text token for a value is marked with a B-tag, and subsequent
tokens belonging to the same value receive an I-tag. Otherwise,
tokens are marked with an O-tag. The AD head works identically as
the RD head but first pools all cell embeddings 𝑐𝑖, 𝑗 of the same latent
attribute into an attribute embedding 𝑎 𝑗 = 1

𝑘

∑︁𝑘
𝑖=1 𝑐𝑖, 𝑗 , by pooling

across the input sequence groups of size 𝑘 from before. Then, it
classifies based on this embedding, learned weights𝑊𝐴𝐷

𝐼
,𝑊𝐴𝐷

𝐵

and learned threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝐴𝐷 which tokens are a value for that
latent attribute, independent of the entity.

Algorithm 2 2○ Decoder of ELEET: Duplicate Detect.

Require: Spans 𝑉 = {𝑣𝐴, 𝑣𝐵, . . . }, token embeds. 𝑤̂𝐷𝐷
1 . . . 𝑤̂𝐷𝐷

𝑛

1: 𝑣𝐴, 𝑣𝐵, · · · ← span_embeddings[23](𝑣𝐴, 𝑣𝐵, . . . ; 𝑤̂𝐷𝐷
1 . . . 𝑤̂𝐷𝐷

𝑛 )
2: similarities = [𝑣𝐴, 𝑣𝐵, . . . ]𝑇 ·𝑊𝐷𝐷 · [𝑣𝐴, 𝑣𝐵, . . . ] − 𝑡ℎ𝑟𝑒𝑠ℎ𝐷𝐷

3: ⊲ We use agglomerative clustering with a distance threshold to
find groups (clusters) of semantically equivalent values.

4: 𝑉 ← Agglom.cluster(spans=𝑉 , dist=-similarites, dist_thresh=0)
5: ⊲ Return longest span per cluster.
6: return {argmax𝑣∈cluster |𝑣 | | cluster ∈ 𝑉 }

Finally, to avoid extracting the same value twice (e.g., to avoid
duplicate rows in a multi-row latent table, as we explain later), it
is necessary to check whether multiple extracted spans (i.e., all
tokens extracted for a latent attribute) refer to the same concept.
For this, we compute span embeddings 𝑣 according to Lee et al. [23]
from the text token embeddings coming from the final transformer
layer for deduplication 𝑤̂𝐷𝐷 ( c○) and then classify which spans
are duplicates using the duplicate-detect (DD) head. The DD head
consists of a learnedmatrix𝑊𝐷𝐷 and a learned threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝐷𝐷

and considers two spans 𝑣𝐴 and 𝑣𝐵 as duplicates if the learned
similarity 𝑣𝑇

𝐴
·𝑊𝐷𝐷 · 𝑣𝐵 is larger than 𝑡ℎ𝑟𝑒𝑠ℎ𝐷𝐷 . The procedure to

find duplicates is shown in Algorithm 2.
After the values for all latent cells have been extracted and dedu-

plicated, they can be inserted into the latent table to produce the
materialized output. However, in the general case of multi-row la-
tent tables, where each text can contribute multiple tuples to the
latent table, only value extraction is insufficient. We explain the
algorithm to support multi-row latent tables in Section 5.

4.2 Pre-training
The functionality of each of the three decoder heads represents
a skill of the ELEET model that is necessary to perform MMOps
as specified in the algebra in Section 3. These skills are indepen-
dent of concrete data sets and thus should be taught to the model
during pre-training. For pre-training the ELEET model, we pair the
encoder with our decoder heads and train them end-to-end. How-
ever, we do not start pre-training from scratch but start with the
pre-trained weights of TaBERT [49] for the transformer and ver-
tical self-attention layers. These are the model components that
also exist in TaBERT. For the decoder layers, which do not have a
counterpart in TaBERT, we start with randomly initialized weights.
During TaBERT’s pre-training, the model sees pairs of texts and
tables. Hence, the resulting weights are a good starting point for
ELEET. We show this and the additional importance of our pre-
training in our ablation study in Section 6.5.
Skill 1: Align latent attributes to text (AD head). To support
that our model learns to detect all values for certain attributes, we
introduce the Attribute-Text-Alignment (ATA) task, which aligns
table attributes to text. In this task, we pair texts with tables and use
the AD head to detect segments of text that are a potential value
for each attribute. We use the labels of our pre-training corpus to
compute a cross-entropy classification loss L𝐴𝑇𝐴 .
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Skill 2: Extract values for table rows (RD head). For joins, as
explained before, it is important to extract only values belonging
to a given table row (e.g., only extract values for a given patient).
To let our model learn which values correspond to which table
row (e.g., in texts about multiple entities), we introduce the Masked
Cell Reconstruction (MCR) pre-training task. In this task, we pair
table rows and texts, mask out random cell values of table rows
(that occur in both text and table row), and use the RD head to
reconstruct the masked values from the text. To do this, the RD
head leverages signals from neighboring cells, including those from
the same row. MCR thus teaches the model to extract values for a
certain row only (e.g., only the diagnoses of Bob), as required for
the RD head. For this pre-training objective, we use the labels of
our pre-training corpus to compute a cross-entropy classification
loss L𝑀𝐶𝑅 for classifying the I-O-B tags in Algorithm 1.
Skill 3: Detect duplicates (DD head). Finally, we introduce the
Duplicate-Detection (DD) pre-training task to let the model learn
to detect whether two spans refer to the same concept. For each
attribute, DD takes pairs of text spans as input and is trained to
predict whether they are the same. We train the DD head by classi-
fying whether pairs of spans are duplicates using the labels of our
pre-training corpus to compute a cross-entropy loss L𝐷𝐷 .
Combined Pre-Training. We use a combined pre-training to add
up all the losses of all objectives and train the entire model (includ-
ing the encoder) using this multi-task loss. This has also shown
benefits in other transformer-based models [10, 12] where multi-
ple pre-train objectives are used. To balance the losses, we use a
weighted sum. We choose 𝛼 = 300, 𝛽 = 80, 𝛾 = 𝛿 = 1 by examining
the performance on a development set.

