
Fully Automated Correlated Time Series Forecasting in Minutes
Xinle Wu1, Xingjian Wu2, Dalin Zhang1, Miao Zhang3, Chenjuan Guo2, Bin Yang2∗, Christian S.

Jensen1
1Aalborg University, Denmark 2East China Normal University, China

3Harbin Institute of Technology, Shenzhen, China
1{xinlewu, dalinz, csj}@cs.aau.dk 2{xjwu, cjguo, byang }@dase.ecnu.edu.cn 3{zhangmiao@hit.edu.cn}

ABSTRACT
Societal and industrial infrastructures and systems increasingly
leverage sensors that emit correlated time series. Forecasting of
future values of such time series based on recorded historical val-
ues has important benefits. Automatically designed models achieve
higher accuracy than manually designed models. Given a fore-
casting task, which includes a dataset and a forecasting horizon,
automated design methods automatically search for an optimal
forecasting model for the task in a manually designed search space,
and then train the identified model using the dataset to enable
the forecasting. Existing automated methods face three challenges.
First, the search space is constructed by human experts, rending the
methods only semi-automated and yielding search spaces prone
to subjective biases. Second, it is time consuming to search for an
optimal model. Third, training the identified model for a new task
is also costly. These challenges limit the practicability of automated
methods in real-world settings. To contend with the challenges,
we propose a fully automated and highly efficient correlated time
series forecasting framework where the search and training can be
done in minutes. The framework includes a data-driven, iterative
strategy to automatically prune a large search space to obtain a
high-quality search space for a new forecasting task. It includes a
zero-shot search strategy to efficiently identify the optimal model in
the customized search space. And it includes a fast parameter adap-
tation strategy to accelerate the training of the identified model.
Experiments on seven benchmark datasets offer evidence that the
framework is capable of state-of-the-art accuracy and is much more
efficient than existing methods.

PVLDB Reference Format:
Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin
Yang, Christian S. Jensen. Fully Automated Correlated Time Series
Forecasting in Minutes. PVLDB, 18(2): 144 - 157, 2024.
doi:10.14778/3705829.3705835
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ccloud0525/FACTS.

1 INTRODUCTION
Many important societal and industrial infrastructures, including
intelligent transportation systems, power grids, patient monitoring
∗ : Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705835

systems, and industrial control systems [3, 4, 6, 24, 25, 35, 37, 39, 42,
54, 56, 57, 62], involve sensors that record values that vary over time,
resulting in multiple time series that are often correlated, known as
correlated time series (CTS). Forecasting future CTS values based
on historical values has important applications [2, 17, 53, 60]. For
example, forecasting the future electricity consumption of users in
an area based on their historical electricity consumption can help
balance supply and demand in a power grid.

Methods employing deep learning achieve state-of-the-art per-
formance at CTS forecasting. Most of their model architectures
are designed manually by human experts [1, 7, 10–13, 21, 23, 27,
36, 40, 45, 48, 49, 52, 53]. The core components of such models
are Spatio-Temporal blocks (ST-blocks), which are constructed by
Spatial/Temporal (S/T) operators, such as convolution, graph con-
volution, and transformer, and capture both temporal dependencies
among historical values and spatial correlations across time series.
Although achieving promising results, even human experts struggle
to design optimal ST-blocks for new tasks.

As a more promising alternative approach, automated CTS fore-
casting aims to automatically identify optimal ST-blocks for differ-
ent tasks and then uses them for forecasting [38, 50, 51, 55]. Figure 1
illustrates the pipeline of automated methods, which includes three
phases: search space design, search for an optimal ST-block, and
training the identified ST-block. A search space is first designed
from S/T operators commonly used in existing manually designed
models. These S/T operators are then combined using topologi-
cal connection rules to obtain a set of ST-blocks that then form
the search space. Next, search strategies, such as gradient-based,
comparator-based, or random search, are applied to the search space
to find an optimal ST-block for a given task. Finally, the identified
ST-block is trained to enable the forecasting task. Despite achieving
better performance than manually designed models, this approach
still suffers from three major limitations that makes it challenging
to use in practice.
(1) Manually designed search space. The search space is still
designed manually, which may yield suboptimal performance and
also violates the goal of AutoML, namely to automate the entire pro-
cess [18, 28, 34, 43, 66]. Unlike search spaces constructed with a few
homogeneous operators in computer vision and natural language
processing, the many heterogeneous S/T operators and topological
connections possible when forming ST-blocks yield a general search
space that is difficult to explore.

The state-of-the-art is to prune manually the general search
space into a smaller, easier-to-explore search space. However, the
pruned search spaces may be suboptimal for unseen tasks because
of the manual pruning that relies on heuristic rules and statistical
results from a few seen tasks.

144

https://doi.org/10.14778/3705829.3705835
https://github.com/ccloud0525/FACTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3705829.3705835
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Existing automated methods v.s. the proposed method.

