
QueryArtisan: Generating Data Manipulation Codes for Ad-hoc
Analysis in Data Lakes

Xiu Tang
Zhejiang University,

Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
tangxiu@zju.edu.cn

Wenhao Liu
Zhejiang University,

Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
wenhao.liu@zju.edu.cn

Sai Wu
Zhejiang University,

Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
wusai@zju.edu.cn

Chang Yao∗

Zhejiang University,
Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
changy@zju.edu.cn

Gongsheng Yuan
Zhejiang University,

Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
ygs@zju.edu.cn

Shanshan Ying
ApeCloud

shanshan.ying@apecloud.com

Gang Chen
Zhejiang University,

Hangzhou High-Tech Zone
(Binjiang) Blockchain and
Data Security Research

Institute
cg@zju.edu.cn

ABSTRACT

Query processing over data lakes is a challenging task, often requir-

ing extensive data pre-processing activities such as data cleaning,

transformation, and loading. However, the advent of Large Lan-

guage Models (LLMs) has illuminated a new pathway to address

these complexities by offering a unified approach to understand-

ing the diverse datasets submerged in data lakes. In this paper, we

introduce QueryArtisan, a novel LLM-powered analytic tool specif-

ically designed for data lakes. QueryArtisan transcends traditional

ETL (Extract, Transform, Load) processes by generating just-in-

time code for dataset-specific queries. It eliminates the need for

an intermediary schema, enabling users to query the data lake di-

rectly using natural language. To achieve this, we have developed a

suite of heterogeneous operators capable of processing data across

various modalities. Additionally, QueryArtisan incorporates a cost

model-based query optimization technique, significantly enhanc-

ing its code generation capabilities for efficient query resolution.

Our extensive experimental evaluations, conducted with real-life

datasets, demonstrate that QueryArtisan markedly outperforms

existing solutions in terms of effectiveness, efficiency and usability.

PVLDB Reference Format:

Xiu Tang, Wenhao Liu, Sai Wu, Chang Yao, Gongsheng Yuan, Shanshan

Ying, and Gang Chen. QueryArtisan: Generating Data Manipulation Codes

for Ad-hoc Analysis in Data Lakes. PVLDB, 18(2): 108-116, 2024.

doi:10.14778/3705829.3705832

PVLDB Artifact Availability:

The source code is at https://github.com/skyrise-l/QueryArtisan.

∗Chang Yao is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705832

schema 1

schema 2

schema 3

mediated
schema

data lake/
host systemdata sources

dataset 1

dataset 2

dataset 3

MySQL

Amazon S3

SAP

mapping 1 mapping 2 mapping 3

data transformation
and loading

analytic query

query
driven

data
driven

Figure 1: Conventional data lake processing.

1 INTRODUCTION

A data lake is designed to serve as a comprehensive storage hub,

engineered to accommodate, manage, and safeguard vast quantities

of data, irrespective of its structure [34, 37]. Whether the data is

meticulously organized, semi-structured, or entirely unstructured,

a data lake is capable of preserving it in its original format [19].

Moreover, it is adept at processing an extensive array of data types,

unbounded by size constraints.

However, the provision of data lake services necessitates intri-

cate engineering efforts. Figure 1 illustrates the typical processing

scenario in conventional data lake systems, where two distinct

methodologies are commonly employed. In both strategies, it is es-

sential to define a unified, mediated schema and establish mapping

relationships between each source schema and this central schema.

In the query-driven approach, any query aimed at the mediated

schema is translated into corresponding queries for each source

dataset, based on these mapping relationships [52]. These queries

are then processed individually by the source systems. The data

lake’s role is to amalgamate the results into a cohesive output.

Conversely, in the data-driven model, we transform all incoming

data to align with the mediated schema and subsequently load

them into our host system within the data lake [1, 14]. Here, the

host system is responsible for processing all queries, providing a

centralized solution for data handling.

108

https://doi.org/10.14778/3705829.3705832
https://github.com/skyrise-l/QueryArtisan
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705832
https://www.acm.org/publications/policies/artifact-review-and-badging-current

109

Query

Data
Meta-data context

Samples

LLM (Pre-processing)

Query

Data Samples

enriched
query

expected
result formats

task
description

LLM
(Operator Generation)

operator
definitions

LLM
(Code Binding)

knowledge
about python

libraries

materialized
operaton
prompt

...

......
......

...

 code snippets
information
about sub-

tasks

global
knowledge of

all codes

LLM
(Code Linking)

task 1
task 2

...
task 3

sub-tasks

...

...

runnable
codes

injected outside knowledge auto-generated knowledge

sink

op1

op2

op3

op4

op5

LLM guided Search

Figure 4: LLM-powered code generation. This pipeline includes pre-processing, abstract definition of operators, LLM-guided

search on offline operator database, tasks to operator graph, code binding and linking.

the operators within 𝑂𝑞 and the data they manipulate. This code

generation process adheres to the identified dependencies within

𝐺𝑞 . This streamlined approach effectively narrows the semantic gap

between natural language queries and machine-executable code.

Code Optimization and Validation. LLM-generated codes

often exhibit common drawbacks, including inefficiency and po-

tential invalidity, particularly in cases involving complex logic [12].

To enhance efficiency, when presented with the LLM-generated

query analysis graph 𝐺𝑞 and its initial codes 𝐶 (𝐺𝑞), QueryArtisan

takes a step further by refining 𝐺𝑞 using our cost model-based

plan optimizer. The optimizer is responsible for optimizing 𝐺𝑞 by

performing operator replacements or relocations, resulting in an

equivalent form denoted as𝐺 ′
𝑞 . This refined version, guided by our

cost model, demonstrates significantly improved performance. To

ensure the correctness of the generated codes, QueryArtisan con-

ducts a comprehensive code verification process. This verification

encompasses checks for syntactic correctness, logical consistency,

and adherence to predefined data processing rules.