L = 𝛼 · L𝑀𝐶𝑅 + 𝛽 · L𝐴𝑇𝐴 + 𝛾 · L𝐷𝐷 + 𝛿 · L𝑀𝐿𝑀

Moreover, for the pre-training, we realized that our model benefits
from adding the original Masked Language Model loss L𝑀𝐿𝑀 of
BERT [12]. We thus added L𝑀𝐿𝑀 to the combined loss. Finally, to
ensure that the model also utilizes signal from the table values dur-
ing pre-training and not only the schema information (i.e., attribute
names) of the table, we randomly mask out attribute names from
the linearized input to our model in 15% of the cases (which is a
fraction we empirically validated to provide the best performance).
A New Pre-Training CorpusWe created a new open-domain pre-
training corpus withWikipedia abstracts as texts, tables constructed
fromWikidata, and labels from T-REx [13]. See our technical report
[41] for additional details about the corpus.

5 MULTI-MODAL OPERATIONS
In the previous section, we introduced the ELEET-model by demon-
strating how it can be used for multi-modal joins for single-row
latent tables. In this section, we discuss how the details of all oper-
ators of the ELEET algebra can be realized using the ELEET-model.

5.1 Multi-Modal Scans
The scan is the most important operator that turns a latent ta-
ble into a normal one by extracting the values for all latent at-
tributes from each text. For implementing the scan of a single-row
latent table, we feed in each document together with the latent
attributes into our encoder: the input sequences have the form

Algorithm 3 Multi-row multi-modal scan for a single document.

Require: 𝑑 = (𝑤1, . . . ,𝑤𝑛), 𝐿𝐴 = (𝑙𝑎𝑘𝑒𝑦, 𝑙𝑎1, . . . , 𝑙𝑎𝑚)
1: 1. Get values for 𝑙𝑎𝑘𝑒𝑦
2: 𝑤̂1 . . . 𝑤̂𝑛, 𝑐𝑙𝑎𝑘𝑒𝑦 , 𝑐1, . . . , 𝑐𝑚 ← Encoder(𝑑 ∥ [𝑆𝐸𝑃] ∥ lin.(𝐿𝐴))
3: 𝑉𝑘𝑒𝑦 ← attribute − detect((𝑤̂1, . . . , 𝑤̂𝑛), 𝑐𝑙𝑎𝑘𝑒𝑦 )
4: {𝑣𝑘𝑒𝑦1 , . . . , 𝑣

𝑘𝑒𝑦

𝑙
} ← duplicate − detect(𝑉𝑘𝑒𝑦)

5: 2. Get values for 𝑙𝑎1, . . . , 𝑙𝑎𝑚
6: 𝑊̂ ,𝐶 ← Encoder(𝑑 ∥ [𝑆𝐸𝑃] ∥ lin.(𝑣𝑘𝑒𝑦1 ) ∥ lin.(𝑙𝑎1, . . . , 𝑙𝑎𝑚) , . . .
7: 𝑑 ∥ [𝑆𝐸𝑃] ∥ lin.(𝑣𝑘𝑒𝑦

𝑙
) ∥ lin.(𝑙𝑎1, . . . , 𝑙𝑎𝑚))

8: for 𝑖 = 1 to 𝑙 do
9: 𝑉𝑖,1, . . . ,𝑉𝑖,𝑚 ← row − detect((𝑤̂𝑖,1, . . . , 𝑤̂𝑖,𝑛), 𝑐𝑖,1) , . . .
10: row − detect((𝑤̂𝑖,1, . . . , 𝑤̂𝑖,𝑛), 𝑐𝑖,𝑚)
11: {𝑣𝑖,1}, . . . , {𝑣𝑖,𝑚} ← duplicate − detect(𝑉𝑖,1) , . . .
12: duplicate − detect(𝑉𝑖,𝑚)
13: end for

14: return

⎡⎢⎢⎢⎢⎢⎢⎣
𝑣
𝑘𝑒𝑦

1 𝑣1,1 . . . 𝑣1,𝑚
.
.
.

