
CUTTANA: Scalable Graph Partitioning for Faster Distributed
Graph Databases and Analytics

Milad Rezaei Hajidehi
University of British Columbia

Vancouver, Canada
miladrzh@cs.ubc.ca

Sraavan Sridhar
University of British Columbia

Vancouver, Canada
sraavan@student.ubc.ca

Margo Seltzer
University of British Columbia

Vancouver, Canada
mseltzer@cs.ubc.ca

ABSTRACT

Graph partitioning plays a pivotal role in various distributed graph
processing applications, including graph analytics, graph neural
network training, and distributed graph databases. A “good” graph
partitioner reduces workload execution time, worker imbalance,
and network overhead. Graphs that require distributed settings are
often too large to fit in the main memory of a single machine. This
challenge renders traditional in-memory graph partitioners infea-
sible, leading to the emergence of streaming solutions. Streaming
partitioners produce lower-quality partitions, because they work
from partial information and must make premature decisions be-
fore they have a complete view of a vertex’s neighborhood. We
introduce CUTTANA, a streaming graph partitioner that partitions
massive graphs (Web/Twitter scale) with superior quality compared
to existing streaming solutions. CUTTANA uses a novel buffering
technique that prevents the premature assignment of vertices to
partitions and a scalable coarsening and refinement technique that
enables a complete graph view, improving the intermediate assign-
ment made by a streaming partitioner. We implemented a parallel
version for CUTTANA that offers nearly the same partitioning
latency as existing streaming partitioners.

Our experimental analysis shows that CUTTANA consistently
yields better partitioning quality than state-of-the-art streaming
vertex partitioners in terms of both edge-cut and communication
volume metrics. We also evaluate the workload latencies that re-
sult from using CUTTANA and other partitioners in distributed
graph analytics and databases. CUTTANA outperforms the other
methods in most scenarios (algorithms, datasets). In analytics ap-
plications, CUTTANA improves runtime performance by up to 59%
compared to various streaming partitioners (i.e., HDRF, Fennel,
Ginger, HeiStream). In graph database tasks, CUTTANA results in
higher query throughput by up to 23%, without hurting tail latency.

PVLDB Reference Format:

Milad Rezaei Hajidehi, Sraavan Sridhar, and Margo Seltzer. CUTTANA:
Scalable Graph Partitioning for Faster Distributed Graph Databases and
Analytics. PVLDB, 18(1): 14-27, 2024.
doi:10.14778/3696435.3696437

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:10.14778/3696435.3696437

4

1 2

5

3

6

4

1

2

5 3

6
Worker #2

Worker #1Original Graph

edgeedge-cut

Figure 1: Partitioning a graph for two workers. Assume every vertex

must send a message to its neighbors; each edge between machines

becomes a network call.

The source code, data, and/or other artifacts have been made available at
https://github.com/cuttana.

1 INTRODUCTION

Ubiquity andmassive growth of real-world networks sparked

the applications of distributed graph processing. A graph is
a common data model that can represent complex relationships
between real-world entities in myriad domains such as social net-
works, the World Wide Web, finance, fraud detection, transporta-
tion, and biological networks [47]. In practice, many of these graphs
are sufficiently large to exceed the memory of a single machine,
posing performance challenges for single-node solutions. Using
distributed systems with increased memory and parallelism en-
ables high performance for large graph processing. The ubiquity
and growth of real-world graphs motivated the development of dis-
tributed graph processing solutions for various applications such
as graph analytics [7, 8, 11, 18, 19, 22, 31, 56, 60], graph databases
[5, 23, 30, 51], and graph neural networks (GNN) [16, 41, 55, 57, 62].

Graph partitioning affects the performance of distributed

graph processing. The first step of any distributed graph process-
ing application is to partition the graph into disjoint subgraphs and
distribute them to worker machines. Unlike traditional distributed
applications such as map-reduce, graph processing workloads ex-
hibit many interactions among partitions [39]. For example, in
PageRank, the rank of a vertex is calculated based on the rank of its
neighbors in each iteration. To achieve high-quality partitioning,
the number of edges that have vertices assigned to different ma-
chines (i.e., edge-cuts) should be minimized, since exchanging data
along those edges incurs network usage (Figure 1). Another aspect
of good partitioning is assigning equal-sized partitions to workers
to avoid stragglers. Figure 2 shows that network overhead can be
more than 100GB for a 16-worker PageRank computation on the

14

https://doi.org/10.14778/3696435.3696437
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3696435.3696437
https://github.com/cuttana
https://www.acm.org/publications/policies/artifact-review-and-badging-current

1.2 1.4 1.6
Compute Imbalance

100

150

200

N
e
tw

o
rk

U
sa

g
e

(G
B

)

HDRF

Fennel
HS

Ginger

Cuttana

Network Usage vs. Compute Imbalance
Using Different Partitioners

HDRF Fennel HS GingerCuttana

Partitioners

100

300

500

700

900

1100

1300

E
x
e
cu

ti
o
n

T
im

e
(s

)

PageRank Execution Time
Using Different Partitioners

Figure 2: An example of partitioning’s effect on network usage, com-

pute imbalance, and PageRank time on the UK07 dataset. Cuttana

improved PageRank execution time by more than 52s (27%).

UK07 dataset and the graph partitioning algorithm has a significant
effect on network usage, worker imbalance, and execution time.

Partitioning large graphs is hard and memory-bound. The
problem of balanced graph partitioning is NP-hard [17]. However,
many domains other than distributed graph processing (e.g., VLSI
design [6] and causal inference [3]) demand high-quality partition-
ing. As a result, many heuristic solutions exist [6, 24, 36, 38, 48, 61].
However, most of these solutions fail when partitioning graphs
larger than main memory. For example,Metis [24], long the gold
standard for graph partitioning, is unable to partition the Twit-
ter or Web graphs [35, 38], leading to the development of various
streaming partitioners for massive graphs [8, 14, 37, 43, 50, 52].

Streaming partitioners are scalable, but the partitionings

that they produce are low-quality, having a greater num-

ber of cross-partition edges than do in-memory partitioners.

Streaming solutions make partitioning decisions by reading ver-
tices or edges one by one and assigning them to partitions based
on a scoring function. The score is calculated from minimal sum-
marized information about the vertices/edges already assigned, the
current vertex/edge, and the partition sizes. There are two types of
partitioners: vertex-partitioners (edge-cut partitioners) [14, 50, 52],
which read a stream of vertices and their neighbors and assign each
vertex to a partition, and edge partitioners (vertex-cut partition-
ers) [8, 13, 45], which read a stream of edges and assign each to a
partition. In an experimental study, Pacaci and Ozsu [43] reported
that edge-cut partitioners yield lower network overhead but greater
worker imbalance. Analyses show that streaming partitioners pro-
duce more edge-cuts, hence higher network overhead, relative to
in-memory partitioners [3, 52]. This is unsurprising given their
limited view of the graph.

Cuttana is a high-quality, scalable partitioner, designed to
have the scalability of streaming solutions while providing better
partitioning quality. We studied existing streaming vertex parti-
tioners and found three limitations. 1) They prematurely assign
vertices when the data needed to calculate an accurate scoring
function is not available. 2) They never change vertex assignments,
even though, over time, the algorithm gains information about the
graph. 3) The significant worker imbalance when using edge-cut
partitioners overshadows their network overhead superiority.

We solve the first problem by introducing score-based dynamic
buffering. We buffer vertices based on the knowledge we have about
their neighborhood and avoid premature partitioning when insuf-
ficient data is available. However, if done naively, buffering can

result in storing the entire graph in memory, which is obviously not
scalable. We solve the second problem by providing a mechanism
to move and exchange vertices between partitions to enhance the
partitioning quality at the end of the streaming phase. Determining
which moves enhance quality requires saving the neighborhood for
each vertex and is also impossible (due tomemory constraints). Also,
the moving phase can be time-consuming due to the large number
of possible moves. We introduce a coarsening strategy and a theoret-
ically efficient refinement algorithm to find the best moves, enabling
fast and coarse-grained improvement of partitioning quality. We
show that the huge edge imbalance in existing edge-cut partitioners
is the cause of worker imbalance in analytics. We solve the third
problem by modeling and satisfying an edge-balance condition
using an edge-based score function and our refinement algorithm.
Finally, to minimize the potential time overhead caused by buffering
and refinement, we provide a parallel implementation that yields
nearly the same partitioning time for massive graphs compared to
streaming solutions, while offering better partitioning quality.

Our contributions are as follows.
• Wepresent a scalable, buffered streaming partitioningmodel

to effectively use main memory to avoid premature ver-
tex assignment. This model can be applied to any existing
streaming partitioner to increase its quality.

• We introduce a novel coarsening and refinement technique
that receives the output of a streaming partitioner and im-
proves it to reach a “maximal” quality. This algorithm is
theoretically efficient and independent of the graph size.

• We leverage unused cores via a parallel implementation,
providing rapid partitioning speed.

• Through experimental analysis, we show Cuttana’s supe-
riority relative to existing edge-cut partitioners. We also
demonstrate the edge imbalance of existing partitioners,
which is often overlooked in the literature.
• We show the effect of Cuttana partitioning quality im-

provement in the execution time of distributed graph analyt-
ics. OverallCuttana can improve the runtime performance
of graph analytics by up to 59% and is the best partitioner
in most scenarios.

• We show the effect of Cuttana partitioning quality im-
provement in the query throughput of distributed graph
databases. Cuttana can improve the throughput of the
JanusGraph distributed graph database by up to 23% over
the best existing graph partitioner in the standard LDBC
social network benchmark.