Finally, as observed by previous work [43], LLM cannot generate

accurate code due to the absence of contextual information. There-

fore, we have introduced knowledge injection modules throughout

the two phases. First, it provides crucial dataset descriptions to the

LLM, including schemas, data distributions, and data types. Sec-

ond, to narrow the scope of LLM searches during code generation,

we materialize the abstract operators O with extracted knowledge

from the background datasets. The contents are provided to LLMs

through chain-of-thought prompting [46], helping the LLM process

complex information effectively. For datasets with thousands of

columns, we use existing open-source methods [10, 11, 44, 45] to

identify relevant tables and columns upon receiving a query.

3 LLM-POWERED CODE GENERATION

In this section, we delve into the process by which QueryArtisan

generates code for a particular dataset in response to an incoming

NL query. The overall workflow is illustrated in Figure 4, wherein

we engage with the LLM by utilizing both external knowledge

and auto-generated knowledge to yield precise and high-quality

inference results.

3.1 Pre-processing

During the pre-processing stage, we merge three key components

(meta-data, data samples and NL query) into an enriched query

through the LLM. In particular, we perform an unbiased sampling

for the target dataset to collect the meta-data𝑀 and key samples 𝑆 .

As depicted in Figure 5,𝑀 consists of three distinct components.

The łdataset infož encompasses comprehensive details about the

entire dataset, including its format, size, and a general description.

Through the process of scanning and sampling the dataset, we also

acquire the łschema infož and łinstance infož. Furthermore, certain

critical findings, such as primary-foreign key relationships and

histograms, are derived using conventional algorithms [20, 57].

data format:= innodb | csv | parquet | txt | ...

schema:= [Table T]+, Table T:=[Column C]+

Column C:= (Type t, Name n, ValueRange r)

Type t:=int | string | ..., Name:=/([^/]+)_\d+

PF_key:=(Column Pkey, Column Fkey)

ValueRange r:=(int v1, int v2) | [string s]+ |...

Cardinality c:=(Column C, int n)
ExceptionValue V:=(Column C, [string]+)

Histogram H=(Column C, [ValueRange r, int c]+)

dataset
info

schema
info

instance
info

Figure 5: Meta-data for LLM.

Due to the constraint on prompt length, we are unable to pro-

vide an excessive number of samples to the Large Language Model

(LLM). Therefore, we opt for a selection of the most representative

samples. To achieve this, we employ a specific approach: we ran-

domly select samples from the largest fact tables and subsequently

follow the primary-foreign keys to retrieve joinable tuples from the

associated dimension tables. Additionally, as part of our strategy,

we intentionally introduce some tuples with noisy values, such as

null values and values with invalid formats.

In the final step, both the meta-data 𝑀 and the key samples 𝑆

serve as contextual information for the NL query. We engage the

LLM to produce an enriched query𝑄𝑒 in the format of [𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑞𝑢𝑒𝑟𝑦].

In this process, the LLM extracts essential details from𝑀 and 𝑆 to

refine and rewrite the query for proper declaration.

3.2 Operator-based Search

With the enriched query 𝑄𝑒 at hand, we aim to narrow down the

scope of the LLM search, thereby encouraging the generation of

more predictable code outputs. To achieve this objective, we intro-

duce a set of abstract data processing operators. These operators

encompass functions such as read, filter, join, agg, reshape, group,

sort, replace and update. Figure 6 provides an abstract definition of

110

operator type:= "filter"
description:= "filter the target table with more
than one predicates w/wo indexes"

Condition C:= [Predicate P]+

Predicate:= (Column C, LogicOP op, Value v)

TargetTable tt:=Table T

LogicOP op := > | < | = |...

operator type:= "scan-based filter"

Condition C:= (age >18) and (gender = 'F')
TargetTable tt:= Table Person

Index I:= (Column C, Index Type)

operator type:= "index-based filter"

Condition C:= (price >100) and (type = 'book')
TargetTable tt:= Table Product

Index I:= (price, B-tree)

Abstract Definition of Operator Materialized Operators

Figure 6: Abstract definition vs. materialized operators.

the łfilterž operator, outlining the fundamental knowledge neces-

sary for its proper execution.

For an enriched query, denoted as 𝑄𝑒 , we task the LLM with

generating a set of sub-tasks, denoted as 𝐽0, ..., 𝐽𝑘 , each of which

is equivalent to a sub-query. These sub-tasks entail multiple steps,

such as "Step 1: Scan the dataset to retrieve columns of AGE and

SALARY; Step 2: ...". For each individual task, represented as 𝐽𝑖 ,

we leverage the LLM to construct a processing graph, denoted

as 𝐺𝑖 = {𝑉 , 𝐸}, by providing it with operator definitions and task

descriptions. In this context,𝑉 represents the set of operators, while

𝐸 defines their dependencies. By executing the operators within𝐺𝑖 ,

we can effectively address the task at hand.

Throughout the graph construction process, the LLM not only

creates an abstract operator but also translates it into one or more

concrete operators, as depicted in Figure 6. These materialized oper-

ators, through the incorporation of specific configurations concern-

ing tables, indexes, and data access methods, essentially represent a

detailed execution plan guided by predefined priority rules. These

rules are provided to the LLMs, enabling them to autonomously

select the most appropriate physical operators.