.

.

.
. . .

.

.

.

𝑣
𝑘𝑒𝑦

𝑙
𝑣𝑙,1 . . . 𝑣𝑙,𝑚

⎤⎥⎥⎥⎥⎥⎥⎦
𝑑 ∥ [𝑆𝐸𝑃] ∥ linearized(𝐿𝐴), where we use MASK tokens for lineariz-
ing the latent attributes as before. Hence, unlike the join and
union explained in Section 4, we cannot access any tabular context.
Therefore, we set 𝑘 = 1 for scans, disabling vertical signal flow
between input rows via vertical self-attention and mean pooling
across rows to obtain attribute embeddings. Hence, 𝑎 𝑗 is simply set
to the masked cell embedding 𝑐1, 𝑗 . After feeding the sequences in
the encoder, we use the attribute-detect (AD) head to extract a value
for every latent attribute from each text using Algorithm 1 with
matrices𝑊𝐴𝐷

𝐼
,𝑊𝐴𝐷

𝐵
and threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝐴𝐷 for I-O-B tagging.

Next, we explain the scan on a multi-row latent table. In a multi-
row latent table, a single text 𝑑 ∈ 𝐷 may correspond to multiple
tuples 𝑡𝑑,1, 𝑡𝑑,2, . . . . For instance, a patient report can document
multiple diagnoses of a patient, resulting in multiple output tuples
of a scan. As described before, the user needs to define a document-
level key 𝑙𝑎𝑘𝑒𝑦 for the multi-row latent table, which is required
to distinguish between the different tuples coming from the same
text. For the patient reports in the example before, we assume
the attribute 𝑙𝑎𝑘𝑒𝑦 =diagnosis serves as the document-level key,
meaning that all rows coming from the same text should represent
a different diagnosis. For realizing a multi-modal scan on such a
table, we use Algorithm 3 which is composed of two phases.

In the first phase of the procedure, the model extracts all values
for the document-level key 𝑙𝑎𝑘𝑒𝑦 , using our AD head in the decoder
(to extract all diagnoses; see lines 2+3 of Algorithm 3). The number
of values extracted in this step determines the number of output
rows for a given text 𝑑 . Moreover, we use the duplicate-detect head
to avoid generating duplicate rows when the text mentions values
for 𝑙𝑎𝑘𝑒𝑦 twice (e.g., when the same text mentions both fever and
high body temperature; see line 4 of Algorithm 3).

In the second phase, the extraction process is conducted on
the remaining attributes that depend on the document-level key,
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Figure 4: Besides the join with a single-row latent table 1○,
there are two cases formulti-row latent tables 2○. In the first
case, multiple tuples need to be extracted per table row of the
tabular operand (a). An interesting special case is when for
each table tuple, only a single tuple needs to be extracted (b).
Joins allow for several automatic optimizations, depending
on the case. For example, texts not having a join partner can
be skipped during extraction, which is particularly beneficial
when the table has been filtered before the join. Moreover,
in the case of (b), there is no need to run Algorithm 3.

denoted as 𝑙𝑎1, 𝑙𝑎2, . . . . To accomplish this, the MASK token of the
document-level key 𝑙𝑎𝑘𝑒𝑦 is now replaced with the values extracted
in the first phase (line 6). For the remaining attributes (which still
have a MASK in the input), we extract the values using the ELEET
model. Here, we use the row-detect (RD) head to extract only values
corresponding to those extracted in the first phase (line 9).

To process texts longer than our model’s context window of 512
tokens, we use a sliding window to process the whole text. The
first phase is executed independently using the sliding windows
to extract all keys. Afterwards, we collect and deduplicate the ex-
tracted values for the document-level key across windows. Finally,
the second phase can process each window independently with the
extracted keys. Afterwards, all values are collected across windows
to generate the output tuples.

5.2 Multi-Modal Joins and Unions
As introduced in Section 3, multimodal joins (𝑇 ⋈̈︁𝐷.𝐿𝑇 ) and unions
(𝑇 ∪̈𝐷.𝐿𝑇 ) can replace the multi-modal scan followed by a tradi-
tional join (𝑇 ⋈︁ 𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 )) or union (𝑇 ∪ 𝑆𝑐𝑎𝑛(𝐷.𝐿𝑇 )). As such,
they also extract values for latent attributes from text but can lever-
age additional context given by their tabular operand for better and
faster extractions. For single-row latent tables, joins and unions are
implemented as explained in Section 4, feeding sequences as shown
in Figure 3 1○ into the model and then using the RD head for joins,
and the AD head for unions for value extraction.