(2) High search cost. Existing automated methods employ search
strategies such as gradient-based [30, 31, 50], comparator-based [5,
51], or random search [55] to explore a search space to find the op-
timal ST-block, which are all very time-consuming. Gradient-based
methods train a supernet that represents the search space, which is
much larger and harder to train than a single ST-block. Comparator-
based methods train a large number of ST-blocks and obtain their
validation accuracy to train a comparator. Random search methods
sample a large number of ST-blocks and train them to obtain the
optimal one. As a result, existing automated frameworks spending
dozens of GPU hours searching for a high-performance ST-block.
This high search cost makes these methods unattractive in real-
world scenarios.
(3) High training cost. Having found a high-performance ST-
block, existing methods train it from scratch on unseen CTS fore-
casting tasks. Thus usually takes hours [30, 31, 55], depending on
the scale of the tasks.

To address the above limitations, we propose FACTS, a Fully
Automated and highly efficient CTS forecasting framework. (1)
We propose an automated pruning strategy to generate a high-
quality search space for unseen forecasting tasks. Specifically, we
construct a general search space using S/T operators and topologi-
cal rules commonly used in existing CTS forecasting models. This
search space is expected to contain optimal ST-blocks on unseen
tasks. We then propose a strategy that partitions the general search
space into disjoint subspaces that are distinguishable in terms of
quality. Next, we iteratively prune the search space by removing
low-quality subspaces in multiple passes on specific tasks, thereby
generating customized high-quality search spaces for different un-
seen tasks, as shown in Figure 1 (lower left).

(2) We propose a zero-shot search strategy that can find the op-
timal ST-block for unseen CTS forecasting tasks in minutes. Specifi-
cally, we build a task-aware architecture predictor (TAP) that takes
as input the architecture of an ST-block and the task feature of a
task and then predicts the accuracy of the ST-block on the task. In
the pretraining phase, we collect training samples from numerous

and diverse CTS forecasting tasks to pretrain TAP, enabling it to
predict the accuracy of ST-blocks on an unseen task without hav-
ing to be trained on that task. In the zero-shot search phase, we
first employ the pretrained TAP to assist search space pruning on
the target task, then traverse the ST-blocks in the pruned search
space and pick the one with the highest prediction accuracy for
deployment. Figure 1 (lower middle) shows that FACTS searches
for a high-performance ST-block for each unseen task. Since the
search on unseen tasks does not involve model training, it can be
completed in minutes, which addresses the second limitation.

(3) We propose a fast parameter adaptation strategy to accel-
erate the training of identified ST-blocks. Specifically, we introduce
learnable coefficients to linearly combine the parameter weights of
pretrained ST-blocks and use these as initial weights in the iden-
tified ST-block. This provides a good optimization starting point,
allowing the training on the target task to complete quickly, thereby
addressing the third limitation. Figure 1 (lower right) shows that
FACTS inherits the parameter weights from pretrained ST-blocks
to train identified ST-blocks, resulting in trained CTS models for
forecasting.

Our contributions are summarized as the follows.

(1) We propose FACTS, a fully automated CTS forecasting
framework. In particular, we propose an automated search
space pruning strategy to automatically generate high-
quality search spaces for unseen CTS forecasting tasks.

(2) We propose a zero-shot search strategy to search for an
optimal ST-block on arbitrary unseen CTS forecasting tasks
in minutes.

(3) We propose a fast parameter adaptation strategy to acceler-
ate the training of identified ST-blocks, reducing the train-
ing time by up to 66% on unseen CTS forecasting tasks.

(4) Extensive experiments on seven benchmark datasets show
that the proposed framework is capable of state-of-the-
art forecast accuracy while taking less time than existing
manual and automated methods.

145

2 PRELIMINARIES
2.1 Problem Setting
Correlated Time Series (CTS). A correlated time series (CTS)
X consists of 𝑁 times series that each contains 𝑇 timestamps and
has an 𝐹 -dimensional feature vector for each timestamp. Thus,
X ∈ R𝑁×𝑇×𝐹 . Time series are correlated when the values in each
time series not only depend on its historical values but also depend
on values in other time series. Correlations between time series
can be captured using a graph 𝐺 = (𝑉 , 𝐸,𝐴). where 𝑉 is a set of
vertices representing time series, 𝐸 is a set of edges, representing
the correlations between two time series, such correlations are
often derived from the physical distances between the sensors that
produce the time series, but they can also be learned adaptively. A
graph 𝐺 can be captured using an adjacency matrix 𝐴.
Correlated Time Series Forecasting. We consider multi-step
and single-step CTS forecasting, both of which have important
applications. Given the feature values of a CTS X in the past 𝑃 time
steps, the goal of multi-step forecasting is to predict the feature
values in 𝑄 (𝑄 > 1) future time steps, formulated as follows.

{�̂�𝑡+𝑃+1, �̂�𝑡+𝑃+2, ..., �̂�𝑡+𝑃+𝑄 } = F (𝑿𝑡+1,𝑿𝑡+2, ...,𝑿𝑡+𝑃 ;𝐺), (1)

where 𝑿𝑡 ∈ R𝑁×𝐹 denotes the feature values of a CTS at time step
𝑡 , �̂� denotes forecasted feature values, and F is a forecasting model.
The goal of single-step forecasting is to forecast the feature values
in the 𝑄-th (𝑄 ≥ 1) future time step, formulated as follows.