3.3 Offline Operator Database

To reduce reliance on the LLM and minimize unnecessary calls,

we developed an offline database containing typical natural lan-

guage query patterns from the WikiSQL [58] and Spider [51] train-

ing datasets. This database, D, consists of key-value pairs (𝐽𝑖 ,𝐺𝑖),

which represent generic processing graphs for typical queries. To

ensure generalizability and remove dataset-specific values, we have

replaced detailed tables, columns, and variable names with place-

holders. This setup enables quick matching of similar patterns for

incoming queries, significantly reducing query processing time.

3.4 Tasks to Operator Graph

The availability of dataset D empowers us to reframe the query

processing challenge as a sub-graph matching problem. When con-

fronted with a query 𝑄 , we generate a set of sub-tasks {𝐽0, ..., 𝐽𝑘 }

by consulting the Language Model (LLM). In addition, we capture

the dependencies between these sub-tasks in the form of a graph

denoted as𝐺𝑑𝑒𝑝 , where the vertices represent individual tasks, and

edges delineate their interdependencies. Subsequently, for each 𝐽𝑖 ,

we embark on a search within D to pinpoint the most closely re-

lated historical tasks. The similarity between two tasks, represented

as 𝐽𝑖 and 𝐽𝑥 , is quantified using the following formula:

𝑠𝑖𝑚(𝐽𝑖 , 𝐽𝑥) = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑓 (𝐽𝑖), 𝑓 (𝐽𝑘)) . (1)

Here, the function 𝑓 makes use of a pre-trained Doc2Vec model [22],

and we measure the similarity by computing the cosine distance

between their respective vectors. A minimum similarity threshold,

𝜏 , is enforced to determine task-matching eligibility. If sim(𝐽𝑖 , 𝐽𝑥) <

𝜏 , the match is deemed non-similar, and the LLM autonomously

matches the operators and then generates the operator graph.

One straightforward approach involves searching for the most

similar task from D for each sub-task and reusing their respective

processing graphs. This results in a collection of graphs {𝐺0, ...,𝐺𝑘 }.

To execute the overall task, it’s essential to connect these sub-graphs

and create a comprehensive graph denoted as G. This process is

known as operator linking. However, a significant challenge arises

when attempting to link these sub-graphs due to discrepancies in

their input and output formats. To overcome this issue, an additional

operator, termed reshape, is introduced to align the formats, albeit

incurring additional overhead.

To tackle this problem, we define the similarity between the

new task J = {𝐽0, ..., 𝐽𝑘 } and a sequence of database tasks J̄ =

{𝐽0, ..., 𝐽𝑘 } as follows:

𝑠𝑖𝑚(J , J̄) =
∑︁

𝐽𝑖 ∈J

𝑠𝑖𝑚(𝐽𝑖 , 𝐽𝑖) −
∑︁

∀𝑒∈𝐺𝑑𝑒𝑝

𝑔(𝑒.𝑆𝑡𝑎𝑟𝑡, 𝑒 .𝐸𝑛𝑑) . (2)

The function𝑔 returns 0 when the output of task 𝑒.𝑆𝑡𝑎𝑟𝑡 can directly

serve as the input for 𝑒.𝐸𝑛𝑑 ; otherwise, it returns 1.

Given a sub-task set J , our goal is to retrieve a set of corre-

sponding tasks J̄ from D, satisfying:

argmax
∀J̄

𝑠𝑖𝑚(J , J̄) .

To find the best match, we consider the 𝑘 matching slots as 𝑘 match-

ing arrays, and apply the variant of TA (threshold algorithm) [48]

to find the top solution.

3.5 Code Generation

To address the challenges related to the accuracy and reliability of

the LLM when generating code, we adopt a strategy that involves

requesting the LLM to generate𝑚 sets of sub-tasks (typically, setting

𝑚 to 3 suffices). For each set, we conduct a search within our offline

database to obtain the highest-ranked graph. Subsequently, we

generate code for each of these graphs and select the optimal one

based on the criteria established in our optimization and validation

module, as detailed in Section 4.

The process of generating code for a graph unfolds in a pro-

gressive manner. To be specific, we commence with the vertices

(operators) within the graph that have no predecessors. Gradu-

ally, we traverse the edges of the graph, sequentially assembling

the entire piece of code. We define a running state, denoted as

𝑠 = [J ′,𝐺 ′,𝐶], wherein J ′ represents the tasks that have already

been covered by the existing sub-graph 𝐺 ′, and 𝐶 signifies the

current collection of code snippets. Whenever a new operator is

translated into a code snippet, we update the state 𝑠 , which serves

as the context prompt for future code generation.

Ultimately, we execute a code-linking procedure to guarantee

that all code snippets can be seamlessly merged to yield the final

result. When integration is not straightforward, we introduce the

necessary complementary code to ensure the desired outcome.

111

read

write

read

join

o1 o2

o6

o3

o5

o4

(b) After optimization

filterfilter

O1: Read t1

O2: Read t2

O3: t2.col3 = "USA"

O4: t1.col2 > 8

O5: O1 join O2 on

t1.col1 = t2.col1

O6: Write O5 to file

(a) Before optimization

read

write

join

read

filter

o1 o2

o6

o5

o4

o3

filter

O1: Read t1

O2: Read t2

O3: O1 join O2 on

t1.col1 = t2.col1

O4: t1.col2 > 8

O5: t2.col3 = "USA"

O6: Write O5 to file

Figure 7: The example for Filter operator pushdown.