Joins and unions for multi-row latent tables are implemented
using Algorithm 3. The only difference is the additional context fed
into the encoder (see lines 2 and 6 in Algorithm 3). For joins, we
feed additional table values added to each input sequence, coming
from a tuple linked to the text of the sequence (as shown in Figure
3 1○). For unions, we again randomly sample two rows from the
tabular operand and feed these as example values the ELEET-model,
which can be used by vertical self-attention to improve extractions.

The join comes with opportunities for optimization as shown in
Figure 4. In the case 1○, not all texts in the text collection may have
a join partner in the table, especially if the table has been filtered
beforehand (e.g., only patients with age < 18 are selected, and thus,
only texts of such patients need to be processed). As such, the path
in the table data acts as an index to the text collection to decide
which subset of text documents need to be scanned (i.e., we can
avoid scanning all text documents). For multi-row joins, there are
two cases. In Figure 4 2○ (a), we need to extract multiple diagnoses
per text document for each tuple (i.e., patient) from the normal table.
Here, we must run Algorithm 3 to first extract all diagnoses from
the text. Afterwards, the values for potential dependent columns
(e.g., treatment) are extracted. However, case 2○ (b) does not require
Algorithm 3 thanks to the row-detect head. In this case, each text is
about multiple patients and we have only one diagnosis per patient.
As such, multiple tuples from the table refer to the same text and
we only need to extract a single row per patient tuple.

5.3 Multi-Modal Selection
The multi-modal selection 𝜎𝑐𝑜𝑛𝑑 (𝐷.𝐿𝑇 ) filters data based on at-
tributes extracted from text. For example, users might be interested
only in treatments for patients diagnosed with fever. The selection
takes a latent table as input and produces a (filtered) latent table as
output (i.e., without materializing neither input nor output table).
Important is that the selection thus reduces the number of text
documents in a collection before using them as input (e.g., to a
join). Moreover, the selection uses semantic similarity for filtering.
In ELEET, we provide an implementation for this scan that uses
a multi-modal index on the selection column. The core idea of a
multi-modal index is that it maps a search key for the query at-
tribute (e.g., diagnosis) to text documents that contain the search
key. To construct a multi-modal index, our approach leverages the
attribute-detect head to extract all values for the search key from
all texts. For building the index, we put the extracted values and the
pointers to the text documents into a traditional index to be able
to retrieve text documents quickly. ELEET currently uses a hash
index. However, unlike traditional hash indexes, we group similar
extracted values into one index entry using the duplicate-detect
head of our ELEET-model. This allows the index to return text docu-
ments containing the diagnosis of high temperature, even if the user
queries for fever. Our technical report contains a depiction [41].

5.4 Multi-Modal Aggregation
The last operation supported in ELEET is a multi-modal aggregation
𝜒𝐹,𝐴′ (𝑇 ) that can be used for group-by aggregation based on at-
tributes extracted from text. Like the second selection variant, this
operation is designed to work on tables 𝑇 created from texts (e.g.,
to aggregate the result of the output of a multi-modal join). Unlike
a normal aggregation, the operation uses the semantic similarity of
group-by values to form groups. For example, assume we only use
the patient reports as input and want to count how often a certain
diagnosis was named across all texts. The solution is first to extract
all diagnoses using a scan and then use a multi-model aggregation
to elegantly deal with cases where the same diagnosis is expressed
differently in different texts (e.g., as fever and high body tempera-
ture) but is still counted as the same diagnosis. More specifically,
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for the multi-modal aggregation, we compute a similarity matrix
of the group-by values (as in line 2 in Algorithm 2). Afterwards,
we use agglomerative clustering with a distance threshold to find
all clusters (i.e., groups) for group-by (as in line 4 in Algorithm 2).
Note that computing the distance matrix is quadratic in the number
of input values, which becomes expensive for very high numbers
of table rows. Hence, in the future, we aim to replace the clustering-
based aggregation algorithm with latent-semantic-hashing-based
DBSCAN [48], which is linear in the number of input embeddings.

6 EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental evalua-
tion, which justifies the design of ELEET. We constructed a challeng-
ing benchmark containing 70 multi-modal query plans over four
data sets that we published along with this paper. Our technical
report contains all 70 queries and some additional analyses [41].

6.1 Evaluation Setup
Data sets. Our benchmark consists of four data sets. Based on each
data set, we build a database consisting of 1-6 relational tables and
1-3 text collections; see Table 3 (upper part) for detailed statistics.
Note that all data sets are from different domains and include data
that ELEET has not seen during pre-training.

(1) Rotowire: The rotowire data set [46] contains a text collection
of 4850 basketball game reports with an emphasis on game statis-
tics. Hence, the values to be extracted are primarily numeric. We
complement the text collection with several tables of Basketball
Players and Teams to enable multi-modal queries. In total, this data
set has 6 structured tables and 1 text collection, while 2 latent tables
are derived from the text collection.