�̂�𝑡+𝑃+𝑄 = F (𝑿𝑡+1,𝑿𝑡+2, . . . ,𝑿𝑡+𝑃 ;𝐺), (2)

CTS Forecasting Task.We define a CTS forecasting task as T =

(D, 𝑃,𝑄, 𝑡𝑎𝑔), whereD represents a CTS dataset, 𝑃 and𝑄 represent
the input and forecasting lengths, respectively, and 𝑡𝑎𝑔 indicates
whether the CTS forecasting task is single-step or multi-step.

2.2 Existing Automated Forecasting Methods
Existing methods focus on the automated design of ST-blocks,
which form the backbone of CTS forecasting models. Specifically,
automated CTS forecasting includes three phases: search space de-
sign, search for an optimal ST-block, and training of the identified
ST-block, as shown in Figure 1. First, a search space is designed,
which is a set of ST-blocks composed of S/T operators and topo-
logical connection rules used to assemble the operators. Figure 2
shows an example of a search space and two ST-blocks in it, which
feature different S/T operator combinations and topologies. Next,
they employ search strategies such as gradient-based, comparator-
based to explore the search space for the optimal ST-block. Finally,
they train the identified ST-block for CTS forecasting.

Figure 2: Example of a search space and ST-blocks.

2.2.1 Search Space Design. Existing automated CTS forecasting
methods employ commonly used S/T-operators to build ST-blocks.
We use 𝑂 to denote the S/T-operator set. It includes 9 T-operators:
1D-CNN [44], LSTM [19], GRU [8], NLinear [61], GDCC [53], In-
ception [52], Transformer [47], Informer [64], and Convformer [16].
Further, it includes 5 S-operators: DGCN [53], Mix-hop [52], Spatial-
Transformer [47], Spatial-Informer [64], Masked-Transformer [20].
Finally, it includes a skip operator. Thus, |𝑂 | = 15. These operators
are used to design a general search space that is expected to con-
tain optimal ST-blocks for arbitrary unseen CTS forecasting tasks,
but is too large to explore to find the optimal ST-block. Existing
automated methods then prune the general search space manually,
in two ways: by reducing the S/T operator set [30, 31, 38]or by
removing bad ST-blocks based on sampling [41, 55].

Methods in the first category [30, 38, 50] compare the accuracy
and efficiency of individual operators and select a subset of high-
performance operators from the full operator set𝑂 , thereby pruning
the general search space. However, the pruned search space may
be suboptimal. First, it compares the accuracy of S/T-operators on a
few seen CTS forecasting tasks, which may not generalize to unseen
tasks. For example, as shown in Table 1, NLinear performs better
than a 1D-CNN on the ETTH dataset, but worse than the 1D-CNN
on the PEMS04 and PEMS08 datasets. Therefore, it is unwise to
remove the NLinear operator from the search space based on the
results on PEMS04 and PEMS08, as it may exhibit high performance
on other datasets. Second, S/T operators with high performance in
isolation may not form high-performance ST-blocks. For example,
as shown in Table 1, Convformer (ConvF) has higher accuracy than
Informer (INF) on multiple datasets, but when we replace INF with
ConvF in multiple ST-blocks, the accuracy decreases—see ST-block
(INF) and ST-block (CovF) in Table 1 for an example, where ST-block
(CovF) is a variant of ST-block (INF) with CovF replacing INF.

Methods in the second category [41, 55] adopt heuristic pruning
strategies to divide architecture designs into disjoint angles and
remove low-performance designs based on the accuracy of sampled
ST-blocks, which is also performed on a few seen tasks and may
not generalize to unseen tasks.

To sum up, existing methods prune the general search space
based on human designed heuristics to generate a task-agnostic
and suboptimal search space. Instead, FACTS automatically prunes
the general search space for the target task to generate a task-aware
search space, which is expected to offer a higher potential for find-
ing high-performance ST-blocks for the specific target task.

Table 1: MAE of S/T operators.

1D-CNN NLinear ConvF InF ST-block (INF) ST-block (ConvF)
ETTh1 0.535 0.377 0.514 0.635 0.203 0.224
PEMS04 31.556 36.484 26.092 29.084 18.954 19.104
PEMS08 26.257 30.448 20.709 23.693 14.694 14.870

2.2.2 Search Strategy. Existing search strategies include gradient-
based [30, 31, 38], comparator-based [5, 51], and random search [55].
The gradient-based search strategy models the search space as a
supernet, which is time-consuming to train. The comparator-based
search strategy trains a comparator to identify the better of two
ST-blocks, which requires training a large number of ST-blocks

146

and is therefore also costly. The random search strategy samples a
number of ST-blocks at random and trains them to obtain the one
with the highest accuracy, thus having the highest search cost.

2.2.3 Model Training. Existing automated methods train an iden-
tified ST-block from scratch [14, 31, 38, 50, 51, 55], which typically
takes hours, depending on the scale of the forecasting task.

3 METHODOLOGY
The proposed framework aims to find an ST-block that enables
optimal prediction accuracy on unseen CTS forecasting tasks and to
use it to obtain results in minutes. Figure 3 illustrates the framework.
It includes an automated pruning strategy (Section 3.1) to prune
the general search space to obtain a high-quality and relatively small
search space suitable for unseen CTS forecasting tasks. Specifically,
we first partition the general search space into disjoint subspaces,
named 𝑐𝑜𝑚𝑏𝑠 . We define the quality of a 𝑐𝑜𝑚𝑏 to be a function of
the performance of all ST-blocks in it and measure the quality using
the error empirical distribution function (EDF) [41]. We then train
a 𝑐𝑜𝑚𝑏 predictor to predict the EDF of 𝑐𝑜𝑚𝑏𝑠 and prune the search
space by iteratively removing 𝑐𝑜𝑚𝑏𝑠 with low EDF.