4 CODE OPTIMIZATION AND VALIDATION

In this section, we will delve into our post-processing stage, encom-

passing the crucial components of Code Optimization and Validation.

4.1 Code Optimization

Given the final processing graph G discussed in Section 3.4, it

becomes evident that there is room for substantial improvement

in the initial code generated. Specifically, we introduce two key

adjustments for G, known as shuffle and collapse.

The shuffle approach involves altering the order of two operators

within G. For instance, QueryArtisan aims to enhance query plans

by strategically placing filter operators deeper into the execution

sequence. Figure 7 serves as an illustrative example of this tech-

nique, where two filter operators are swapped with a join operator.

Figure 7(a) outlines the original query plan steps, while Figure 7(b)

showcases the optimized query plan resulting from two shuffle ad-

justments. It’s important to note that the two adjacent operators

within G can be switched only if their order has no impact on the

processing results. This verification can be conducted by examining

the inputs and outputs of the operators involved.

The collapse approach, on the other hand, aims to consolidate

multiple operators and generate code for them simultaneously. For

instance, it allows us to merge the two filter operators shown in Fig-

ure 7(a). Furthermore, we can combine the filter operator with the

read operator on table 𝑡1. The collapse adjustment can often result

in more efficient code generation. By considering multiple opera-

tors together, LLM can eliminate unnecessary data transformations,

repeated reads, and other I/O operations during code generation.

Additionally, it enhances the cache hit ratio by processing multiple

operators for a single tuple simultaneously. Nonetheless, there is a

trade-off involved; merging too many operators together can com-

promise our flexibility and render the processing logic too intricate

for efficient optimization by LLM. In our case, we only allow to

collapse at most two operators.

Moreover, in order to assess the extent to which these two ad-

justments decrease processing costs and enhance efficiency, Quer-

yArtisan utilizes a cost model-based plan optimization technique,

which is similar to the one adopted by the database system. This

component adeptly transforms the query analysis graph 𝐺𝑞 into

performance-optimized equivalents denoted as 𝐺 ′
𝑞 .

Queries can manifest in various equivalent implementations,

with their execution efficiency inherently tied to the specific data

distribution, size, and selectivity. QueryArtisan constructs a cost

model designed to assess the anticipated costs associated with

these equivalent implementations. This cost model quantitatively

evaluates data and query characteristics, as elaborated below:

𝐶 (𝐺𝑞) =

𝑛
∑︁

𝑖=1

(

𝐶𝑜𝑝 (𝑂𝑖) +𝐶𝑑𝑎𝑡𝑎 (𝑂𝑖 ,𝑂𝑖+1)
)

(3)

where𝐶𝑜𝑝 (𝑂𝑖) denotes the operational cost of the 𝑖-th operator, and

𝐶𝑑𝑎𝑡𝑎 (𝑂𝑖 ,𝑂𝑖+1) represents the cost associated with moving data

from operator 𝑂𝑖 to 𝑂𝑖+1. The cost model empowers QueryArtisan

to flexibly adjust query plans, with a primary focus on enhancing

efficiency and performance. Whether through adjustments such

as shuffle and collapse, or by reconfiguring the plan, the ultimate

objective remains consistent: to minimize execution cost 𝐶 (𝐺𝑞)

while ensuring accurate and consistent results.

4.2 Automatic Code Verification

We delve into empirical verification techniques crafted to thor-

oughly validate the generated code and minimize potential inaccu-

racies. Given a query analysis graph𝐺𝑞 , QueryArtisan systemati-

cally inspects each operator 𝑜𝑖 in sequence for verification. Upon

encountering an operator, QueryArtisan applies pre-defined rules to

correct it based on its type. QueryArtisan then assesses the correct-

ness of the operator linked to the current node. Different operators

undergo specific verification methods. For instance, the verifica-

tion of join operators involves evaluating join conditions’ logic,

leveraging either established primary-foreign key relationships or

a column representationmodel [9] to assess the feasibility of joining

two tables through the cosine similarity of column vectors. Should

a join prove impractical, alternative columns are considered, and if

this approach fails, LLMs are engaged to reconfigure 𝐺𝑞 .

5 EVALUATION

We conducted an extensive evaluation of QueryArtisan across mul-

tiple datasets encompassing various types. Our primary objectives

were to address the following key questions:

• Can QueryArtisan surpass state-of-the-art (SOTA) query

systems in terms of query accuracy? (section 5.2.1)

• Can QueryArtisan outperform SOTA query systems in

terms of query efficiency? (section 5.2.2)

• What are the primary functions and contributions of the

core modules within QueryArtisan? (section 5.3)

5.1 Experimental Setting

5.1.1 Datasets. To conduct a comprehensive evaluation on five

different datasets of two different categories:

Open-sourced Relational Data:Within this category, we lever-

aged three prominent open-source Text2SQL datasets, each of

which provides natural language queries along with their corre-

sponding SQL results, and experimented with their development

sets:

(i) Spider [51] is a comprehensive and diverse text-to-SQL dataset,

boasting 10,181 questions and 5,693 unique complex SQL queries.

It encompasses a wide array of 200 databases with multiple tables,

spanning across 138 different domains.

(ii) WikiSQL [58] is a well-recognized text-to-SQL dataset that

includes 2,716 relational tables and 8,421 queries in its development

112

set. It’s worth noting that a portion of the natural language queries

in the WikiSQL dataset have incorrect SQL statements [27].