(2) T-REx (unseen): The second multi-modal database is built
using T-REx [13]. Importantly, this data set is composed of three
unseen domains that were not used in our pre-training: nobel
prize winners, skyscrapers, and countries. The data set uses
Wikipedia abstracts as text collections and table rows are con-
structed fromWikidata. In total, this data set has 6 structured tables
and 3 text collections, while 6 latent tables are derived from the
text collections. Importantly, T-REx is constructed automatically
and is thus too noisy to be used for evaluation. Hence, we fine-tune
the models on the three mentioned domains but evaluate only on
queries from the nobel domain, which is the least noisy.

(3) Aviation: Based on the aviation data set from [19], we con-
struct a document collection, where each document is an aviation
accident report published by the United States National Transporta-
tion Safety Board. Attributes that can be extracted from the texts
are the location of the accident, the severity of the damage, and so
on. In total, this data set has 3 structured tables and 1 text collection,
while 1 latent table is derived from the text collection.

(4) Corona: The final data set is again based on data used in
[19]. It consists of one text collection containing the daily status
reports by the German RKI. From these texts, information like the
number of persons infected by or recovered from Covid-19 can be
extracted. We pair these texts with a single table (used for multi-
modal unions only). In total, this data set has 1 structured table
and 1 text collection, while 1 latent table for the multi-modal union
with the same attributes can be derived from the text.

Table 3: Statistics of our benchmark. The lower part indicates
how often each multi-modal operator is used in queries.

Data set Rotowire T-REx Aviation Corona

#text collections 1 3 1 1
#tables 6 6 3 1
#latent tables 2 6 1 1
#queries 28 12 15 15
#attributes latent tables 21, 14 8 7 7
#texts (test set) 728 221 30 30

#join 10 2 5 0
#union 4 6 5 15
#scan 14 4 5 0
#selection 6 2 3 0
#aggregation 6 2 3 0

Query Generation. Based on these data sets, we generate 70 query
plans with 1-3 multi-modal operators and 0-1 traditional operators.
See Table 3 (lower part) for statistics of the generated queries. A
list of all queries is available in our technical report [41].
Baselines. We compare the ELEET to several strong LLM and SLM
baselines. Since there are no other systems so far that do joins and
unions on multi-modal table/text data, we build our baselines from
recent state-of-the-art models from the NLP community.

(1) Text-To-Table [47]: Text-To-Table is a machine learning model
based on BART (-base) [24] with a similar size as our model that
can be trained to translate texts to tables. Different from the ELEET-
model, it did not receive any special pre-training (i.e., it needs to
be trained with the BART-weights as starting point for each new
data set). Moreover, it uses an autoregressive decoder, which is less
efficient than our lightweight decoder.

(2) LLaMA-2 (7B) [38]: LLMs such as LLaMA can also be used to
translate texts to tables using few-shot prompting (i.e., in-context
learning, ic) [4, 45] or fine-tuning (ft). We evaluated several prompts
and found the following prompt to work well: “Transform the input
text into a <name of latent table> table.←↪ Only output the table in
CSV-Format without explanations. If there is no information for a
cell, leave it empty. The header row is: <columns of the result table>.
←↪ Input: <text to translate to a table>” For in-context learning, we
add as many task demonstrations as the context window of 4096
tokens allows. For fine-tuning, we use Q-LoRA [11].

(3) GPT-3.5 (gpt 3.5 turbo) [4] and GPT-4 (gpt-4-0613) [29]: GPT-3.5
and GPT-4 are even larger LLMs with 175 billion parameters and
1.76 trillion parameters respectively. We use few-shot prompting
for both models, using the same prompts as for LLaMA. GPT-4
is used by Evaporate-Direct [3] to extract information from semi-
structured documents (e.g., XML-Documents) similar to our base-
line. Unfortunately, all OpenAI models (GPT-3.5 and GPT-4) are
closed source and thus can only be accessed via the API and not
deployed on our hardware for comparing runtimes. Nonetheless,
we compare in Experiment 1 against these models to get a basic
understanding of their accuracy. However, since these models use
many orders of magnitude more parameters than ELEET and thus
are naturally much slower, we skip these baselines in Experiments
2 and 3 and concentrate on the smaller language models such as
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Figure 5: We plot the runtime and F1 scores of each approach on all 70 queries in our benchmark in a scatter plot. Due to the
vastly different runtimes of individual queries, the runtime is shown in log scale. The GPT-models and LLaMA (ic) use few-shot
prompting (in-context learning) and the other models are fine-tuned. We see that ELEET is always the fastest approach, while
the baselines are sometimes several orders of magnitude slower. The density plot above the scatter plot makes it easy to see
that ELEET is among the most accurate approaches for all data sets despite being a small model.

LLaMA-2 and investigate how fine-tuning for those smaller models
helps to achieve better accuracies compared to ELEET.