2 BACKGROUND

Formal definition of vertex partitioning problem. Given a
graph 𝐺 = ⟨𝑉 , 𝐸⟩, the K-way vertex-balanced graph partitioning
problem is to assign vertices to the disjoint sets V1,V2, . . . ,VK
such that

⋃︁K
𝑖=1V𝑖 = 𝑉 and theV𝑖 satisfy the balance condition:

|V𝑖 | ≤ (1 + 𝜖).
|𝑉 |
K (1 ≤ 𝑖 ≤ K) (1)

The 𝜖 ≥ 0 is the balance slack parameter that constrains how
imbalanced the partitions can be. The balance condition can also
be defined based on the number of edges in a partition. With N(𝑣)

15

representing the set of neighbors for vertex 𝑣 , we define the edge-
balance condition for vertex partitioning as:∑︂

𝑣∈V𝑖

|N (𝑣) | ≤ (1 + 𝜖) · 2 · |𝐸 |K (1 ≤ 𝑖 ≤ K) (2)

Optimization objectives. The quality metrics for graph parti-
tioning are based on minimizing the interdependency of partitions.
A commonmetric is edge-cut, the number of edges whose endpoints
are in different partitions. Given P : 𝑉 → N≤K , the function that
returns the partition ID to which a vertex is assigned, the normal-
ized number of edge-cuts is:

𝜆𝐸𝐶 =
|{⟨𝑥,𝑦⟩ ∈ 𝐸 |P(𝑥) ≠ P(𝑦)}|

|𝐸 | (3)

Minimizing edge-cuts is equivalent to minimizing network cost,
since whenever a vertex requires data from a neighboring vertex in
a different partition, the two corresponding workers must transmit
the data over the network.

A common optimization in bulk synchronous systems, mostly
in analytic workloads, is sender-side aggregation [4, 39, 43]. In these
systems, the workload is iterative (e.g., PageRank iteration) and at
the end of each iteration, if multiple vertices in the same worker are
connected to the same vertex in a different worker, the neighboring
vertex sends the data once. This causes all of the edges between
the neighboring vertex and the vertices in the first worker to need
only a single network message. In Figure 1, vertices 2 and 5 can
benefit from this optimization. Communication-volume is the metric
that models the network cost of such systems. Given D : 𝑉 →
N≤K , a function that returns the number of partitions in which a
given vertex has neighbors, excluding its own partition (P(𝑣)), the
normalized communication volume is:

𝜆𝐶𝑉 =

∑︁
𝑢∈𝑉 D(𝑢)
K|𝑉 | (4)

General streaming model for edge-cut graph partitioning.

At each iteration 𝑡 (1 ≤ 𝑡 ≤ |𝑉 |), where we read the 𝑡 th vertex in
the stream, a streaming edge-cut partitioner reads the vertex 𝑢𝑡
and its neighbors N(𝑢𝑡) and assigns 𝑢𝑡 to one of the partitions.
The assignment is based on evaluating a score function for each
partition based on 𝑢𝑡 , N(𝑢𝑡), and the state of each partition in the
𝑡 th iteration (V𝑡

𝑖
). A general model for the assignment of 𝑢𝑡 is:

argmax
1≤𝑖≤K

[︁
h(|V𝑡

𝑖 ∩ N(𝑢𝑡) |) − g(|V
𝑡
𝑖 |)

]︁
(5)

where h biases assigning the vertex to the partition that contains the
greatest number of neighbors, thus minimizing the number of edge
cuts, and g is the penalty term for the current size of the partition
to satisfy balance constraints, thus encouraging equal partition
growth. This heuristic is at the core of many edge-cut partitioners,
and variants of Equation 5 can be found in them [3, 12, 21, 42, 50, 52].

3 CUTTANA ALGORITHM

Scope. Cuttana is a vertex partitioner that operates on a static
snapshot of a graph and is designed to improve workload latency
and combined workload/partitioning latency for jobs on distributed
vertex-centric systems. We designed Cuttana so that it can be
executed on commodity machines commonly used for distributed

processing in the cloud (concerning their memory constraints). The
main focus of Cuttana is on massive graphs (e.g., billion-scale
graphs) for which in-memory partitioners (e.g.,Metis) fail.

Overview. Cuttana is a two-phase partitioner. The first phase
is a streaming partitioner with delayed placement that creates an
initial partitioning of the graph. The second phase is the refinement
of the initial partitioning. We move vertices among the partitions
to increase the partitioning quality (e.g., reducing edge-cuts or
communication volume) while maintaining the balance condition.

The delayed placement in the first phase is incorporated into
a streaming algorithm through a buffered streaming model. This
model enables any classic streaming partitioner to delay the assign-
ment of a vertex whenever necessary; we discuss this in Section 3.1.
In Section 3.2, we explain the challenges of refinement and how our
solution addresses them. Finally, in Section 3.3, we explain how we
reduce the time overhead introduced by buffering and refinement.

3.1 Phase 1: Prioritized Buffered Streaming

Premature assignments: a problem in streaming partitioners.

The primary intuition behind streaming partitioners is to assign
each vertex to the partition containing the greatest number of neigh-
boring vertices. The corresponding term for this greedy assignment
in Equation 5 is |V𝑡

𝑖
∩ N(𝑢𝑡) |. However, a partitioner frequently

encounters a vertex for which many, or even all, of its neighbors are
not yet assigned. We call such assignments premature. Mathemati-
cally, premature assignments happen when partitioning 𝑢𝑡 and the
number of assigned neighbors,

∑︁
1≤𝑖≤K |N (𝑢𝑡) ∩ V𝑖 |, is small or

zero. Without adequate information about the assignment of neigh-
boring vertices, the assignment of𝑢𝑡 can cause random/low-quality
assignment and may increase the number of edge-cuts.

Challenges of avoiding premature assignments.A simple fix
for premature assignment is delaying the assignment of these ver-
tices and prioritizing the assignment of vertices with more already-
assigned neighbors. As we partition more vertices, more informa-
tion becomes available for vertices that were subjected to premature
assignment. However, delayed partitioning requires storing all de-
layed vertices as well as their neighbors in a buffer. We have to store
both vertices and their neighbors, because we need this information
later to compute partitioning scores; in the streaming phase after
reading a vertex and its neighbors, they are no longer accessible
unless explicitly stored. Storing vertices and their neighbors could
require 𝑂 (𝐸) buffer space if done naively. To avoid consuming all
of main memory, we should limit the buffer size to some constant,
based on the system’s available memory. High-degree vertices will
consume more space (for their neighbors) than low-degree vertices.
The key challenge is determining which vertices to buffer, when to
evict, and how to manage the buffer efficiently.

Key Finding: buffering low-degree vertices is sufficient.

Most large networks exhibit a power-law degree distribution [2, 27,
45], in which the majority of vertices are low-degree, and the ma-
jority of edges have at least one low-degree side [38]. Figure 3 (left)
illustrates that most vertices are low-degree and (right) that most
edges have at least one low-degree endpoint, in two large network
datasets. Thus, high-quality placement of low-degree vertices leads
to high-quality partitioning (i.e., fewer edge-cuts), because most
edges have at least one low-degree endpoint. These low-degree

16

0

20

40

60

80

100
99.4 95.0

1 10 100 1000
0

20

40

60

80

100
99.1

1 10 100 1000

76.6

Vertex Degree Edge Degree

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

UK07 Twitter

Figure 3: In large power-law graphs, themajority of vertices have low

degrees (≤ 1000) (left charts), and the majority of edges have at least

one low-degree endpoint (right charts), even though the maximum

degree in these networks exceeds a million.

vertices are exactly the ones most likely to be prematurely assigned,
because the probability of having zero or a low number of assigned
neighbors is inversely proportional to the number of neighbors
(Theorem 3.1). Recall that making good buffer eviction and place-
ment decisions requires buffering vertices and their neighbors, so
high-degree vertices consume more buffer space than low-degree
vertices. Intuitively, buffering can be viewed as a way to reorder the
input stream. Inevitably, the first vertices we place are, by defini-
tion, premature assignments. However, they guide later placement
decisions; high-degree vertices provide more information to guide
these decisions; that is, they attract neighboring vertices. Therefore,
we choose to buffer low-degree vertices, because they are most
likely to be prematurely assigned and consume little buffer space.

Theorem 3.1. In a streaming partitioner, the degree of a vertex is
inversely proportional to the probability of the vertex being partitioned
without knowledge of its neighbors.

Proof. When placing the 𝑡 th vertex, 𝑣𝑡 , with degree𝑑 = |N (𝑣𝑡) |,
it will be partitioned with no knowledge if all of its 𝑑 neighbors
come after it in the stream. There are |𝑉 | − 𝑡 such positions, so
there are

(︁ |𝑉 |−𝑡
𝑑

)︁
possible orderings. All of the possible ways to

place these 𝑑 vertices in the stream is
(︁ |𝑉 |−1

𝑑

)︁
. Thus, the probability

that 𝑣𝑡 is partitioned with no knowledge is the ratio of the number
of orderings in which all the neighbors come after 𝑣𝑡 to the total
number of possible orderings of 𝑣𝑡 ’s neighbors:

𝑃 =

(︁ |𝑉 |−𝑡
𝑑

)︁(︁ |𝑉 |−1
𝑑

)︁ =
(|𝑉 | − 1 − 𝑑)!(|𝑉 | − 𝑡)!
(|𝑉 | − 1)!(|𝑉 | − 𝑡 − 𝑑)! =

𝑡−1∏︂
𝑖=1

|𝑉 | − 𝑑 − 𝑖
|𝑉 | − 𝑖

As𝑑 decreases, the numerator increases, yielding higher probabil-
ity for low-degree vertices. Since |𝑉 | >> 𝑑 for low-degree vertices,
the fraction is close to 1, and 𝑃 can be high, even for large 𝑡 . □

Prioritized buffered streaming model. We take advantage of
our key finding by buffering vertices that have a degree lower than
a threshold, 𝐷𝑚𝑎𝑥 . We select 𝐷𝑚𝑎𝑥 such that the majority of edges
have at least one endpoint that has the opportunity to be buffered.