(iii) Bird [24] is a benchmark dataset specifically designed for

large-scale, database-grounded Text-to-SQL evaluation. It features

an impressive collection of over 12,751 unique question-SQL pairs

spread across 95 large databases, with a cumulative size of 33.4 GB.

A notable characteristic of Bird lies in the complexity of its data, as

it often incorporates JSON and binary information within textual

formats, necessitating specialized parsing techniques.

(iv) The Synthetic dataset [29] is the world’s largest and most

diverse open-source Text-to-SQL collection. It features 105,851

records, with 100,000 for training and 5,851 for testing, covering

100 domains and around 23 million tokens.

Heterogeneous Data Lake: We conducted validation of our

method using two benchmark datasets from multimodal data lakes.

These datasets encompass an open-source data lake with three dis-

tinct types of modal data and a self-constructed data lake featuring

five modal data types.

(i) UniBench [55] is a comprehensive multimodal e-commerce

benchmark . It represents customer and product information as two

relational tables, totaling 19,425 tuples. Additionally, it includes

order information and transaction relationships, which are repre-

sented through a JSON document comprising 240,726 objects, as

well as a graph with 1,889,246 vertices and 5,949,887 edges.

(ii) DLBench: The benchmark was sourced from the e-commerce

website eBay [31], including data related to products, goods and

reviews. The resulting dataset comprises 7 relational data files with

a total of 1,997,759 records, 5 JSON data files encompassing 1,209,993

objects, 5 graph data files with 1,136,288 vertices and 1,008,143

edges, 403,331 images, and 2,594 text entries.

For each dataset within the heterogeneous data lakes, we create

a collection of 1,000 queries along with their corresponding result

sets. This process begins by transforming the data into a relational

schema. We then proceed to randomly generate and execute SQL

queries to retrieve the desired results. Following this, we take these

SQL queries and convert them into natural language queries. The

resulting query set is grouped into categories such as Q1, Q2, Q3,

and Q4, each denoting the number of tables involved in the join

operation; e.g. Q3 signifies queries with three tables to join.

5.1.2 Baseline Approaches. In this work, the following four meth-

ods were used to answer queries, serving as comparative baselines:

(i) GPT-3.5 [38]: a sophisticated evolution in the generative pre-

trained transformer (GPT) series. (ii) ACT-SQL [56]: an automated

CoT example generation method that extends the in-context learn-

ingmethods to themulti-turn text-to-SQL tasks. (iii) DAIL-SQL [17]:

an LLM-based Text2SQL approach improves the mapping between

questions and queries, and analyzes the trade-off between example

quality and quantity. It refreshes the Spider and Bird leaderboard

and ranks the first place. (iv) CodexDB [43]: a framework on top of

GPT-3 Codex that decomposes complex SQL queries into a series

of simple processing steps, described in natural language. Codex

translates the articulated steps into query processing code.

5.1.3 Evaluation Metrics. To evaluate query performance, we focus

on query accuracy and efficiency. Query accuracy assesses the

correctness of the query results, quantifying how precisely the

queries retrieve the intended data. Query efficiency consists of two

Table 1: Results of query accuracy.

Methods Spider Wikisql Bird Synthetic UniBench DLBench

GPT-3.5 (3.5) 65.9 66.3 30.9 53.6 68.2 61.1

ACT-SQL (3.5) 80.4 71.2 28.9 59.7 43.5 40.0

DAIL-SQL (3.5) 79.6 80.9 44.7 64.2 35.1 40.1

CodexDB (3.5) 78.2 80.5 19.7 62.4 63.2 69.3

Ours (Llama 3) 81.1 86.5 55.7 75.6 79.2 73.4

Ours (3.5) 86.9 92.8 65.2 79.8 85.0 79.2

Ours (3.5)!𝑂𝐷 86.3 92.4 64.8 79.3 84.5 78.6

Champions 91.2 92.9 63.4 ś ś ś

Ours (4) 91.5 93.6 74.4 86.4 89.6 84.0

Ours (4)!𝑂𝐷 91.0 93.3 73.8 85.7 89.1 83.3

key indicators. First, 𝑡1 considers only query execution time. The

average query time measures the execution time of the generated

codes. Second, the end-to-end total time𝑇 includes code generation

time 𝑡2 (Sec. 3), code optimization time 𝑡3 (Sec. 4), and 𝑡1.

5.1.4 ImplementationDetails. TheQueryArtisan systemwas crafted

using Python for its core components, with the integration of a

performance-enhancing optimizer written in C. To facilitate experi-

mental integration into the QueryArtisan framework, we harnessed

the advanced GPT-3.5-turbo-16k-0613 and GPT-4.0-turbo models

developed by OpenAI [38], as well as Meta’s leading open-source

LLM, the meta-llama-3-70b-instruct model [28]. The MySQL ver-

sion employed for our experiments was 5.7.26. Our experimentation

environment was based on an Ubuntu Linux 20.04 system, equipped

with 8 NVIDIA RTX A5000 GPUs and 384 GB of memory.

Table 2: Results of query efficiency. t1: average query code

execution time, t2: code generation time (Sec. 3), t3: code

optimization time (Sec. 4), T: end-to-end time.

Methods Bird UniBench

MySQL 𝑡1/𝑠 𝑡2/𝑠 𝑡3/𝑠 𝑇 /𝑠 𝑡1/𝑠 𝑡2/𝑠 𝑡3/𝑠 𝑇 /𝑠

MySQL 2.90 0 0 2.90 2.86 0 0 2.86

GPT-3.5 0.65 0.93 0 1.58 0.91 1.04 0 1.95

Ours 0.46 4.08 0.008 4.55 0.65 4.01 0.007 4.67

Ours!𝑂𝐷 0.46 4.63 0.008 5.10 0.65 4.64 0.007 5.30

5.2 Experimental Results

5.2.1 Query Accuracy. In the query answering task, we conduct

a comparative analysis of QueryArtisan’s query accuracy against

various baseline methods. The objective of this experiment is to

assess whether the code generated by our approach effectively

captures query semantics.