We do not compare against WannaDB [19], because it requires
user interaction for information extraction. Moreover, we do not
compare against Evaporate-Code [3], because it is designed to
extract information from semi-structured documents (e.g., XML,
JSON) and not continuous text. To run MMOps with the baselines,
we use their capability to transform texts to tables to transform all
documents in the document collection to tables. Afterwards, we
perform the corresponding traditional database operation.
Training and Fine-tuning. All experiments were executed on a
DGX A100 server. For pre-training, we used 4 GPUs, which took
approximately 8 days to train our model for 6 epochs on our pre-
training data set. For fine-tuning and inference — in particular, for
the performance measurements — we used 2 GPUs only (for all
models except GPT-3/4, which we cannot run on our hardware).
Metrics. In our experiments, we focus on two main dimensions:
(1) First, we measure the quality of the query results computed
by ELEET compared to the baselines. We use Exact Match (EM)
to evaluate the quality of query results. All datasets come with
a ground truth translation for all texts in the dataset. A value is
considered correct if it exactly matches its label. We compute an F1
score for each text and report their mean. While extractive models
will generally output the values exactly how they are mentioned
in the text (e.g., US president), generative models might output the
values in arbitrary form (e.g., President of the United States). Hence,
the datasets come with different alternatives for each value, each of
which counts as correct. For aggregations, we group-by a certain
attribute and collect for all other attributes the values for all groups.
We then compute an F1 score per group and report the mean. (2)
To compare the efficiency, we compare the runtime for each query.

6.2 Exp. 1: Runtime vs. Accuracy
Our main goal is to show that ELEET is orders of magnitude more
runtime efficient than the SLM and LLM baselines while being more
accurate. We therefore execute the full set of queries on all data sets
using ELEET and all baselines. Since the collection of training data
per text collection is expensive, we focus on a scenario where only
limited data is available for fine-tuning. Hence, in this experiment,
we limit the number to 64 labeled texts for fine-tuning per data set

(for ELEET, Text-To-Table, LLaMA). For LLaMA, GPT-3, and GPT-4,
we use few-shot prompting and include the annotated examples in
the input prompt, as explained before. We think this is a reasonable
number of texts that can be labeled manually. We later evaluate
in more detail how a different amount of labeled training data for
fine-tuning affects the accuracy of ELEET compared to the baselines.
Overall Results. In Figure 5 (lower part) we plot runtime and F1
scores for each query in our benchmark in a scatter plot. Overall,
we see that ELEET provides high accuracy (i.e., a high F1-score)
while being fast in execution (i.e., often in the order of seconds).
Runtime. As Figure 5 shows, ELEET is the fastest approach, while
other approaches are up to 575× slower. For instance, the following
query which is included in our testing set (i.e., 𝑝𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑓 𝑜 ⋈︁
𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑟𝑒𝑝𝑜𝑟𝑡𝑠 ⋈̈︁ 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟 ) takes about three minutes
with ELEET, 17minutes using Text-To-Table, 2.5 hours using LLaMA,
1.5 hours using GPT-3, and almost 4 hours using GPT-4. This shows
how expensive in terms of runtime LLMs are when applied to many
texts. Overall, ELEET clearly outperforms the LLM-based baselines
(LLaMA, GPT-3 and GPT-4), even though the GPT-models run on
the hardware of OpenAI. But even the comparatively small Text-
To-Table is significantly slower than ELEET, which we attribute to
its use of a transformer-based autoregressive decoder that requires
many passes through the model compared to our model.
Accuracy. The density of F1 values (upper part of Figure 5) nicely
shows that ELEET usually exceeds the performance of the base-
lines despite being a small model. For aviation and corona, ELEET
achieves F1-scores of over 90% for most queries. For the other two
data sets, rotowire and T-REx, which are more challenging, the F1
scores of ELEET cluster above and around 75% and 80%, outperform-
ing the baselines. The most competitive model is GPT-4, which is
very accurate on aviation and corona. However, due to its immense
size, it is much computationally more expensive as discussed before.
Moreover, we see the effect of our pre-training when comparing the
performance to Text-To-Table and fine-tuned LLaMA, which have
F1 scores of around 25% for most queries on rotowire. 64 samples
are not enough for these models to allow for decent extractions.

6.3 Exp. 2: Varying Data Sizes for Fine-tuning
In the previous experiment, we have seen that ELEET can accurately
compute multi-modal queries with only a few fine-tuning samples.
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Figure 6: Mean F1 scores for different queries and training set
sizes on rotowire. The F1 scores for all models that use fine-
tuning increase as the number of labeled texts for training
increases, but ELEET consistently outperforms all baselines.