Algorithm 1: Cuttana’s First Phase with User-Defined
Buffer Score and Partitioning Score Functions
Data: Graph File: 𝐹 , Degree Threshold: 𝐷max,

Vertex Count: |𝑉 |, Queue Size:𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒
// The buffer is a priority queue

// Storing vertices in decreasing

// order of buffer score

1 𝑄 ← 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒 ()
2 for 𝑖 ← 1 to |𝑉 | do

// Reading a vertex and neighbors

3 𝑣, N(𝑣) ← 𝑟𝑒𝑎𝑑𝐿𝑖𝑛𝑒 (𝐹)
4 𝑣_𝑠𝑐𝑜𝑟𝑒 ← 𝑏𝑢𝑓 𝑓 𝑒𝑟𝑆𝑐𝑜𝑟𝑒 (𝑣,N(𝑣))
5 if |N (𝑣) | ≥ 𝐷max then

6 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑡𝑒𝑥 (𝑣,N(𝑣))
7 else

8 𝑄.𝑝𝑢𝑠ℎ({𝑣_𝑠𝑐𝑜𝑟𝑒, 𝑣,N(𝑣)})
9 if 𝑄.𝑠𝑖𝑧𝑒 () ==𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒 then
10 𝑡_𝑠𝑐𝑜𝑟𝑒, 𝑡, N(𝑡) ← 𝑄.𝑝𝑜𝑝 ()
11 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑡𝑒𝑥 (𝑡,N(𝑡))

12 while 𝑄.𝑠𝑖𝑧𝑒 () > 0 do
13 𝑡_𝑠𝑐𝑜𝑟𝑒, 𝑡, N(𝑡) ← 𝑄.𝑝𝑜𝑝 ()
14 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑡𝑒𝑥 (𝑡,N(𝑡))
15 function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑡𝑒𝑥(𝑣,N(𝑣))

// Finding best partition among the

// K partitions using

// partitioning score function.

16 V𝑏𝑒𝑠𝑡 = 𝑓 𝑖𝑛𝑑𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑣,N(𝑣))
17 V𝑏𝑒𝑠𝑡 = V𝑏𝑒𝑠𝑡 ∪ 𝑣
18 𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑠 (N (𝑣))

This property prematurely assigns high-degree vertices to attract
their neighbors into the same partition.

Algorithm 1 presents the pseudocode for Cuttana’s prioritized
buffered streaming model. The buffer, denoted by 𝑄 , is a priority
queue sorted in descending order of buffer score and has a capacity
of𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒 vertices. The buffer score is a user-defined function
designed to prevent premature assignments. Our buffer score func-
tion for 𝑣𝑡 is:

|N (𝑣𝑡) |
𝐷𝑚𝑎𝑥

+ 𝜃
∑︁
1≤𝑖≤K |N (𝑣𝑡) ∩ V𝑖 |

|N (𝑣𝑡) |
(6)

Once the buffer fills, we prioritize partitioning the vertex with
the highest buffer score. The rationale behind this buffer score is to
assign higher buffer scores (leading to earlier eviction/placement)
to vertices with more assigned neighbors, while simultaneously fa-
voring assigning high-degree vertices and delaying the assignment
of low-degree vertices (based on our key-finding).
𝜃 is a hyperparameter whose value indicates how much to favor

the number of assigned neighbors over the degree. By giving more
weight to the fraction of assigned neighbors, more vertices will
have a chance to be buffered. However, this means the vertices will

17

spend less time in the buffer and will be evicted with less informa-
tion about their neighborhood. When a vertex is evicted from the
buffer, it needs to be assigned to a partition. This assignment can
be done using the same partitioning score function used in existing
partitioners (Equation 5). In our implementation, we use the Fen-
nel [52] partitioning score function, with a minor adjustment to
achieve more edge-balanced partitions. To select the best partition
for vertex 𝑣𝑡 at time 𝑡 , we use:

argmax
1≤𝑖≤K

(|V𝑡
𝑖 ∩ N(𝑣𝑡) | − 𝛿 (|V

𝑡
𝑖 | + 𝜇

∑︂
𝑥∈V𝑡

𝑖

|N (𝑥) |)), (7)

where 𝛿 is the exact penalty function used by Fennel. However,
unlike Fennel, which considers only existing vertices in the par-
tition for the penalty (|V𝑡

𝑖
|), we adopt PowerLyra’s hybrid-cut

model [8], which incorporates the number of edges in the partition
(
∑︁
𝑥∈V𝑡

𝑖
|N (𝑥) |) into the penalty function. Given that the number

of edges exceeds the number of vertices, 𝜇 is the ratio of vertices to
edges, normalizing their sum to ensure balanced growth of both
vertices and edges within partitions during streaming.

After a vertex is assigned to a partition, we increase the scores of
its buffered neighbors, since they have a newly assigned neighbor.
This score update helps us prioritize partitioning vertices with more
assigned neighbors, rather than partitioning vertices based on the
random order in which they appear in the stream. We also perform
a check: if all the neighbors of a vertex are assigned, we evict that
vertex, a step omitted in Algorithm 1 for simplicity.

Space and time complexity. In the implementation, the buffer
maintains a pair of the score and the vertex ID of each buffered
vertex. We store neighbors of buffered vertices in a separate un-
ordered map to avoid inserting/deleting the neighbor list to/from
buffer after each single score update. Once a vertex is evicted from
the buffer, we remove the map entry. In phase 1, the worst-case
space overhead is 𝑂 (𝑉) for storing a partition ID for each vertex
and𝑂 (𝐷𝑚𝑎𝑥 ×𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒) for at most𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒 buffered vertices,
each of which can have at most𝐷𝑚𝑎𝑥 neighbors. To measure the ini-
tial buffer score for a vertex, we iterate through all its neighbors and
check if they are assigned, which is𝑂 (𝑉 +𝐸) in total. For measuring
the partitioning score, we added an optimization to Fennel. In par-
titioning each vertex, we first store the initial scores (balance penal-
ties) for all K partitions in a heap, based on their current size. We
iterate the neighbors, and after each assigned neighbor, we increase
the score of the corresponding partition in the heap. At the end, we
select the partition with the greatest score in the heap. With this
optimization, the cost of measuring the partitioning score becomes
𝑂 (|𝑉 | + |𝐸 | log(𝐾)) rather than the 𝑂 (𝐾 |𝑉 | + |𝐸 |) in the original
implementation [1, 52]. This optimization is particularly important
for sub-partitioning, which we describe in Section 3.2. Finally, after
assigning each vertex, we update the score of its buffered neighbors.
Worst case, we update the score for all of its neighbors. In total, for
all vertices, this step is𝑂 (|𝑉 | + |𝐸 | log(𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒)). So, the overall
phase 1 time complexity is𝑂 (|𝑉 | + |𝐸 | log(𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒) + |𝐸 | log(𝐾)).

3.2 Phase 2: Quality Refinement

Definition 3.2 (Trade & Maximality). We call a pair of vertex and
partition index, ⟨𝑣, 𝑏⟩ (𝑣 ∈ 𝑉 and 1 ≤ 𝑏 ≤ K), a trade if, after
moving 𝑣 from its current partition to 𝑉𝑏 , the total partitioning

quality increases and the balance condition is maintained. If there
exists no trade for a partitioning, we call the partitioning maximal.

The quality of the streaming output is not maximal. After
partitioning a graph using a streaming partitioner, it is possible to
apply trades to improve the partitioning quality, because, in prac-
tice, the balance is relaxed (𝜖 > 0), and the streaming partitioner,
even with buffering, places many vertices based only on partial
information. However, when applying trades, we have a more com-
plete view of the graph. We now present our scalable refinement
algorithm to enhance the partitioning produced in Phase 1 using
these trades.

Challenges of finding trades and sub-partitioning. Finding
and applying trades requires keeping track of vertex neighborhoods.
While this is possible for small graphs, it is not scalable to large
graphs. To solve this problem, we coarsen the graph into a sum-
marized version with a substantially reduced number of vertices
and edges. Each coarsened vertex consists of a subset of the orig-
inal vertices from the same partition. The coarsened vertices are
connected with edges that are weighted according to the number
of edges between their members (vertices in the original graph).
We call this process sub-partitioning and the coarsened vertices
sub-partitions.

Definition 3.3 (Sub-Partitioning). Assuming K′ ∈ N, equally-
sized disjoint sets S1,S2, . . . ,SK′ are a sub-partitioning ofV1,V2,
. . . ,VK , if

⋃︁
1≤𝑖≤K′ S𝑖 = 𝑉 , and for all S𝑖 there exists only one

V𝑗 such that S𝑖 ⊂ V𝑗 and K′ is the total number of sub-partitions.

Definition 3.4 (Sub-Partition Graph). A sub-partition graph con-
sists of sub-partitions S1,S2, . . . ,SK′ as its vertices and the edge
between S𝑖 ,S𝑗 is a weighted edge denoted by:

W(S𝑖 ,S𝑗) =
|︁|︁{⟨𝑢, 𝑣⟩ ∈ 𝐸 |𝑢 ∈ S𝑖 ∧ 𝑣 ∈ S𝑗 }|︁|︁

.

Refinement as trades on the sub-partition graph. The sub-
partitions can be moved between partitions via trades. Moving
a sub-partition involves relocating all of its members to another
partition. The goal is to reduce the edge cuts, realized as a reduction
of the sum of weights of the edges between sub-partitions from
different partitions. We present a scalable algorithm designed to
find and apply all trades in the sub-partition graph to improve the
overall quality.

Coarsening and assigning sub-partitions is another parti-

tioning problem. The vertices comprising a sub-partition always
remain together after each trade. Our goal is to maximize the num-
ber of internal edges within a sub-partition, thereby reducing the
total edges between sub-partitions. Additionally, we want to control
the size of the sub-partitions and avoid skewed sizes, as such imbal-
ances complicate maintaining the balance condition during trades.
This problem mirrors the original graph partitioning problem, and
we approach it similarly. We assume a constant number of subpar-
titions (K′K) in each partition. During Phase 1, when a vertex is
placed in a partition, it is also assigned to a sub-partition within the
selected partition. Cuttana’s Phase 1 can be implemented using
any partitioning algorithm. By uniformly assigning sub-partitions
to partitions, we ensure that, by the end of streaming, we have

18

7
8

9

1

2 3

4

56 7

8

10

9
6 4

2 5

7
8

3

1

6

5
4

2
3 1

10

1 1 1
2

3Input Graph

A. B. C.

Edge-Cut (external)

Edge (internal)

Vertex

Partition Sub-Partition

D.