As the baseline methods only support relational data and not

multimodal data, we had to transform multimodal data into rela-

tional data through the ETL process for the baseline approaches. In

contrast, QueryArtisan completely circumvents the ETL process.

As illustrated in Table 1, QueryArtisan consistently outperforms

all comparative methods in terms of accuracy across all datasets

when utilizing GPT-3.5. Notably, the term łChampionsž pertains

to methods that currently hold top positions on public dataset

leaderboards, leveraging GPT-4. It is evident from our results that

QueryArtisan, when employing GPT-4 for queries, significantly

surpasses the accuracy of all other methods.

113

114

Table 3: Ablation test on query accuracy.

Methods Spider Wikisql Bird UniBench DLBench

QueryArtisan!𝐷𝑂 65.9 66.3 30.9 68.1 67.2

QueryArtisan!𝐶𝑂 86.5 92.9 65.0 85.2 78.1

QueryArtisan!𝐶𝑉 75.6 73.9 45.6 74.1 70.0

QueryArtisan 86.9 92.8 65.2 85.0 79.2

Table 4: Ablation test on query efficiency.

Methods Spider DLBench

QueryArtisan!𝐷𝑂 2.66ms 233.6ms

QueryArtisan!𝐶𝑂 2.59ms 224.9ms

QueryArtisan!𝐶𝑉 2.49ms 155.8ms

QueryArtisan 2.47ms 144.2ms

that QueryArtisan exhibits minimal query time variance, whereas

the query time of MySQL displays substantial fluctuations. This

distinction is due to QueryArtisan’s query time primarily involving

reading local files, with minimal time spent on data operations.

5.3 Ablation Studies

In this section, we perform ablation experiments over some facets

of QueryArtisan in order to better understand their roles.

Effect of Pre-defined Operators. We begin by highlighting

the significance of pre-defined operators, which entail knowledge

injection into the system. Table 3 shows a significant drop in

query accuracy when the operator module is removed, indicated as

QueryArtisan!𝐷𝑂 , with the LLM generating code as a blackbox.

Table 4 presents a summary of the query execution times for

each method, noting that the query response time is the sum of

data file read/write time and query execution time. It demonstrates

a notable reduction in query efficiency for QueryArtisan!𝐷𝑂 when

contrasted with QueryArtisan. It is due to the operator module

providing a richer context, enabling more accurate and efficient

code generation.

Effect of Code Optimization. The focus of code optimization

(CO) is on achieving performance-optimized query analysis graphs.

The results demonstrate that QueryArtisan!𝐶𝑂 and QueryArtisan

are equivalent in terms of accuracy performance. This module’s

primary objective is the enhancement of query efficiency, rather

than query accuracy. Table 4 reveals a 3.0-fold improvement in

query efficiency for QueryArtisan on the Spider dataset compared

to QueryArtisan!𝐶𝑂 , despite similar average query times. Although

optimization is effective, detecting significant differences in average

query time is challenging due to their brevity. The Spider dataset’s

relatively small data volume and simple queries account for this

observation. In the DLBench multimodal dataset, which features

more complex queries, optimizing impact poses greater challenges.

QueryArtisan exceeds QueryArtisan!𝐶𝑂 by a factor of 1.9 in query

efficiency, and this is also reflected in a significant reduction in

average query time. This demonstrates that the method is effective

even in complex query and data scenarios.

Effect of Code Verification. The necessity of the code verifi-

cation module is further discussed through a comparison between

QueryArtisan and QueryArtisan!𝐶𝑉 . QueryArtisan significantly

outperforms QueryArtisan!𝐶𝑉 in query accuracy, underscoring the

importance of code verification in LLM-based code generation. The

focus of code verification (CV) is the verification of the correctness

of query analysis graphs. The results show that QueryArtisan!𝐶𝑉
and QueryArtisan exhibit similar efficiency performance. This mod-

ule’s primary objective is enhancing query accuracy, rather than

improving query efficiency.

6 RELATED WORK

Our work intersects with several lines of research, and we provide

a brief overview of these areas.

Data Discovery over Data Lake. Recent research endeavors

[2ś5, 9, 26, 39] have primarily focused on automating discovery

tasks within data lakes that exclusively contain relational tables.

These approaches leverage various similarity signals, including

exact value overlap [59], schema similarity [35], approximate hash

sketches [16], ontology matches [15], transformations [1], and em-

beddings [8, 42]. Some systems, such as Aurum [13], D3L [4], and

TURL [7], combine these signals to varying degrees.

Query on Data Lake. Supporting query processing within data

lakes containing heterogeneous data sources is an inherently chal-

lenging problem that often necessitates significant human inter-

vention during the data integration and query rewriting phases

[6, 53, 54]. Pioneering research and systems [13, 14, 18, 21, 34] have

made notable strides in streamlining the integration and querying

of these diverse data repositories. Additionally, [52] explores using

reinforcement learning to integrate schemas and answer queries

across multiple data sources.