However, users might often have different requirements on the
quality of query results and access to different amounts of labeled
texts for training. In this experiment, we show how ELEET behaves
with training sets of various sizes compared to the baselines. Here,
we use five queries on the rotowire data set for testing. The queries
used in this experiment cover all different MMOps:

• Scan: 𝑆𝑐𝑎𝑛(𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟 )
• Join: (𝑝𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑓 𝑜⋈︁𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑟𝑒𝑝𝑜𝑟𝑡𝑠)⋈̈︁𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟
• Union: 𝑝𝑙𝑎𝑦𝑒𝑟_𝑠𝑡𝑎𝑡𝑠 ∪̈ 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟

• Selection: 𝑆𝑐𝑎𝑛(𝜎̈𝑃𝑜𝑖𝑛𝑡𝑠=28 (𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟 ))
• Aggregation: 𝜒𝑛𝑎𝑚𝑒 (𝑆𝑐𝑎𝑛(𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟 ))

We fine-tune several models for ELEET, Text-To-Table, and LLaMA
using a varying number of labeled texts. We vary between 4 labeled
texts up to the full training set (3398 texts) and report the mean F1
score of all queries from above for each model. As discussed before,
we limit ourselves to models that run on our hardware.
Accuracy with varying training data. Figure 6 shows the results.
With limited training data (4-16), only LLaMA using in-context-
learning and ELEET achieve accuracies of around 40%. The other
fine-tunedmethods LLaMA and Text-To-Table struggle in these few-
shot scenarios due to the missing specialized pre-training. When we
increase the amount of training data for fine-tuning, the accuracies
of all fine-tuned methods increase. LLaMA using in-context learn-
ing, on the other hand, cannot use this additional training data due
to the limited context size. Overall, we see that ELEET outperforms
both fine-tuned baselines across all training set sizes. In particular,
for scans, joins, and unions, ELEET achieves a better Mean F1 score
than Text-To-Table and LLaMA even when trained on the entire
data set of rotowire. We achieve an unmatched F1 score of 87% for
joins, unions, and scans when trained on the entire data set.

6.4 Exp. 3: Runtime of Multi-modal Operators
In the next experiment, we zoom into query runtime and show
what typical query runtimes for ELEET are, and how efficient each
individual operator is. Figure 7 shows the results.

Overall results. As we have seen before, ELEET vastly outper-
forms all baselines in terms of query runtime. However, comparing
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Figure 7: Runtime comparisons on the two latent tables of ro-
towire (reports.player and reports.team, containing Player
and Team statistics). Comparing the query runtime of ELEET
on the different queries, we see that joins are faster than
scans or unions as they do not run Algorithm 3.

the query runtime of different queries using ELEET, we see big
differences. In particular, joins are more efficient than unions or
scans, because they do not necessitate execution of Algorithm 3
as discussed in Section 5.2. The multi-modal union and scan will
extract multiple tuples per game report by first extracting the name
of the Team/Player (name is the document-level key of the latent
reports.player and reports.team tables). Only in a second iter-
ation are the statistics of each Player or Team extracted. The join on
the other hand uses the signal from the table, the document collec-
tion is joined with (player_info and team_info). These already
contain names and other information of players and teams, and
hence the first iteration can be skipped. This effect can be best seen
in Figure 7 (right), where a join with the latent teams table takes 26
seconds, while scans and unions take 70 seconds. Moreover, selec-
tion operations can reduce query runtime to the order of seconds.
This is due to the use of indexes, allowing efficient execution if only
a few texts need to be processed based on the filter predicate. A
similar effect also holds for selective join, as we show next.

6.4.1 Selective Multi-modal Join Queries. To investigate the sce-
narios of selective joins where the data in the tabular input helps
to reduce the number of texts we need to analyze, we look at such
join queries on the latent player table of rotowire:

(𝜎𝑐𝑜𝑛𝑑 (𝑝𝑙𝑎𝑦𝑒𝑟_𝑖𝑛𝑓 𝑜) ⋈︁ 𝑝𝑙𝑎𝑦𝑒𝑟_𝑡𝑜_𝑟𝑒𝑝𝑜𝑟𝑡𝑠)⋈̈︁𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟
In these queries, 𝑐𝑜𝑛𝑑 is an arbitrary condition that selects a certain
amount of players. The join queries in this experiment have differ-
ent selectivities; i.e., the query only selects a few players before
executing the multi-modal join with the text collection. Since tuples
in the table are linked to the game reports (e.g., a tuple about a
player is linked to all the game reports the player participated in),
this usually results in only a few selected texts as well (i.e., the filter
on the table acts as an index into the text collection).
Runtime for different selectivities. Figure 8 (left) shows how
the different selectivities affect the overall query runtime of the
queries containing the selective multi-modal join operator. Here
we encounter another benefit of ELEET: Since ELEET only needs
to materialize those rows that have a join partner in the tabular
operand (by feeding table tuples in the model), the runtime is re-
duced to the order of a few seconds. All other approaches translate
the entire text to a table, which results in runtime overhead.