To accelerate the search for optimal ST-blocks, the framework
includes a highly efficient zero-shot search strategy (Section 3.2),
which consists of pretraining and zero-shot search phases. Pre-
training is a one-time task, and zero-shot search can be completed
on unseen tasks in minutes. In the pretraining phase, we perform
search space pruning on numerous and diverse CTS forecasting
tasks, during which we collect training samples to pretrain a task-
aware architecture predictor (TAP). In the zero-shot search phase,
we first perform automated search space pruning on an unseen
task, where we use the pseudo-EDF generated by the pretrained
TAP to replace the real EDF. With the pruning completed, we use
the pretrained TAP to predict the accuracy of all ST-blocks in the
pruned search space on the unseen task and return the ST-block
with the best predicted performance as the optimal ST-block.

Finally, we train the identified ST-block on the unseen CTS fore-
casting task to enable forecasting. To accelerate the training, we
propose a fast parameter adaptation strategy (Section 3.3) that
introduces learnable coefficients to linearly combine the parameter
weights of pretrained ST-blocks and serve as the initial parameter
weights of the identified ST-block, which accelerates convergence
and reduces the training time by up to 66%.

3.1 Automated Search Space Pruning
We propose an automated strategy to prune the general search
space into a high-quality and relatively small search space for a
specific CTS forecasting task. To achieve this, we first partition
the general search space into subspaces that are distinguishable in
quality and then remove lower-quality subspaces iteratively. Next,
we introduce the search space partitioning method, the EDF metric
used to evaluate the quality of search spaces, and the iterative
search strategy.

3.1.1 Search Space Partitioning. Before introducing the search
space partitioning method, we first introduce the general search
space and define the notion of a 𝑐𝑜𝑚𝑏.

The general search space is a collection of a large number of
ST-blocks, each of which is constructed by S/T-operators combined
using topological connection rules. We use the S/T-operators in-
troduced in Section 2.2.1 and follow commonly used topological
connection rules [33, 38, 50] to assemble them into ST-blocks.

Definition 3.1. A 𝑐𝑜𝑚𝑏 is a search space containing ST-blocks
with the same S/T-operator combinations. It is represented as 𝑐𝑜𝑚𝑏 =

[𝑛𝑜1 , 𝑛𝑜2 , ..., 𝑛𝑜𝐿], where 𝑛𝑜𝑖 is the number of occurrences of S/T-
operator 𝑜𝑖 in each ST-block in the 𝑐𝑜𝑚𝑏 and 𝐿 is the number of
S/T-operators used for constructing the search space. Note that
0 ≤ 𝑛𝑜𝑖 ≤ 𝑛𝑜 , where 𝑛𝑜 is the number of S/T-operators contained
in an ST-block.

For example, consider a search space constructed with S/T op-
erators skip, CNN , GCN , Informer-Temporal (INF-𝑇), Informer-
Spatial(INF-𝑆), and GRU . Then 𝑐𝑜𝑚𝑏 = [0, 2, 2, 0, 1, 2] is a search
space in which the ST-blocks contain 0 skip, 2 CNN , 2GCN , 0 INF-𝑇 ,
1 INF-𝑆 and 2 GRU , but with different topological connections.

Table 2: Comparison of different 𝑐𝑜𝑚𝑏𝑠.

skip CNN GCN INF-𝑇 INF-𝑆 GRU 𝐸𝐷𝐹

𝑐𝑜𝑚𝑏1 0 2 2 0 1 2 0.16
𝑐𝑜𝑚𝑏2 1 1 2 1 1 1 0.22
𝑐𝑜𝑚𝑏3 1 2 1 2 0 1 0.54
𝑐𝑜𝑚𝑏4 1 2 1 2 1 0 0.48
𝑐𝑜𝑚𝑏5 1 2 2 2 0 0 0.69

The partitioning method is based on the observation that the
combination of S/T-operators largely determines the accuracy of
the ST-blocks they compose, resulting in different 𝑐𝑜𝑚𝑏𝑠 being
distinguishable in quality, where the quality of a 𝑐𝑜𝑚𝑏 refers to the
overall performance of the ST-blocks in it and is measured using
EDF (see Section 3.1.2). To illustrate this phenomenon, we select 5
𝑐𝑜𝑚𝑏𝑠 and randomly sample 200 ST-blocks in each and calculate
its EDF. As we can see in Table 2, the EDF of the different 𝑐𝑜𝑚𝑏𝑠
are clearly distinguishable. In particular, 𝑐𝑜𝑚𝑏1 and 𝑐𝑜𝑚𝑏2 have
significantly lower quality, indicating that we can remove the two
𝑐𝑜𝑚𝑏𝑠 to prune the search space, resulting in a smaller and higher-
quality pruned search space. We thus propose to partition a search
space into 𝑐𝑜𝑚𝑏𝑠 and prune it by removing low-quality 𝑐𝑜𝑚𝑏𝑠 .