10

9
1

1

7

8

3

6

5
4

2 10

9

Moving to reduces edge-cut.

Final output with

better partiti
oning quality.

Initial Partitioning. Assigning vertices to sub-partitions.

The sub-partition graph
after moving

E.

2

1

1

1

1
1

3
1

Figure 4: Partitioning of a graph and applying sub-partitioning and refinement with 𝜖 = 0.2 balance condition and K′ = 5.

an initial state for refinement that is as good as the result of K-
way partitioning of the streaming algorithm used in the first phase.
Hence, any streaming partitioner guarantees better results after
refinement. Additionally, we solve a smaller partitioning problem
by having𝑂 (K′K) choices for each vertex instead of𝑂 (K′). We use
the scoring function described in Equation 7 to assign vertices to
sub-partitions but with different hyperparameters.

Refinement Algorithm. Although we coarsen the graph, the
scalability and efficiency of the refinement algorithm determine
how large we can make K′. Finer-grained sub-partitions (larger
K′) produce better and more precise refinements. Our refinement
algorithm is a greedy iterative algorithm that, in each step, applies
the trade that produces the greatest quality improvement. The algo-
rithm stops when no further trade is possible, and the partitioning
is maximal. In each iteration, we consider all pairs of partitions and
find the best subpartition trade among them. To implement this
algorithm efficiently, we define and use data structures that we can
calculate once in Phase 1 and update efficiently during Phase 2.

Let P′ (S𝑖) represent the index of the partition containing S𝑖 .
Let 𝐸𝐶𝑃 (edge cut per partition) be a data structure holding the
number of edge cuts produced by placing a particular sub-partition
in a partition. Hence, 𝐸𝐶𝑃S𝑖 ,V𝑑𝑒𝑠𝑡

is the sum of all the edge weights
between S𝑖 and the sub-partitions that are not in partitionV𝑑𝑒𝑠𝑡 :

𝐸𝐶𝑃S𝑖 ,V𝑑𝑒𝑠𝑡
=

∑︂
1≤ 𝑗≤K′

W(S𝑖 ,S𝑗) [P′ (S𝑗) ≠ 𝑑𝑒𝑠𝑡] (8)

Next, define 𝐷𝐸𝐶S𝑖 ,V𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡
as the decrease in edge-cut pro-

duced by moving S𝑖 fromV𝑠𝑟𝑐 toV𝑑𝑒𝑠𝑡 , where 𝑠𝑟𝑐 = P′ (S𝑖) and
all other subpartition assignments are unchanged. When this value
is negative, moving S𝑖 toV𝑑𝑒𝑠𝑡 increases the edge-cut and worsens
quality. The value of 𝐷𝐸𝐶 can be computed as:

𝐷𝐸𝐶S𝑖 ,V𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡
= 𝐸𝐶𝑃S𝑖 ,V𝑠𝑟𝑐

− 𝐸𝐶𝑃S𝑖 ,V𝑑𝑒𝑠𝑡
. (9)

We store all 𝐷𝐸𝐶 values in the move-score structure (𝑀𝑆). Each
𝑀𝑆V𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡

stores all 𝐷𝐸𝐶S𝑖 ,V𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡
. To find the best trade,

we iterate through all possible partition pairs (V𝑖 ,V𝑗) and query
𝑀𝑆V𝑖 ,V𝑗

to determine the best trade (largest 𝐷𝐸𝐶) assuming the
source partition isV𝑖 and the destination isV𝑗 . Thus, we iterate
over a total of 𝑂 (K2) move-score sets. To maintain the balance

condition, we keep track of the size of each partition. If, at any
move, the destination partition reaches capacity, we exclude this
move from the set of possible moves.

Lemma 3.5. The size of𝑀𝑆V𝑖 ,V𝑗
and the number of sub-partitions

in a partition at any point of refinement is 𝑂 (K′K).

Proof. By the definition of trade, we always maintain the bal-
ance condition, and since sub-partitions are equal-sized, a partition
can have at most (1 + 𝜖) K′K subpartitions. The number of sub-
partitions in a partition is𝑂 (K′K), because 𝜖 is a small constant. Also,
the size of 𝑀𝑆V𝑖 ,V𝑗

is bounded by the number of sub-partitions
currently inV𝑖 . □

The size of each move-score set is 𝑂 (K′K) (Lemma 3.5). We im-
plement each move-score set as a Segment Tree [9], which means
we can find the maximum value of a set in 𝑂 (1) and update it in
𝑂 (𝑙𝑜𝑔(K′K)). Updating is implemented by deleting the 𝐷𝐸𝐶 value
and inserting a new value.

Updating Variables After a Trade. The main challenge in
the refinement is efficiently updating 𝑀𝑆 . Moving 𝑆𝑥 from V𝑠𝑟𝑐
toV𝑑𝑒𝑠𝑡 involves updating the 𝐸𝐶𝑃 values and changing the 𝐷𝐸𝐶
values stored in𝑀𝑆 . We need to update 𝐸𝐶𝑃 only for neighboring
vertices of S𝑥 . For any neighbor S𝑖 ∈ N (𝑆𝑥), we perform:

𝐸𝐶𝑃S𝑖 ,V𝑠𝑟𝑐
= 𝐸𝐶𝑃S𝑖 ,V𝑠𝑟𝑐

+W(S𝑖 ,S𝑥)
𝐸𝐶𝑃S𝑖 ,V𝑑𝑒𝑠𝑡

= 𝐸𝐶𝑃S𝑖 ,V𝑑𝑒𝑠𝑡
−W(S𝑖 ,S𝑥)

(10)

In the worst case, S𝑥 can be neighbors to all other sub-partitions,
making this step 𝑂 (K′). Updating 𝐷𝐸𝐶S𝑖 ,P′ (S𝑖),V𝑗

naively can
result in 𝑂 (K′K) updates. Changing each entry in the move-score
set is 𝑂 (𝑙𝑜𝑔(K′K)), so the naive approach is 𝑂 (K′K log(K′K)) in
total, because the moved sub-partition can have 𝑂 (K′) neighbors,
and those neighbors can go from their partitions to 𝑂 (K) other
partitions. However, it can be done in𝑂 (K′ log(K′K)) by exploiting
the following theorem.

Theorem 3.6. After applying each trade, we require updating only
𝑂 (K′) entries in the move-score sets.

Proof. After moving S𝑥 , we categorize its neighbours S𝑖 ∈
N (S𝑥) into two cases:

19

Main Thread
(Read file, Find

partition)
Sub-Partition

Finders
Sub-Partition Graph

Builders
Buffer

Manager

...... Sub-Partition,
Partition

Buffer Command
(add/update/...)

Vertex,
Partition

Figure 5: Parallel model of Cuttana execution.

(1) P′ (S𝑖) ∈ {𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡}: In this case, for all of the partitions
V𝑗 , we have to update𝐷𝐸𝐶S𝑖 ,P′ (S𝑖),V𝑗

. However, because
we have𝑂 (K′K) sub-partitions in bothV𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡 (Lemma
3.5), updating𝐷𝐸𝐶S𝑖 ,P′ (S𝑖),V𝑗

, even for all of the partitions
V𝑗 , is 𝑂 (K . K

′

K) or 𝑂 (K
′).

(2) P′ (S𝑖) ∉ {𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡}: In this case, if the neighbor is in nei-
ther the source nor destination partitions, we need to only
update 𝐷𝐸𝐶S𝑖 ,P′ (S𝑖),V𝑗

where V𝑗 ∈ {V𝑠𝑟𝑐 ,V𝑑𝑒𝑠𝑡 }, be-
cause the number of edges from S𝑖 to the sub-partitions in
other partitions are unchanged. Since the number of neigh-
bors is bounded by the number of sub-partitions, we also
have to perform 𝑂 (K′) updates, but this time only for two
target partitions.

□

Finally, we have to update𝐷𝐸𝐶 variables and move-score sets for
S𝑥 . For all partitionsV𝑗 , we have to remove all of 𝐷𝐸𝐶S𝑥 ,V𝑠𝑟𝑐 ,V𝑗

from 𝑀𝑆V𝑠𝑟𝑐 ,V𝑗
and add all 𝐷𝐸𝐶S𝑥 ,V𝑑𝑒𝑠𝑡 ,V𝑗

to 𝑀𝑆V𝑑𝑒𝑠𝑡 ,V𝑗
, since

S𝑥 changed its partition. In summary, we find the best move for
each iteration in𝑂 (K2) and update all variables in𝑂 (K′ log(K′K)).
The number of refinement steps is finite, as we decrease edge cut
in each step, and edge-cut is finite. The algorithm stops at the
maximal partitioning when there is no move left. However, due
to the coarse granularity of sub-partitions and weighted edges, in
practice, the improvements are also coarse-grained. It is possible
to stop the refinement process early when the best move improves
edge-cut by less than a threshold (𝑇ℎ𝑟𝑒𝑠ℎ). This early stop provides
a time/quality trade-off, and the threshold produces a worst-case
bound for the number of steps of |𝐸 |

𝑇ℎ𝑟𝑒𝑠ℎ
, since the upper bound for

edge-cuts is |𝐸 |, and each step improves at least 𝑇ℎ𝑟𝑒𝑠ℎ edge-cuts.