Automatic Programming. Recent works, such as those by Ni

et al. [36], Feng et al. [12], and Li et al. [25], have made significant

strides in advancing the automatic programming field [23, 47]. This

approach has been effectively implemented in systems like ReAct

[50] and Reflexion [41], which harness these prompts to construct

logical flows and action plans using large language models (LLMs).

Furthermore, ToolFormer [40] showcases the ability to learn inter-

actions with external tools through simple APIs, thereby expanding

the scope and utility of automatic programming.

7 CONCLUSION

In this paper, we introduce QueryArtisan, which uses Language

Models (LLMs) to generate ad-hoc data manipulation code for data

lakes. QueryArtisan streamlines the data processing pipeline by

eliminating the need for cumbersome ETL processes and instead

generates code in an ad-hoc manner. It enhances code quality with

a repository of data processing operators and metadata, optimizes

performance with a plan optimizer, and ensures reliability through

code verification. Experimental results substantiate the superiority

of QueryArtisan over state-of-the-art systems when handling com-

plex data sources, underscoring its effectiveness and robustness.

ACKNOWLEDGMENT

This work was supported by the Key Research Program of Zhejiang

Province (No. 2023C01037), the "Pioneer" R&D Program of Zhejiang

(No.2024C01021), and the Major Research Program of Zhejiang

Provincial Natural Science Foundation (No. LD24F020015). This

work was supported by Ant Group through CCF-Ant Research

Fund. The authors are supported by Hangzhou High-Tech Zone

(Binjiang) Institute of Blockchain and Data Security.

115

REFERENCES
[1] Ziawasch Abedjan, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti,

and Michael Stonebraker. 2016. DataXFormer: A robust transformation discovery
system. In ICDE. IEEE Computer Society, 1134ś1145.

[2] Naser Ahmadi, Hansjorg Sand, and Paolo Papotti. 2022. Unsupervised Matching
of Data and Text. In ICDE. IEEE, 1058ś1070.

[3] Angelos-Christos G. Anadiotis, Oana Balalau, Catarina Conceição, et al. 2022.
Graph integration of structured, semistructured and unstructured data for data
journalism. Inf. Syst. 104 (2022), 101846.

[4] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstanti-
nou. 2020. Dataset Discovery in Data Lakes. In ICDE. IEEE, 709ś720.

[5] Ursin Brunner and Kurt Stockinger. 2019. Entity Matching on Unstructured
Data: An Active Learning Approach. In SDS. IEEE, 97ś102.

[6] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, et al. 2017. The Data Civilizer System. In CIDR.

[7] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. TURL: Table
Understanding through Representation Learning. SIGMOD (2022).

[8] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.
Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-
Based Approach. In ICDE. IEEE, 456ś467.

[9] Mohamed Y Eltabakh, Mayuresh Kunjir, Ahmed Elmagarmid, and Moham-
mad Shahmeer Ahmad. 2023. Cross Modal Data Discovery over Structured
and Unstructured Data Lakes. arXiv preprint arXiv:2306.00932 (2023).

[10] Mohamed Y. Eltabakh, Mayuresh Kunjir, Ahmed K. Elmagarmid, and Moham-
mad Shahmeer Ahmad. 2023. Cross Modal Data Discovery over Structured and
Unstructured Data Lakes. Proc. VLDB Endow. 16, 11 (2023), 3377ś3390.

[11] Grace Fan, Jin Wang, Yuliang Li, et al. 2023. Semantics-aware Dataset Discovery
from Data Lakes with Contextualized Column-based Representation Learning.
Proc. VLDB Endow. 16, 7 (2023), 1726ś1739.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, et al. 2020. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020. 1536ś1547.

[13] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE. IEEE Computer Society, 1001ś1012.

[14] Raul Castro Fernandez and SamuelMadden. 2019. Termite: a system for tunneling
through heterogeneous data. In aiDM@SIGMOD. ACM, 7:1ś7:8.

[15] Raul Castro Fernandez, Essam Mansour, Abdulhakim Ali Qahtan, et al. 2018.
Seeping Semantics: Linking Datasets UsingWord Embeddings for Data Discovery.
In ICDE. IEEE Computer Society, 989ś1000.

[16] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:
A Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and
Containment. In ICDE. IEEE, 1190ś1201.

[17] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, et al. 2023. Text-to-sql em-
powered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363 (2023).

[18] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An Intelligent
Data Lake System. In SIGMOD. ACM, 2097ś2100.

[19] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis
Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organizing
Google’s Datasets. In SIGMOD. ACM, 795ś806.

[20] Felix Halim, Panagiotis Karras, and Roland H. C. Yap. 2009. Fast and effective
histogram construction. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM 2009, Hong Kong, China, November 2-6, 2009,
David Wai-Lok Cheung, Il-Yeol Song, Wesley W. Chu, Xiaohua Hu, and Jimmy
Lin (Eds.). ACM, 1167ś1176.

[21] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022.
Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932ś945.

[22] Jey Han Lau and Timothy Baldwin. 2016. An Empirical Evaluation of doc2vec
with Practical Insights into Document Embedding Generation. In Rep4NLP@ACL.

[23] Guohao Li, Hasan Abed Al Kader Hammoud, et al. 2023. Camel: Communicative
agents for" mind" exploration of large scale language model society. arXiv
preprint arXiv:2303.17760 (2023).

[24] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, et al. 2023. Can llm already serve as
a database interface? a big bench for large-scale database grounded text-to-sqls.
arXiv preprint arXiv:2305.03111 (2023).

[25] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, et al. 2022. Competition-
level code generation with alphacode. Science 378, 6624 (2022), 1092ś1097.