3.1.2 Search Space Quality Evaluation. The quality of a search
space S aims to capture the overall performance of the ST-blocks in
it. We thus define the quality of S as a function of the performance
of all ST-blocks in it.

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (S) = g(p(𝑏1), p(𝑏2), ..., p(𝑏𝑛)), (3)

where p(𝑏𝑖) is the performance of ST-block 𝑏𝑖 , which is evaluated
using validation accuracy, and g is a function that aggregates the
performance of the constituent blocks.

Since it is impractical to train all ST-blocks to obtain their accu-
racy, we use uniform sampling to approximate. A simple metric to
evaluate the quality of a search space is the average accuracy of the
sampled ST-blocks, but this does not accurately reflect the quality
of the search space. To illustrate this, we select 𝑐𝑜𝑚𝑏𝑠 𝑆1 and 𝑆2 and
randomly sample 200 ST-blocks in each and train these ST-blocks

147

Figure 3: The FACTS framework.

to obtain their validation accuracy. We show in Figure 4 the MAE
of ST-blocks sampled from the two 𝑐𝑜𝑚𝑏𝑠 , where a lower MAE
corresponds to a higher accuracy. We see that 𝑆2 has many more
high-accuracy ST-blocks than 𝑆1, indicating that 𝑆2 is of higher
quality than 𝑆1, as our goal is to find a single optimal ST-block in
the search space. However, the average accuracy of sampled ST-
blocks in 𝑆1 is higher than that in 𝑆2. Thus, the average accuracy
of sampled ST-blocks fails to reflect the quality of a search space.

Instead, we use the error empirical distribution function (EDF)
metric [41] to quantify the quality of a search space. EDF captures
the quality of a search space by randomly sampling a set of ST-
blocks and calculating the proportion of ST-blocks whose MAE
error is below a given threshold 𝑒:

𝐹 (𝑒) = 1
𝑛𝑒

𝑛𝑒∑︂
𝑗=1

1
[︁
𝑒 𝑗 < 𝑒

]︁
, (4)

Figure 4: Search space quality metrics.

where𝑛𝑒 is the number of sampled ST-blocks and 𝑒 𝑗 is the validation
MAE error of the 𝑗-th ST-block. In the context of CTS forecasting,
the intuition is that comparing the proportion of high-accuracy
ST-blocks is more robust than using the average metric, as it re-
duces the impact of outliers. In the case of Figure 4, the EDF of 𝑆2
is significantly higher than that of 𝑆1, reflecting the true quality
difference between the two search spaces.

With the 𝑐𝑜𝑚𝑏-based search space partitioning method, and us-
ing the EDF metric to evaluate the quality of a 𝑐𝑜𝑚𝑏, a naive idea
to reduce the search space is to calculate the EDF of all 𝑐𝑜𝑚𝑏𝑠 and
remove low-quality 𝑐𝑜𝑚𝑏𝑠 . However, the number of 𝑐𝑜𝑚𝑏𝑠 is huge,
and uniformly sampling ST-blocks in each 𝑐𝑜𝑚𝑏 to calculate its EDF
is too costly. Instead, we only sample 𝐾 𝑐𝑜𝑚𝑏𝑠 and calculate their
EDF values, and use the collected (𝑐𝑜𝑚𝑏, EDF) samples to train a
𝑐𝑜𝑚𝑏 predictor to predict the EDF of all remaining 𝑐𝑜𝑚𝑏𝑠 . For effi-
ciency, we employ a Gradient Boosting Decision Tree (GBDT) [15]
model as the 𝑐𝑜𝑚𝑏 predictor.

3.1.3 Iterative Search Space Pruning. Pruning the search space only
once does not guarantee a high-quality pruned search space. This is
because the threshold 𝑒 in Equation 4 needs to be set manually, and
an inappropriate 𝑒 may cause EDF to fail to accurately compare the
quality of different subspaces. To illustrate this, we select 3 𝑐𝑜𝑚𝑏𝑠
and randomly sample 5 ST-blocks in each. We then train these ST-
blocks to obtain their validation MAE error. As shown in Table 3,
when 𝑒 is set to the relatively large value of 16.00, we can easily
identify 𝑐𝑜𝑚𝑏3 as the worst 𝑐𝑜𝑚𝑏, but 𝑐𝑜𝑚𝑏1 and 𝑐𝑜𝑚𝑏2 have the
same EDF, although ST-blocks in 𝑐𝑜𝑚𝑏1 perform significantly better
than those in 𝑐𝑜𝑚𝑏2. This demonstrates that a large 𝑒 may cause EDF
to be unable to distinguish between good and relatively good 𝑐𝑜𝑚𝑏𝑠 ,

Table 3: EDF values of different combinations.