3.3 Parallel Partitioning and Implementation

Parallelization. Existing streaming partitioners use only a single
thread. This underutilizes resources in modern multicore comput-
ers. We leverage the unused cores to parallelize Cuttana, thereby
reducing the overhead introduced by buffering and refinement.
Our approach involves dividing the computational load in such a
way that different threads do not write to shared variables, thus
avoiding the need for locking. Thread communication is facilitated
using hardware-optimized lock-free queues [32, 54]. At a high level,
Phase 1 runs in parallel, partitioning, sub-partitioning, and building
the data structures for refinement; Phase 2 simply applies trades.

The primary thread reads the file, selects vertices for buffering,
and partitions them after eviction from the buffer. Once a vertex
is assigned to a partition, other threads are notified to determine

the sub-partition of that vertex and update variables for refine-
ment (Figure 5). Additionally, we have a buffer manager thread
that pushes/pops the buffer based on main-thread commands and
applies changes to the buffer score whenever a new vertex has
been partitioned. Threads of the same kind (i.e., subpartition find-
ers) shard the shared variables based on a key (e.g., vertex ids,
sub-partition id).

4 EXPERIMENTAL ANALYSIS

Our experimental analysis answers the following research ques-
tions.

• RQ1:How does Cuttana partition quality compare to that
of existing approaches?

• RQ2:Given that existing vertex partitioners impose a vertex-
balance constraint, how much edge imbalance do they pro-
duce? How does the partition quality change if they adopt
an edge-balance constraint?

• RQ3: How much do buffering and refinement affect parti-
tion quality?

• RQ4: How does Cuttana partitioning affect the perfor-
mance of Distributed Graph Analytics?

• RQ5: How does Cuttana partitioning affect the perfor-
mance of a Distributed Graph Database?

Datasets. Table 1 shows the characteristics of datasets used in
our study. We selected graphs of different sizes and domains to rep-
resent various use cases. The web graphs are hyperlink networks
where vertices are webpages and the edges are links. In social net-
works, the vertices are users and the edges are follow/friend relation-
ships. All of the datasets were obtained from the Konect network
repository [29] except for the LDBC social network benchmark,
which we obtained using the LDBC generator [10], the US-Roads
dataset [53], and the RMAT synthetic dataset which we generated
using ParMAT [26]. We used real-world natural graphs, including
both big and small graphs, to analyze the quality of partitioning
for different algorithms. We used large graphs, both real-world and
synthetic, for distributed graph analytics, and finally, we used the
LDBC benchmark for our graph database evaluation.

Baselines. We compare Cuttana to three other streamining
partitioners: Fennel [52], Ldg [50], and HeiStream [14]. Fennel
and Ldg are score-based streaming vertex partitioners. Fennel is
the best baseline to show the benefits of buffering and refinement,
since Cuttana is implemented on top of Fennel and uses the
same scoring function.HeiStream is recent work that has the same
motivation as Cuttana, i.e., bridging the gap between streaming
and in-memory solutions in quality and scalability. HeiStream
reads and assigns vertices in batches and claims to beat Fennel
[14]. We used the implementation of Fennel and Ldg provided
by Pacaci and Ozsu [43], since the official code is not available,
and we obtained HeiStream from the authors. In graph analytic
benchmarks, where it’s possible to use edge-partitioners [43], we
also compare Cuttana to Hdrf [45] and Ginger [8].

Experimental Setup and Reproducibility. We conducted
all our experiments, including partitioning, analytics, and graph
database benchmarks, on a private cluster of 16 machines, each
equipped with an 8-core Intel® Xeon® Silver 4309Y Processor and
64 GB of RAM. Unless otherwise specified, we ran Cuttana with

20

4 8 16 32 64
0

20

40

60

80
twitter

4 8 16 32 64

uk07

4 8 16 32 64

orkut

4 8 16 32 64

uk02

E
d

g
e
-C

u
t

(λ
ec

%
)

Vertex-Balance Condition (ε = 0.05)

Cuttana Ldg Fennel HeiStream

4 8 16 32 64
0

20

40

60

80

twitter

4 8 16 32 64

uk07

4 8 16 32 64

orkut

4 8 16 32 64

uk02

Number of Partitions (K)

E
d

g
e
-C

u
t

(λ
ec

%
)

Edge-Balance Condition (ε = 0.1)

Figure 6: The partitioning quality of Cuttana excels consistently across varying numbers of partitions.

Table 1: Graph datasets used in the evaluation.

Name
(Domain)

Edges
Vertices

Degree Distribution
(Avg./Max. Degree)

US-Roads
(Road)

28M
23M

Low Degree
(2.4,18)

Orkut
(Social)

117M
3M

Power Law
(76,33K)

UK domains - 2002
(Web)

261M
18M

Power Law
(28,195K)

LDBC-SNB-SF1000
(Social)

490M
3M

Heavy Tailed
(248,3K)

RMAT Large
(Synthetic)

1B
10M

Power Law
(200,236K)

Twitter
(Social)

1.4B
41M

Power Law
(70,3M)

UK domains - 2007
(Web)

3.3B
105M

Power Law
(62,975K)

𝐷max = 1000, 𝑚𝑎𝑥_𝑞𝑠𝑖𝑧𝑒 = 106 vertices (consuming at most 4
GB of DRAM) and determined the number of sub-partitions such
that K′K = 4096 for all datasets except Twitter on which we set
𝐷max = 100 and determined the number of sub-partitions such
that K′K = 256. The code for Cuttana and the framework for
the application study (analytics, databases) are publicly available.
We conducted the application study based on the benchmarking
framework provided by Pacaci and Ozsu [43], making minor modifi-
cations to update deprecated packages, add support for HeiStream

and Cuttana, and add some additional features. The partitioning
process is deterministic as we fixed the random seed used for tie-
breaking among partitions with the same score. We also disabled
the buffer-manager thread. The use of a buffer-management thread
introduces scheduling randomness, which we disable by offloading
the task to the main thread to ensure reproducibility. We used the
baselines with default hyperparameters.

4.1 Quality Metrics Analysis

Improving Edge-cut and Communication Volume.We address
RQ1 by partitioning datasets under both edge/vertex-balance con-
straints using all baseline algorithms. We measure the communi-
cation volume and edge-cut as indicators of network overhead
in distributed applications with/without message aggregation, re-
spectively. Table 2 shows that Cuttana produces better quality
partitions, relative to Fennel, in nearly all scenarios. The benefit
is most pronounced for the largest graphs (twitter and uk07) in
edge-balance mode, suggesting that it is possible to effectively par-
tition massive graphs that cannot be partitioned by in-memory
partitioners. Since the reported metrics are normalized, their rela-
tive difference

(︂
|𝜆1−𝜆2 |

max(𝜆1,𝜆2)

)︂
is an underestimate of the reduction in

network overhead.
Cuttana consistently improves partitioning quality from 6%

to 59%. This improvement reflects network overhead, which is
the dominant overhead in distributed graph processing, so we
anticipate a more significant improvement in end-to-end appli-
cation latency as well. In large graphs such as Twitter and UK07,
Cuttana produces better partitioning quality than HeiStream
by up to 19% and 93%, respectively. However, in the US-Roads
datasets, HeiStream produces better partition quality than Cut-
tana. Heistream’s authors told us that the algorithm is sensitive
to ordering and performs best when each batch consists of vertices

21

Table 2: Analysis of Partitioning Quality on eight partitions (K = 8). The boldfaced numbers shaded blue indicate the best result

for each graph and balance condition. The Improv. column shows the improvement of Cuttana over Fennel.

Quality
Metric Dataset

Edge-Balance Condition (EB) (𝜖 = 0.10) Vertex-Balance Condition (VB) (𝜖 = 0.05) Improv.
Cuttana Fennel HeiStream Ldg Cuttana Fennel HeiStream Ldg EB VB

edge-cut
𝜆𝐸𝐶
(%)

usroad 27.93 31.22 16.84 30.06 22.5 31.15 10.48 30.05 11% 28%
orkut 39.3 50.33 55.22 57.43 32.33 43.31 42.15 53.11 22% 26%
uk02 3.03 3.91 17.7 14.53 3.26 7.12 10.05 16.3 23% 55%
twitter 64.21 68.39 64.67 73.04 34.09 37.80 45.62 55.9 6% 10%
uk07 1.64 2.73 21.9 11.71 1.4 3.35 6.65 12.11 40% 59%

communication
volume
𝜆𝐶𝑉
(%)

usroad 7.93 9.06 4.41 8.68 6.09 9.04 2.97 8.68 13% 33%
orkut 44.82 63.83 65.48 63.42 44.09 55.95 48.43 61.01 30% 22%
uk02 4.25 5.45 6.74 6.74 4.68 5.63 3.78 6.78 22% 17%
twitter 40.91 43.72 50.23 46.77 41.3 47.04 44.04 47.39 6% 13%
uk07 4.5 7.21 8.98 6.12 3.88 5.29 3.99 6.01 38% 27%

from the same neighborhood with many edges among them. The
size and original ordering of US-Roads are ideal for HeiStream. On
the other hand, Cuttana’s buffering is robust to input order; the
only case in which Cuttana does not provide the lowest edge-cut
(communication volume) is when the original input order happens
to be ideal for HeiStream. Figure 6 shows partition quality as a
function of the number of partitions. While Fennel andHeiStream
outperform each other depending on the dataset and balance con-
dition, Cuttana outperforms both.

TheCase for Edge-Balance usingVertex Partitioners. Pacaci
and Ozsu [43] uncovered two key properties of state-of-the-art ver-
tex partitioners. They demonstrated that both Fennel and Ldg
exhibit lower network overhead than edge partitioners, but they
suffer from significant worker imbalance, rendering them less com-
pelling. In some scenarios, random partitioning produced better
application performance due to its superior load balancing. We
determined that the root cause lies in using a vertex-oriented bal-
ance constraint. Balancing the number of vertices in a partition
does not necessarily balance the number of edges. However, edge-
balance is crucial from a computational load-balancing perspective,
because almost all graph algorithms iterate over edges. In other
words, the number of edges in a partition determines the work-
load on each participant in a distributed computation, and edge
imbalance leads to stragglers. Edge balance is more critical than
vertex balance since the number of edges dominates the number of
vertices. Moreover, the balanced assignment of edges is crucial in
memory-constrained scenarios. When the number of edges in each
partition varies, we must either over-provision memory (which is
expensive) or suffer the consequences that some workers will be
computing on out-of-memory data, thus exacerbating the delay
that stragglers impose.