[26] Lizi Liao, Le Hong Long, Zheng Zhang, Minlie Huang, and Tat-Seng Chua.
2021. MMConv: An Environment for Multimodal Conversational Search across
Multiple Domains. In SIGIR. ACM, 675ś684.

[27] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, et al. 2022. TAPEX: Table Pre-
training via Learning a Neural SQL Executor. In ICLR.

[28] Meta. [n.d.]. Meta Llama 3. https://huggingface.co/meta-llama/Meta-Llama-3-
70B-Instruct.

[29] Yev Meyer, Marjan Emadi, Dhruv Nathawani, et al. 2024. Synthetic-Text-To-SQL:
A synthetic dataset for training language models to generate SQL queries from
natural language prompts.

[30] [n. d.]. [n.d.]. Bird leaderboard. https://bird-bench.github.io/.
[31] [n. d.]. [n.d.]. Ebay website. https://www.ebay.com.
[32] [n. d.]. [n.d.]. Spider leaderboard. https://yale-lily.github.io/spider.
[33] [n. d.]. [n.d.]. WikiSQL leaderboard. https://github.com/salesforce/WikiSQL.
[34] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.

Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986ś1989.

[35] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813ś825.

[36] Ansong Ni, Srini Iyer, Dragomir Radev, et al. 2023. Lever: Learning to ver-
ify language-to-code generation with execution. In International Conference on
Machine Learning. PMLR, 26106ś26128.

[37] Natasha F. Noy. 2020. When theWeb is your Data Lake: Creating a Search Engine
for Datasets on the Web. In SIGMOD. ACM, 801.

[38] OpenAI. [n.d.]. OpenAI API. https://api.openai.com/.
[39] Marnith Peng, Jose Luis Beltran, and Ravigopal Vennelakanti. 2020. Entity

Matching from Unstructured and Dissimilar Data Collections: Semantic and
Content Distribution Approach. In IMMS. ACM, 29ś33.

[40] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Lomeli, et al.
2023. Toolformer: Language models can teach themselves to use tools. arXiv
preprint arXiv:2302.04761 (2023).

[41] Noah Shinn, Beck Labash, et al. 2023. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366 (2023).

[42] Sahaana Suri, Ihab F. Ilyas, et al. 2021. Ember: No-Code Context Enrichment via
Similarity-Based Keyless Joins. Proc. VLDB Endow. 15, 3 (2021), 699ś712.

[43] Immanuel Trummer. 2022. CodexDB: Synthesizing Code for Query Processing
from Natural Language Instructions using GPT-3 Codex. Proc. VLDB Endow. 15,
11 (2022), 2921ś2928.

[44] Bailin Wang, Richard Shin, Xiaodong Liu, et al. 2020. RAT-SQL: Relation-Aware
Schema Encoding and Linking for Text-to-SQL Parsers. In ACL. ACL, 7567ś7578.

[45] Lihan Wang, Bowen Qin, Binyuan Hui, et al. 2022. Proton: Probing Schema
Linking Information from Pre-trained Language Models for Text-to-SQL Parsing.
In KDD. ACM, 1889ś1898.

[46] Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. 2022. Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models. In NeurIPS.

[47] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. NeurIPS 35 (2022), 24824ś24837.

[48] Dong Xin, Jiawei Han, and Kevin Chen-Chuan Chang. 2007. Progressive and
selective merge: computing top-k with ad-hoc ranking functions. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007. ACM, 103ś114.

[49] Kuan Xu, Yongbo Wang, Yongliang Wang, et al. 2022. SeaD: End-to-end Text-to-
SQL Generation with Schema-aware Denoising. In NAACL. ACL, 1845ś1853.

[50] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

[51] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, et al. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[52] Qin Yuan, Ye Yuan, Zhenyu Wen, et al. 2023. An effective framework for enhanc-
ing query answering in a heterogeneous data lake. In SIGIR. 770ś780.

[53] Ye Yuan, Guoren Wang, Lei Chen, and Haixun Wang. 2013. Efficient Keyword
Search on Uncertain Graph Data. TKDE 25, 12 (2013), 2767ś2779.

[54] Ye Yuan, Guoren Wang, Haixun Wang, and Lei Chen. 2011. Efficient Subgraph
Search over Large Uncertain Graphs. Proc. VLDB Endow. 4, 11 (2011), 876ś886.

[55] Chao Zhang. 2018. Parameter Curation and Data Generation for Benchmarking
Multi-model Queries. In VLDB (CEUR Workshop Proceedings), Vol. 2175.

[56] Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. 2023.
ACT-SQL: In-Context Learning for Text-to-SQL with Automatically-Generated
Chain-of-Thought. In EMNLP.

[57] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc,
and Divesh Srivastava. 2010. On Multi-Column Foreign Key Discovery. Proc.
VLDB Endow. 3, 1 (2010), 805ś814.

[58] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

[59] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD. ACM, 847ś864.

116

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://bird-bench.github.io/
https://www.ebay.com
https://yale-lily.github.io/spider
https://github.com/salesforce/WikiSQL
https://api.openai.com/

	Abstract
	1 Introduction
	2 Overview
	3 LLM-powered Code Generation
	3.1 Pre-processing
	3.2 Operator-based Search
	3.3 Offline Operator Database
	3.4 Tasks to Operator Graph
	3.5 Code Generation

	4 Code Optimization and Validation
	4.1 Code Optimization
	4.2 Automatic Code Verification

	5 Evaluation
	5.1 Experimental Setting
	5.2 Experimental Results
	5.3 Ablation Studies

	6 Related Work
	7 Conclusion
	References