MAE MAE MAE MAE MAE EDF (𝑒 = 16.00) EDF (𝑒 = 14.70)
𝑐𝑜𝑚𝑏1 14.65 14.72 14.73 14.75 17.36 0.8 0.2
𝑐𝑜𝑚𝑏2 14.85 14.87 14.89 14.93 18.50 0.8 0.0
𝑐𝑜𝑚𝑏3 15.38 15.54 15.88 16.75 20.33 0.6 0.0

148

which may cause us to remove high-quality subspaces, thereby
reducing the potential of the pruned search space. In contrast, when
𝑒 is set to the relatively small value of 14.70, the EDF labels of
both 𝑐𝑜𝑚𝑏2 and 𝑐𝑜𝑚𝑏3 are 0, although the sampled ST-blocks from
𝑐𝑜𝑚𝑏2 have significantly higher accuracy than those from 𝑐𝑜𝑚𝑏3.
Further, since we need to collect (𝑐𝑜𝑚𝑏, EDF) samples to train a
𝑐𝑜𝑚𝑏 predictor to predict the EDF of all remaining 𝑐𝑜𝑚𝑏𝑠 , too many
0 labels will cause the training samples to be unbalanced, resulting
in an inaccurate 𝑐𝑜𝑚𝑏 predictor.

To solve this problem, we iteratively prune the search space, re-
ducing 𝑒 gradually. The intuition is that a larger 𝑒 in the initial stage
allows us to easily identify and remove bad 𝑐𝑜𝑚𝑏𝑠 . As 𝑒 decreases,
we can gradually distinguish good and relatively good 𝑐𝑜𝑚𝑏𝑠 , and
since the quality of the remaining 𝑐𝑜𝑚𝑏𝑠 gradually becomes higher,
there will not be a large number of (𝑐𝑜𝑚𝑏, EDF) samples with EDF
values equal to 0. Specifically, we first divide the general search
space into 𝑀0 different 𝑐𝑜𝑚𝑏𝑠 . In the 𝑖-th pruning stage, we ran-
domly sample 𝑐 𝑐𝑜𝑚𝑏𝑠 , and for each 𝑐𝑜𝑚𝑏, we randomly sample
𝑟 ST-blocks to calculate its EDF. Then, we train a 𝑐𝑜𝑚𝑏 predictor
using the (𝑐𝑜𝑚𝑏, EDF) samples collected from iterations 0 to 𝑖 and
use it to predict the EDF values of all remaining 𝑐𝑜𝑚𝑏𝑠 . We end
by pruning the search space by removing the 50% of 𝑐𝑜𝑚𝑏𝑠 with
the lowest EDF values. The pruning ends when the number of re-
maining 𝑐𝑜𝑚𝑏𝑠 is below 𝑀 . We set the initial threshold 𝑒0 to be
the median accuracy of the ST-blocks sampled in the 0-th iteration,
and we set the final threshold 𝑒 to be the ⌊𝑀/𝑀0⌋-th best accu-
racy of the ST-blocks sampled in the 0-th iteration. We then reduce
the threshold linearly during the iterative pruning. The complete
pruning procedure is shown in Algorithm 1.

3.2 Zero-Shot Search
We pretrain a TAP on numerous and diverse CTS forecasting tasks
and then perform zero-shot search on unseen tasks to find optimal
ST-blocks in minutes. We first introduce the structure of the TAP
and then describe how to pretrain it and perform zero-shot search.

3.2.1 Task-aware Architecture Predictor. We propose a Task-aware
Architecture Predictor (TAP) that takes the architecture of an ST-
block and a task as input and outputs the prediction accuracy of the
ST-block. Figure 5 shows the structure of the TAP, which consists
of an Architecture Feature Learning (AFL) module, a Task Feature
Learning (TFL) module, and an MLP regressor.

AFL extracts features of the architecture of an ST-block. We
regard the architecture of an ST-block as a directed acyclic graph
(DAG) and represent it by an adjacency matrix𝐴𝑎 and a feature ma-
trix 𝐹𝑎 . We then use a graph convolution network (GCN) followed
by a single-layer MLP to encode 𝐴𝑎 and 𝐹𝑎 as a feature vector 𝐻𝑎 ,
formulated as follows.

𝐻𝑎 = 𝑀𝐿𝑃1 (𝐺𝐶𝑁 (𝐴𝑎, 𝐹𝑎)) (5)

TFL extracts features of a CTS forecasting task. We consider both
semantic features and statistical features to learn an informative vec-
tor representation of a task. We use a 2-layer Set-Transformer [29]
to extract the semantic feature vector of a task. The first layer,
named IntraSetPool, consists of a Set Attention Block (SAB) [29]
for capturing the relationship between different samples of a single

Algorithm 1 Search Algorithm
Input: CTS dataset D, general search space 𝑆0
Output: a pruned search space 𝑆𝑛𝑝
1: Split D into Dtrain, Dval , and Dtest
2: Split S0 into𝑀0 𝑐𝑜𝑚𝑏𝑠 and calculate the iteration number 𝑛𝑝

with 𝑛𝑝 = ⌈log2𝑀0/𝑀⌉
3: Randomly sample 𝑐 𝑐𝑜𝑚𝑏𝑠 to form a 𝑐𝑜𝑚𝑏 set C; then randomly

sample 𝑟 ST-blocks from each 𝑐𝑜𝑚𝑏 to form an ST-block set B
4: Train ST-blocks in B on D𝑡𝑟𝑎𝑖𝑛 and obtain their validation

accuracy on D𝑣𝑎𝑙

5: Set the initial threshold 𝑒0 to the median accuracy of the ST-
blocks in B and set the final threshold 𝑒 to the ⌊𝑀/𝑀0⌋-th best
accuracy of the ST-blocks in B