We demonstrate this issue in Figure 7. We use all the baselines
and modify Cuttana to use a vertex-balance constraint instead
of its preferred edge-balance constraint. We set 𝜖 = 0.05 and show
the ratio of the maximum number of edges in any partition to
the average number of edges across all partitions. Although the

vertices are balanced among the partitions, the edges are hugely im-
balanced. This suggests that, regardless of the partitioning scheme
and dataset, using the vertex-balance condition, which is prevalent
in the literature[1, 3, 14, 50, 52], yields partitions with too many
edges, leading to stragglers when computing in parallel. For exam-
ple, on Twitter, using all of the partitioners in vertex balance mode
causes one worker machine to have at least 4x more load than other
machines. Overweight partitions also risk producing more network
overhead. Cuttana offers the user both vertex and edge balance
options.HeiStreamwas originally implemented for vertex-balance,
but the authors added the edge-balance feature upon our request.
We added edge-balance support to Fennel and Ldg using the same
approach as that used in Cuttana.

The answer to RQ2 can also be found in Figures 6 and 7 and
Table 2, which show that 1) satisfying edge balance makes edge
cut worse, and 2) vertex-balance produces significant edge imbal-
ance (as discussed above). However, Cuttana produces the best
partition quality when satisfying either balance constraint. In the
rest of our evaluation, we use Cuttana’s edge-balance mode and
the original baseline implementations. Experimentally, especially
for communication volume and on graphs other than Twitter, the
additional overhead of quality difference introduced by satisfying
edge-balance was amortized in execution time by having more even
computation and network overhead distribution.

Ablation Study & Partitioning Latency. We analyzed the
isolated contributions of the two main components of Cuttana, as
shown in Table 3, to answerRQ3. Generally, buffering was the main
contributor to quality improvement. The relative improvement of
refinement was higher when there was no buffering and the initial
partitioning had lower quality. We also demonstrate the benefit of
prioritizing low-degree vertices by removing degree constraints and
biases in the first phase (Cuttana without Refine & Degree Bias in
Table 3). The results for this mode were slightly better than Fennel,
as we consider assigned neighbors, but compared to prioritizing
low-degree vertices, the results were considerably worse since the
motivations mentioned in Section 3.1 no longer hold.

22

orkut uk02 uk07 twitter

1.00

1.25
1.50
1.75
2.00

4.00

8.00

16.00 Cuttana Fennel Ldg HeiStream

Datasets

E
d

g
e

Im
b

a
la

n
ce

Figure 7: Baselines partitioners and Cuttana when using a vertex-

balance condition (which is not Cuttana’s default) can lead to un-

controlled edge-imbalance and uneven load distribution.

Table 3: Contribution of different components of Cuttana

to the final partitioning quality (K = 16). The numbers rep-

resent the normalized edge-cut (𝜆𝐸𝐶), and the percentages

indicate the improvement over Fennel.

Algorithm Orkut Twitter UK07 UK02

Cuttana
38.3
(25%)

44.1
(11%)

1.5
(52%)

2.7
(66%)

Cuttana w/o Refine
40.7
(20%)

47
(6%)

1.7
(45%)

4.9
(38%)

Cuttana w/o Refine &
Degree Bias

49.4
(3%)

48.1
(3%)

2.9
(6%)

6.6
(16%)

Cuttana w/o Buffer
45.9
(10%)

48.2
(3%)

2
(35%)

6.2
(22%)

Cuttana w/o Buffer &
Refinement (Fennel)

51 49.8 3.1 7.9

Figure 8 compares Cuttana’s memory consumption and parti-
tioning time to the baselines. The memory overhead is high relative
to Fennel and Ldg; however, this is not a cause for concern as the
overhead is independent of graph size and consumes only a small
fraction of the main memory available on today’s commodity com-
puters. Cuttana has a small additional time overhead compared to
Fennel and is nearly twice as fast as HeiStream for large graphs.
In Table 4, we demonstrate that we more than compensate for Cut-
tana’s time overhead, relative to Fennel, by running analytic tasks
much more quickly.

Figure 9 highlights the tradeoffs that a user can make when
configuring Cuttana. Both partitioning time and memory con-
sumption are governed by the selection of the buffer size, |𝑄 |, and
the number of subpartitions, 𝐾 ′. Cuttana performs more work
than Fennel due to buffering, updating buffer scores, selecting
sub-partitions, and updating the data structures we use to optimize
refinement. Using lock-free queues, we assign these tasks to a back-
ground thread. This reduces the overhead of enqueuing requests,
draining the buffer at the end of streaming, and refinement.

Large buffer sizes and numbers of sub-partitions can cause the
background thread to fall behind the main thread. If the queues

uk07 twitter

1

10

M
em

or
y

O
ve

rh
ea

d
(G

B
)

uk07 twitter0

100

200

300

400

500

P
ar

ti
ti

on
in

g
T

im
e

(s
)

Cuttana Fennel Ldg HeiStream Cuttana-S

Figure 8: Memory overhead (log-scale) and time efficiency of Cut-

tana compared to baselines and single-thread implementation

(Cuttana-S)

102 104 106 107

Buffer Size (|Q|)
25

6
10

24
40

96
16

38
4

S
u

b
p

a
rt

it
io

n
s

P
e
r

P
a
rt

it
io

n
(K
′ K
)

220 224 246 372

216 227 259 384

220 225 249 385

266 267 294 442

Partitioning Time (s)

250

300

350

400

102 104 106 107

Buffer Size (|Q|)

25
6

10
24

40
96

16
38

4
S

u
b

p
a
rt

it
io

n
s

P
e
r

P
a
rt

it
io

n
(K
′ K
)

2.39 1.57 1.49 1.30

2.37 1.55 1.44 1.26

2.28 1.52 1.40 1.23

2.14 1.42 1.26 1.13

Partitioning Quality (edge-cut)

1.2

1.4

1.6

1.8

2.0

2.2

Figure 9: Impact of Buffer Size on Time and Quality for uk07

twitter orkut uk02 uk070

20

40

λ
E
C

Dmax

1

10

100

1000

10000

twitter orkut uk02 uk070

10

20

30
θ

1

2

10

100

1000

Figure 10: Effect of 𝐷𝑚𝑎𝑥 and 𝜃 on Partitioning Quality

fill, then the main thread blocks. Cuttana maintains competitive
performance up to 4096 sub-partitions and 106 vertices in the buffer.
We use these as the default values. While selecting larger param-
eters can yield higher quality partitions, it should be undertaken
cognizant of the impact on partitioning time. Figure 10 shows the
effects of the buffering threshold, 𝐷𝑚𝑎𝑥 , and the score function
scale parameter, 𝜃 . It is important to set 𝐷𝑚𝑎𝑥 such that the major-
ity of edges have at least one endpoint that can be buffered. For a
real-world power-law graph, this value is approximately 100 and is
an attribute of the graph’s degree distribution, independent of its
size. Figure 10 shows values of 𝐷𝑚𝑎𝑥 greater than 100 produce only
minor changes, since the fraction of vertices that can be buffered
does not change considerably (see Figure 3). However, increasing
𝐷𝑚𝑎𝑥 increases the memory/time overhead of buffering, or for fixed
memory, it reduces the number of vertices that can be buffered.
Therefore, we suggest setting 𝐷𝑚𝑎𝑥 between 100 and 1000. 𝜃 is a
hyperparameter for our algorithm, and the optimal value varies per
dataset. However, we used a fixed value in all other experiments to
ensure that the default setting can still outperform baselines.

23

Table 4: The latency, in seconds, of PageRank (PR), Connected Components (CC), and Single Source Shortest Path (SSSP)

workloads using different partitioners. The boldfaced numbers shaded blue indicate the best result for each workload.

Dataset/
Algorithm

Partitioning Scheme Performance over the
best Vertex Partitioner

Performance over
the best PartitionerCuttana Fennel Ldg HeiStream Hdrf Ginger

twitter
PR 168 813 811 488 413 492 66% 59%
CC 33 76 80 81 70 108 57% 53%
SSSP 42 176 202 117 81 77 64% 45%

uk07
PR 141 293 336 193 1227 1269 27% 27%
CC 63 86 96 84 419 548 25% 25%
SSSP 49 61 63 54 181 147 9% 9%

rMat-XL
PR 144 514 576 376 205 430 61% 29%
CC 61 93 112 86 74 82 29% 25%
SSSP 53 89 97 65 59 81 18% 10%

4.2 Application Study

We conduct case studies focusing on distributed graph analytics
and graph databases to investigate how enhancements in quality
metrics impact the performance metrics of these applications (e.g.,
throughput and execution time). We develop our application study
framework on top of the benchmarking framework provided by
Pacaci and Ozsu [43]. We report performance metrics, but due to
space constraints, we refer the reader to the original work for more
information about the specifications [43].

Distributed Graph Analytics. Table 4 shows the results of
running three different algorithms on a Powerlyra cluster with
16 machines [8] to assess the performance of various partitioning
schemes on graph analytics to answer RQ4. We ran PageRank for
30 iterations, connected components until we found all connected
components, and single-source shortest path from a random ver-
tex. We report the average latency of three runs. In practice, an
algorithm can be executed multiple times (e.g., finding the shortest
path from multiple sources in graphs with millions of vertices),
which further increases the total latency improvement by using
Cuttana. We show results for only the three largest graphs since
small graphs can be processed more efficiently on a single machine
than on multiple machines, because the network overhead intro-
duced by adding a machine is not amortized by the parallelization
achieved [40].