6.4.2 Multi-Modal Selection. In the second scenario, we analyze
the runtime of simple queries that only need to scan a subset of
texts in a text collection using a multi-modal selection operation
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Figure 8: Runtime behavior of ELEET for selective queries on
rotowire. (Left) The query selects a subset of rows (i.e. players)
from the table before a multi-modal join, which results in
fewer texts being processed. (Right) A multi-modal selection
operation (with subsequent scan) using our secondary index.
The index reduces the number of processed texts, allowing
much faster runtimes for lower selectivities.

on extracted attributes (e.g., 𝑆𝑐𝑎𝑛(𝜎̈𝑃𝑜𝑖𝑛𝑡𝑠=28 (𝑟𝑒𝑝𝑜𝑟𝑡𝑠 .𝑝𝑙𝑎𝑦𝑒𝑟 ))). If
implemented naively, this query results in a costly operation since,
independent of the selectivity, all texts need to be first transformed
to tuples to judge which texts qualify for the filter condition. Instead,
ELEET uses an index, as explained in Section 5.3.
Runtime for different selectivities. Figure 8 (right) shows the
runtime with several filter conditions resulting in different amounts
of selected texts. For queries with low selectivity, ELEET can again
compute the query results in a few seconds. The naive solution to
translate all texts into tables first and then doing the selection after-
wards would always take a few minutes, independent of selectivity.

6.5 Additional Experiments
Due to space constraints, we moved four experiments to our tech-
nical report [41]. In the first experiment, we show that our pre-
training procedure leads to more accurate multi-modal database
operations compared to other popular pre-training procedures from
the literature [12, 49]. In the second experiment, we justify the ar-
chitectural design decisions of our model. In particular, we compare
our model to a baseline that uses a autoregressive generative de-
coder instead of our extractive decoder and show that the generative
decoder requires 25% more time to extract values from text. Finally,
we show that our model is also capable of processing longer texts
and how the choice of the document-level key can be automated.

7 RELATEDWORK
Multi-Modal Data Systems. Integrating textual data into data
systems is a long-standing problem. Early work implemented a join
that retrieves the most relevant documents for each tuple without
extracting any structured data from the text [6]. Later systems al-
lowed users to write small extraction functions or UDFs to extract
structured data from text and then allowed them to easily com-
bine these extraction functions by writing SQL or datalog queries
[9, 17, 32, 33]. However, these systems still require the user to write
extraction functions, which is not necessary in ELEET. Other works
focus only on filtering the multi-modal data using natural language
filters [21, 26]. Some early systems extract data from texts by using
techniques such as information extraction, named entity recogni-
tion, part-of-speech tagging, and/or hand-designed grammars or
rules [5, 16, 22, 34]. However, they typically do not consider the
multi-modal case where tabular data is available in addition to texts.

More recently, NeuralDB [36] and WannaDB [19] use pre-trained
language models to run queries directly on text documents, similar
to ELEET. Both systems, again, do not consider the multi-modal
case and do not support multi-row operations, where multiple tu-
ples are extracted from a single text document. Symphony [7] can
query multi-modal data using natural language. The setting in data
lakes differs from databases since the main concern is retrieving
data from multi-modal data sets. For retrieval, they propose an
information compression pre-training objective to embed many
modalities in the same latent space. Caesura [40] uses LLMs to
generate multi-modal query plans similar to ours. Plugging ELEET
into Caesura is an interesting avenue for future work.
Extraction of TabularData. GIO [14] and Evaporate [3] tackle the
related problem of translating custom data formats (e.g., machine
logs) or semi-structured documents (e.g., XML), respectively, into
tables using code generation. While GIO uses template-based code
generation, Evaporate uses LLMs such as GPT-4. However, we found
that code generation is hard with free-form text, as in our setting.
Text-to-Table [47] and STable [30] are sequence-to-sequencemodels
trained to transform tables into text. Both introduce several model
adjustments to ensure that the model outputs a correctly structured
table. Different from Text-To-Table, STable can output table cells in
arbitrary order. Unlike our work, both are trained in a supervised
manner from scratch for every new data set.
LLMs for Data Management. By now, many research groups
have integrated language models into data systems to tackle various
data management tasks. Language models have been used to tune
databases [39], solve data engineering tasks like entity matching,
entity resolution, or missing value imputation [1, 15, 27, 28, 44], or
augment databases with knowledge stored inside of LLMs [31, 42].
Moreover, Foundation Models for data management promise to be
a solution for many different data management problems [25, 43].

8 CONCLUSIONS AND FUTUREWORK
We presented ELEET, a new execution engine that allows users
to seamlessly query textual and tabular data. The cornerstone of
ELEET is the concept of multi-modal database operators, which are
realizable using a small pre-trained language model. As a result,
multi-modal queries containing multi-modal database operators
can be executed on new data sets with only minimal fine-tuning
overhead and high performance. Clearly, there are still many chal-
lenges when integrating ELEET into a real database system. The
query parser must be able to instantiate the multi-modal query
plans containing multi-modal and traditional operators. The query
optimizer must reason about the effects of replacing traditional
operators with multi-modal ones. Moreover, an extension to other
modalities like images is also an interesting avenue for future work.
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