6: for i = 0, ..., 𝑛𝑝 -1 do
7: Calculate the current threshold with 𝑒𝑖 = 𝑒0 − 𝑒0−𝑒

𝑛𝑝−1 · 𝑖
8: Calculate EDF values for 𝑐𝑜𝑚𝑏𝑠 in C using Equation 4
9: Train a GBDT model with (𝑐𝑜𝑚𝑏, EDF) pairs in C
10: Use the GBDT model to predict EDF values for 𝑐𝑜𝑚𝑏𝑠 in 𝑆𝑖
11: Remove the 50% of the 𝑐𝑜𝑚𝑏𝑠 with the lowest EDF values;

the remaining 𝑐𝑜𝑚𝑏𝑠 form a new sub-search space 𝑆𝑖+1
12: if i = 𝑛𝑝 -1
13: break
14: Randomly sample 𝑐 𝑐𝑜𝑚𝑏𝑠 from 𝑆𝑖+1 to form a 𝑐𝑜𝑚𝑏 set C𝑖 ,

then randomly sample 𝑟 ST-blocks from each 𝑐𝑜𝑚𝑏 in C𝑖 to
form an ST-block set B𝑖

15: Train ST-blocks in B𝑖 on D𝑡𝑟𝑎𝑖𝑛 and obtain their validation
accuracy on D𝑣𝑎𝑙

16: C ← C ∪ C𝑖
17: end for
18: return The search space 𝑆𝑛𝑝 formed by the remaining 𝑐𝑜𝑚𝑏𝑠

time series and a Multi-head Attention (PMA) [29] for pooling the
samples into a single representation of the time series. The sec-
ond layer, named InterSetPool, also consists of an SAB and a PMA,
where the former is to capture the relationship between different
time series and the latter is to pool these time series into a single
representation of the task. We refer to Set-Transformer [29] for the
detailed architecture of SAB and PMA. Formally, we have

{𝐷𝑖
˜ } = IntraSetPool({𝐷𝑖 },𝑊1) (6)

𝐷𝑎 = InterSetPool({𝐷𝑖
˜ },𝑊2), (7)

where {𝐷𝑖 } is a CTS forecasting dataset, 𝐷𝑎 is the learned semantic
feature vector, and𝑊1 and𝑊2 are learnable parameters of the Set-
Transformer. In addition, we use tsfresh [9] for extracting statistical
features to construct a statistical feature vector 𝑇𝑎 . We input the
semantic and statistical feature vectors into different single-layer
MLPs to achieve feature alignment, and then we concatenate the
aligned feature vectors with the feature vector 𝐻𝑎 and feed it into
a two-layer MLP regressor to predict the accuracy of the ST-block
on the CTS forecasting task, which is formulated as follows.

𝐿𝑎 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑀𝐿𝑃2 (𝐷𝑎), 𝑀𝐿𝑃3 (𝑇𝑎), 𝐻𝑎) (8)
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝐿𝑃4 (𝐿𝑎) (9)

Finally, we optimize the parameters of TAP using the mean squared
error (MSE) loss.

149

3.2.2 TAP Pretraining. We pretrain TAP on numerous and diverse
CTS forecasting tasks, enabling it to predict the accuracy of ST-
blocks on arbitrary unseen tasks, thereby performing zero-shot
search. The intuition is that we learn a combined embedding space
of ST-blocks and tasks through pretraining, as well as a mapping
from embeddings in the space to the accuracy of ST-blocks. When
using the pretrained TAP to predict the accuracy of an ST-block on
an unseen task, we first use AFL and TFL to obtain their combined
embedding, and then we use the MLP regressor in the TAP to map
the embedding to the accuracy of the ST-block.

We collect training samples of the form (𝑡 , 𝑏, 𝑅(𝑡, 𝑏)) to pretrain
the TAP, where 𝑅(𝑡, 𝑏) represents the validation accuracy of ST-
block 𝑏 on task 𝑡 and is obtained by fully training 𝑏 on 𝑡 . Given
a fixed training sample budget, a naive idea is to collect training
samples by uniformly sampling ST-blocks from the general search
space. However, the general search space is so large that it is difficult
to learn the mapping from the input𝑏 and 𝑡 to accuracy with limited
training samples.

Considering that our goal is to find the optimal ST-block, we are
more concerned with accurate prediction of high-performance ST-
blocks than with accurate prediction of low-performance regions in
the general search space. Therefore, we propose to collect training
samples iteratively during the search space pruning process. As the
search space is pruned iteratively, training samples are collected
gradually from the pruned high-quality search space, so the TAP
trained with these samples has more accurate prediction capabilities
for high-quality regions of the search space, which is needed to
identify the optimal ST-block.