In social network graphs, vertex partitioners other than Cut-
tana, suffer from significant load imbalance, overshadowing any
advantages in network usage. This aligns with findings reported
by Pacaci and Ozsu [43]. We illustrate the reason for this imbal-
ance in Figure 7. We used the edge-balance version of Cuttana
and the original implementation of other baselines. In web graphs,
the worker imbalance was less pronounced, and vertex partition-
ers with better network overhead outperformed edge partitioners
due to different message-passing protocols and low replication of
low-degree vertices [43]. More performance metrics are in Figure
2. Among all algorithms, we observed the greatest performance
improvement in PageRank. In this algorithm, most vertices are
active in all iterations, stressing the system’s network. Cuttana,

Table 5: Partitioning Metrics and Performance (throughput

in the unit of query per second) of one-hop and two-hop

neighborhood retrieval on LDBC social network benchmark.

Metric Cuttana Fennel HeiStream Ldg

Edge-cut 37.49 47.72 53.26 74.22
Edge-imbalance 1.09 1.13 1.8 1.89
Vertex-imbalance 1.03 1.00 1.05 1.05

one-hop (q/s) 2776 2595 2381 1998
two-hop (q/s) 232 189 164 131

which both balances edges like edge partitioners do and exploits
the lower network overhead of vertex partitioners, provides a “best-
of-both-worlds” choice. Cuttana achieves our goal of producing
sufficiently high-quality partitioning for large graphs that it im-
proves runtime performance in analytical workloads.

Distributed Graph Database. We conducted the LDBC social
network benchmark [10] on a JanusGraph cluster of 4 machines
with 24 concurrent client threads, using Cassandra as the backend
storage engine. Our goal is to observe how improvements in edge-
cut and edge imbalance can translate into improved throughput in a
distributed graph database, addressing RQ5. The queries and graph
were generated by the LDBC generator. The improvement in graph
databases is smaller than in analytics, because existing partitioners
produce less edge imbalance on the LDBC-generated graph than
we observed on other graphs, e.g., Twitter. Additionally, LDBC one-
hop and two-hop queries limit the number of returned neighbors,
which we believe puts the system under less stress, and many
queries can be answered locally, although there exist neighbors in
other partitions (machines). We observed a 23% improvement in the
throughput of two-hop queries and a 7% improvement for one-hop
queries, without a major difference in tail latency.

24

5 RELATEDWORK

Distributed graph analytics has gained significant attention [7, 8,
11, 18, 19, 22, 31, 56, 60] since the introduction of Pregel [33]. Many
partitioning strategies have been proposed to reduce network over-
head and address load imbalance [3, 8, 28, 37, 45, 46, 50, 52, 58],
since partitioning plays a crucial role in application latency [43].
Most of the recent advances in graph partitioning are in edge par-
titioning, which is unsurprising, since edge partitioners produce
better edge balance than do vertex partitioners, and edge balance
leads to even load distribution. Cuttana takes a different approach
and imposes an edge-balance condition while partitioning by vertex.
Hdrf [45] and Ginger [8] are two popular partitioners that reduce
vertex replication and exhibit the best performance on large graphs
[43]. Clugp [28] and Hpcd [46] are more recent edge-partitioners.
Clugp provides a fast restreaming partitioning solution, whileHpcd
transforms the problem into a combinatorial design problem.

However, some systems require vertex-partitioning [14, 43], and
themessage-passing protocol of the system changeswhen the graph
is vertex-partitioned [43]. Stanton et al. analyzed multiple scoring
functions for streaming vertex partitioners and proposed Ldg [50].
Later, Fennel [52] introduced a new scoring function with the same
greedy, score-based model that outperformed Ldg and remained
state-of-the-art for an extended period. HeiStream [14] and Spnl
[58] are recent streaming partitioners whose evaluations showed it
to be better than Fennel. We found thatCuttana outperforms both
Fennel and HeiStream, especially on large graphs, which is the
most compelling use case for streaming partitioners. Unfortunately,
the code for Spnl was not available. However, in the common
datasets UK07 and UK02, our model exhibited better partitioning
quality than that reported by Spnl.

Finally, there are in-memory partitioners for both edge- and
vertex-partitioning [24, 44, 48, 61].Metis [24] is considered the gold
standard for vertex-partitioning and Ne [61] for edge-partitioning.
In-memory partitioners inspired our coarsening and refinement
strategy, but we adopted a different approach to facilitate scala-
bility. In-memory partitioners offer better quality than streaming
partitioners in medium-sized graphs; however, they fail to partition
billion-scale graphs [35, 38, 59]. Kl [25] and Fm [15] are partitioning
methods based on vertex exchange. Cuttana differs from both of
these approaches. First, it includes a coarsening phase to efficiently
reduce graph size. Our coarsening approach also differs from that
of Metis, which relies on multiple maximal matching iterations,
rendering it unscalable for large graphs. We reframe coarsening as
another streaming partitioning problem (sub-partitioning). Second,
at the core of refinement, Kl swaps vertices while we move subpar-
titions; our approach provides asymptotically better performance.
While the greedy heuristics and moves in Fm are similar to Cut-
tana’s, its bucket listing technique does not apply to our case as it
only works for small unweighted graphs. Fm requires K2 buckets
for K-way partitioning, each sized by the quality gain, making
it unscalable for our weighted graph with gains up to 𝑂 (𝑉 2

K). Fi-
nally, we initiate refinement on a graph partitioned by a streaming
partitioner, which converges more quickly. This facilitates paral-
lel coarsening and data structure preprocessing during streaming,
thereby enhancing overall efficiency. Another approach to improv-
ing the partitioning quality of streaming partitioners is restreaming

[3, 42], where the graph is read multiple times to iteratively improve
partitioning quality. The restreaming technique is orthogonal to
our work, and Cuttana can be used in a restreaming system for
faster convergence. There are also distributed graph partitioners
that improve runtime and memory constraints over single-node
solutions [20, 34, 36, 49].

In graph databases, updates can degrade partition quality over
time. Cuttana can be combined with incremental graph partition-
ing techniques, such as those of Leopard [21] and Fan et al. [12] to
work in the dynamic graph setting. Another possibility is a periodic
coarse-grained repartitioning of the entire graph or fine-grained
recalculation of the scoring function to determine when to move
vertices. Repartitioning can be performed in the background, and
its overhead can be negligible in long-running applications.

6 LIMITATIONS, CONCLUSION, AND FUTURE

WORK

Limitations. Using Cuttana for dynamic graphs requires reparti-
tioning or incorporating existing incremental approaches [12, 21],
which we have not yet undertaken. Using Cuttana for small and
mid-scale graphs, such as Orkut, may not be a good choice in single-
run analytics, as the performance gain in analytical job runtime will
not amortize the partitioning latency. Because our additional over-
head compared to streaming solutions is independent of graph size,
Cuttana’s sweet spot is large graphs where the additional over-
head is small relative to streaming time. Cuttana is designed to be
a partitioner for distributed vertex-centric applications on massive
graphs; in-memory solutions can provide better partitioning for
small-to-medium scale graphs with higher quality.

Future Work & Conclusion. We introduced a novel streaming
partitioner that incorporates prioritized buffering to improve the
quality of classic streaming graph partitioners. We then conceptual-
ized the problem of improving the initial partitioning by relocating
vertices and presented a coarsening and refinement strategy capa-
ble of improving the quality of the initial output of any partitioner.
The refinement algorithm demonstrated theoretical efficiency, with
time complexity independent of graph size. Our partitioner, Cut-
tana, significantly improved the partitioning quality of its core
streaming counterpart, surpassing state-of-the-art vertex partition-
ers in various scenarios, considering different quality metrics and
balance conditions. With a parallel implementation and leveraging
the power-law property of large graphs, Cuttana’s parallel imple-
mentation incurs negligible partitioning latency overhead relative
to a simple streaming partitioner. Our application study confirmed
that using Cuttana almost always leads to lower network over-
head and even load distribution, resulting in better runtimes and
throughputs for both graph analytics and database applications.
Consequently, Cuttana emerges as the preferred option for graph
partitioning. Looking ahead, we envision further advances in the
form of developing a new scoring function for buffering and extend-
ing our generalized trade concept to address more complex moves.
In cases where moving a single sub-partition fails to enhance qual-
ity, however, relocating two or more vertices simultaneously can
maintain the balance condition and improve overall quality.

25

REFERENCES

[1] ZainabAbbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 2018. Stream-
ing graph partitioning: an experimental study. Proceedings of the VLDB Endow-
ment 11, 11 (2018), 1590–1603.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack
tolerance of complex networks. nature 406, 6794 (2000), 378–382.

[3] Amel Awadelkarim and Johan Ugander. 2020. Prioritized restreaming algo-
rithms for balanced graph partitioning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1877–1887.

[4] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge
partition. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 1456–1465.

[5] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee
Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, et al. 2020. A1: A distributed in-memory graph database. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data. 329–
344.

[6] Ümit Çatalyürek, Karen Devine, Marcelo Faraj, Lars Gottesbüren, Tobias Heuer,
Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel
Seemaier, et al. 2023. More recent advances in (hyper) graph partitioning. Comput.
Surveys 55, 12 (2023), 1–38.

[7] Jingji Chen and Xuehai Qian. 2023. Khuzdul: Efficient and Scalable Distributed
Graph Pattern Mining Engine. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 413–426.

[8] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. 2019. Powerlyra: Differentiated graph computation and partitioning on
skewed graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019),
1–39.

[9] Mark De Berg. 2000. Computational geometry: algorithms and applications.
Springer Science & Business Media.

[10] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social net-
work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 619–630.

[11] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, et al. 2021. GraphScope: a unified engine for big
graph processing. Proceedings of the VLDB Endowment 14, 12 (2021), 2879–2892.

[12] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incremen-
talization of graph partitioning algorithms. Proceedings of the VLDB Endowment
13, 8 (2020), 1261–1274.

[13] Wenfei Fan, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou. 2023.
Application-driven graph partitioning. The VLDB Journal 32, 1 (2023), 149–172.

[14] Marcelo Fonseca Faraj and Christian Schulz. 2022. Buffered streaming graph
partitioning. ACM Journal of Experimental Algorithmics 27 (2022), 1–26.

[15] Charles M Fiduccia and Robert M Mattheyses. 1988. A linear-time heuristic for
improving network partitions. In Papers on Twenty-five years of electronic design
automation. 241–247.

[16] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed deep graph
learning at scale. In 15th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 21). 551–568.

[17] Michael R Garey, David S Johnson, and Larry Stockmeyer. 1974. Some simplified
NP-complete problems. In Proceedings of the sixth annual ACM symposium on
Theory of computing. 47–63.

[18] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. {PowerGraph}: Distributed {Graph-Parallel} computation on natural
graphs. In 10th USENIX symposium on operating systems design and implementa-
tion (OSDI 12). 17–30.

[19] GraphX Apache Spark September 8, 2024. https://spark.apache.org/graphx/
[20] Masatoshi Hanai, Toyotaro Suzumura, Wen Jun Tan, Elvis Liu, Georgios Theodor-

opoulos, and Wentong Cai. 2019. Distributed edge partitioning for trillion-edge
graphs. arXiv preprint arXiv:1908.05855 (2019).

[21] Jiewen Huang and Daniel J Abadi. 2016. Leopard: Lightweight edge-oriented par-
titioning and replication for dynamic graphs. Proceedings of the VLDB Endowment
9, 7 (2016).

[22] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez, and Ion
Stoica. 2021. {TEGRA}: Efficient {Ad-Hoc} Analytics on Evolving Graphs. In
18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). 337–355.

[23] JanusGraph September 8, 2024. https://janusgraph.org/
[24] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1
(1998), 359–392.

[25] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. The Bell system technical journal 49, 2 (1970), 291–307.

[26] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Scalable SIMD-
Efficient Graph Processing on GPUs. In Proceedings of the 24th International

Conference on Parallel Architectures and Compilation Techniques (PACT ’15). 39–
50.

[27] Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and
Andrew S Tomkins. 1999. The web as a graph: Measurements, models, and
methods. In Computing and Combinatorics: 5th Annual International Conference,
COCOON’99 Tokyo, Japan, July 26–28, 1999 Proceedings 5. Springer, 1–17.

[28] Deyu Kong, Xike Xie, and Zhuoxu Zhang. 2022. Clustering-based partitioning for
large web graphs. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 593–606.

[29] Jérôme Kunegis. 2013. KONECT – The Koblenz Network Collection. In Proc.
Int. Conf. on World Wide Web Companion. 1343–1350. http://dl.acm.org/citation.
cfm?id=2488173

[30] Changji Li, Hongzhi Chen, Shuai Zhang, YingqianHu, Chao Chen, Zhenjie Zhang,
Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, et al. 2022. ByteGraph: a
high-performance distributed graph database in ByteDance. Proceedings of the
VLDB Endowment 15, 12 (2022), 3306–3318.

[31] Dongsheng Li, Yiming Zhang, Jinyan Wang, and Kian-Lee Tan. 2019. TopoX:
Topology refactorization for efficient graph partitioning and processing. Pro-
ceedings of the VLDB Endowment 12, 8 (2019), 891–905.

[32] Lock-free queue September 8, 2024. https://github.com/cameron314/
readerwriterqueue

[33] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[34] Daniel Margo and Margo Seltzer. 2015. A scalable distributed graph partitioner.
Proceedings of the VLDB Endowment 8, 12 (2015), 1478–1489.

[35] Daniel Wyatt Margo. 2017. Sorting Shapes the Performance of Graph-Structured
Systems. Ph.D. Dissertation. Harvard University.

[36] Claudio Martella, Dionysios Logothetis, Andreas Loukas, and Georgos Siganos.
2017. Spinner: Scalable graph partitioning in the cloud. In 2017 IEEE 33rd inter-
national conference on data engineering (ICDE). Ieee, 1083–1094.

[37] Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa
Laich, Lukas Rieger, and Kurt Rothermel. 2018. Adwise: Adaptive window-based
streaming edge partitioning for high-speed graph processing. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 685–
695.

[38] Ruben Mayer and Hans-Arno Jacobsen. 2021. Hybrid edge partitioner: Parti-
tioning large power-law graphs under memory constraints. In Proceedings of the
2021 International Conference on Management of Data. 1289–1302.

[39] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a
vertex: a survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 1–39.

[40] Frank McSherry, Michael Isard, and Derek G Murray. 2015. Scalability! but at
what {COST}?. In 15th Workshop on Hot Topics in Operating Systems (HotOS
XV).

[41] Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evange-
los Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. 2021. Distgnn: Scalable distributed training for large-scale
graph neural networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[42] Joel Nishimura and Johan Ugander. 2013. Restreaming graph partitioning: simple
versatile algorithms for advanced balancing. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining. 1106–
1114.

[43] Anil Pacaci and M Tamer Özsu. 2019. Experimental analysis of streaming algo-
rithms for graph partitioning. In Proceedings of the 2019 International Conference
on Management of Data. 1375–1392.

[44] François Pellegrini and Jean Roman. 1996. Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture graphs.
In High-Performance Computing and Networking: International Conference and
Exhibition HPCN EUROPE 1996 Brussels, Belgium, April 15–19, 1996 Proceedings 4.
Springer, 493–498.

[45] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and Gior-
gio Iacoboni. 2015. Hdrf: Stream-based partitioning for power-law graphs. In
Proceedings of the 24th ACM international on conference on information and knowl-
edge management. 243–252.

[46] Wenwen Qu, Weixi Zhang, Ji Cheng, Chaorui Zhang, Wei Han, Bo Bai, Chen Ja-
son Zhang, Liang He, and Xiaoling Wang. 2023. Optimizing Graph Partition
by Optimal Vertex-Cut: A Holistic Approach. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 1019–1031.

[47] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer
Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph
processing. Proceedings of the VLDB Endowment 11, 4 (2017), 420–431.

[48] Peter Sanders and Christian Schulz. 2011. Engineering multilevel graph parti-
tioning algorithms. In European Symposium on algorithms. Springer, 469–480.

[49] George M Slota, Cameron Root, Karen Devine, Kamesh Madduri, and
Sivasankaran Rajamanickam. 2020. Scalable, multi-constraint, complex-objective

26

https://spark.apache.org/graphx/
https://janusgraph.org/
http://dl.acm.org/citation.cfm?id=2488173
http://dl.acm.org/citation.cfm?id=2488173
https://github.com/cameron314/readerwriterqueue
https://github.com/cameron314/readerwriterqueue

graph partitioning. IEEE Transactions on Parallel and Distributed Systems 31, 12
(2020), 2789–2801.

[50] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 1222–1230.

[51] Titan DB September 8, 2024. https://github.com/thinkaurelius/titan
[52] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan

Vojnovic. 2014. Fennel: Streaming graph partitioning for massive scale graphs.
In Proceedings of the 7th ACM international conference on Web search and data
mining. 333–342.

[53] US Road Dataset September 8, 2024. https://networkrepository.com/road-road-
usa.php

[54] John D Valois. 1994. Implementing lock-free queues. In Proceedings of the seventh
international conference on Parallel and Distributed Computing Systems. Citeseer,
64–69.

[55] Jana Vatter, Ruben Mayer, and Hans-Arno Jacobsen. 2023. The Evolution of
Distributed Systems for Graph Neural Networks and their Origin in Graph
Processing and Deep Learning: A Survey. Comput. Surveys (2023).

[56] Xubo Wang, Dong Wen, Lu Qin, Lijun Chang, and Wenjie Zhang. 2022. ScaleG:
A Distributed Disk-based System for Vertex-centric Graph Processing. In 2022
IEEE 38th International Conference on Data Engineering (ICDE). IEEE, 1511–1512.

[57] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. {GNNAdvisor}: An adaptive and efficient runtime system

for {GNN} acceleration on {GPUs}. In 15th USENIX symposium on operating
systems design and implementation (OSDI 21). 515–531.

[58] Zhigang Wang, Zichao Yang, Ning Wang, Yujie Du, Jie Nie, Zhiqiang Wei, Yu
Gu, and Ge Yu. 2023. Lightweight Streaming Graph Partitioning by Fully Utiliz-
ing Knowledge from Local View. In 2023 IEEE 43rd International Conference on
Distributed Computing Systems (ICDCS). IEEE, 614–625.

[59] Zhigang Wang, Zichao Yang, Ning Wang, Yujie Du, Jie Nie, Zhiqiang Wei, Yu
Gu, and Ge Yu. 2023. Lightweight Streaming Graph Partitioning by Fully Utiliz-
ing Knowledge from Local View. In 2023 IEEE 43rd International Conference on
Distributed Computing Systems (ICDCS). IEEE, 614–625.

[60] Da Yan, Guimu Guo, Md Mashiur Rahman Chowdhury, M Tamer Özsu, Wei-
Shinn Ku, and John CS Lui. 2020. G-thinker: A distributed framework for mining
subgraphs in a big graph. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 1369–1380.

[61] Chenzi Zhang, Fan Wei, Qin Liu, Zhihao Gavin Tang, and Zhenguo Li. 2017.
Graph edge partitioning via neighborhood heuristic. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
605–614.

[62] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.

27

https://github.com/thinkaurelius/titan
https://networkrepository.com/road-road-usa.php
https://networkrepository.com/road-road-usa.php

	Abstract
	1 Introduction
	2 Background
	3 Cuttana Algorithm
	3.1 Phase 1: Prioritized Buffered Streaming
	3.2 Phase 2: Quality Refinement
	3.3 Parallel Partitioning and Implementation

	4 Experimental Analysis
	4.1 Quality Metrics Analysis
	4.2 Application Study

	5 Related Work
	6 Limitations, Conclusion, and Future Work
	References