Specifically, we randomly sample 𝑐 𝑐𝑜𝑚𝑏𝑠 from the remaining
search space in the 𝑖-th pruning stage. For each 𝑐𝑜𝑚𝑏, we randomly
sample 𝑟 ST-blocks and train the 𝑗-th ST-block on the 𝑗-th task,

resulting in the training set 𝑆𝑖 =

𝑐⋃︂
𝑘=1
{(𝑡 𝑗 , 𝑏 𝑗 , 𝑅(𝑡 𝑗 , 𝑏 𝑗))}

𝑏 𝑗 ∈𝑐𝑜𝑚𝑏𝑘
𝑗=1,· · · ,𝑟 ,

which is used to calculate EDF values for the sampled 𝑐𝑜𝑚𝑏𝑠 using
Equation 4 and is also used to pretrain the TAP. After the pruning
is completed, we randomly sample 𝑧 ST-blocks in the final pruned
search space and train them on the 𝑟 (𝑟 < 𝑧) tasks to construct
a training set 𝑆𝑒 = {(𝑡 𝑗 , 𝑏𝑘 , 𝑅(𝑡 𝑗 , 𝑏𝑘)}𝑘=1,· · · ,𝑧𝑗=1,· · · ,𝑟 . Finally, we pretrain

the TAP on the training set
𝑝⋃︂
𝑖=1

𝑆𝑖 ∪ 𝑆𝑒 , where 𝑝 is the number of

pruning stages.

Figure 5: Task-aware Architecture Predictor.

3.2.3 Zero-shot Search on Arbitrary Unseen CTS Forecasting Tasks.
After the pretraining, we obtain a TAP that can perform zero-shot
search on arbitrary unseen CTS forecasting tasks. Given an unseen
task 𝑡 ′, we first perform the iterative pruning to reduce the general
search space to a high-quality search space customized for task 𝑡 ′
and then use the pretrained TAP to traverse the final pruned search
space to find the optimal ST-block.

Specifically, in the 𝑖-th pruning stage, we first randomly sample
𝑐 combs from the remaining search space. For each 𝑐𝑜𝑚𝑏, we ran-
domly sample 𝑟 ST-blocks and train them on task 𝑡 ′, resulting in the

training set 𝑆 ′
𝑖
=

𝑐⋃︂
𝑘=1
{(𝑡 ′, 𝑏 𝑗 , 𝑅′ (𝑡 𝑗 , 𝑏 𝑗))}

𝑏 𝑗 ∈𝑐𝑜𝑚𝑏𝑘
𝑗=1,· · · ,𝑟 , where 𝑅′ (𝑡, 𝑏) is

the prediction accuracy (̂︄𝑀𝐴𝐸) of ST-block 𝑏 on task 𝑡 generated by
the pretrained TAP. We then use 𝑆 ′

𝑖
to calculate pseudo-EDF (ˆ︃𝐸𝐷𝐹)

labels for the sampled 𝑐𝑜𝑚𝑏𝑠 using Equation 4 and train a 𝑐𝑜𝑚𝑏
predictor to prune the search space.

After the pruning is completed, we obtain a high-quality search
space customized for task 𝑡 ′. We then use the pretrained TAP to
predict the accuracy of all ST-blocks in the pruned search space
and rank them according to prediction accuracy, where the top-1
ST-block is returned as the optimal ST-block. Since the zero-shot
search phase does not involve any training, it is very fast and can
be completed in minutes.

3.3 Fast Training with Parameter Adaptation
Having found a high-performance ST-block, we train its param-
eter weights to make forecasts on unseen tasks. Unlike existing
automated methods that regard the training of different ST-blocks
as independent processes and train the identified ST-block from
scratch, we inherit the parameter weights of pretrained ST-blocks
to accelerate the training of the identified ST-block.

3.3.1 Motivation for Parameter Weights Inheritance. In the pretrain-
ing phase, we train a large number of ST-blocks to generate training
samples for TAP. The parameter weights of these ST-blocks contain
knowledge about how to capture general spatio-temporal patterns
of CTS, which is shared across ST-blocks and tasks. Inheriting this
knowledge when training identified ST-blocks may facilitate fast
convergence because the identified ST-blocks are trained from a
good starting point rather than from scratch.

We inherit knowledge in pretrained ST-blocks by inheriting
their parameter weights, unlike common transfer learning methods.
Since pretrained ST-blocks differ in architecture from the identified
ST-block and are trained on different tasks, it is not feasible to
copy their parameter weights directly to the identified ST-block.
However, the parameters of an ST-block come from multiple S/T
operators that make up the ST-block, and the number of pretrained
ST-blocks is sufficiently large to include all S/T operators in the
search space, so we can inherit the parameter weights of each S/T
operator in the identified ST-block separately.

3.3.2 Fast Parameter Adaptation. We propose a fast parameter
adaptation strategy to inherit the weights of pretrained ST-blocks
in a learnable manner. Then we finetune the inherited weights on
the target task for a few training steps to obtain optimal weights
for the identified ST-block.

150

Specifically, for each S/T-operator 𝑜 in the identified ST-block, we
first traverse the pretrained ST-blocks and select 𝑛 ST-blocks that
contain 𝑜 and are most similar to the identified ST-block. Here, we
consider two approaches to calculating the similarity between two
ST-blocks. One is graph edit distance between DAGs corresponding
to the two ST-blocks, which captures structural similarity. The other
is the cosine similarity between the architectural feature vectors
output by AFL (see Figure 5), which captures semantic similarity.
We combine the two through voting.

Then, for each S/T operator 𝑜 , we introduce 𝑘 learnable vectors
𝛼𝑜 = {𝛼1𝑜 , 𝛼2𝑜 , ..., 𝛼𝑘𝑜 }, where 𝛼𝑖𝑜 ∈ R𝑛𝑜 and 𝑛𝑜 is the number of
parameters in 𝑜 , to linearly transform the parameter weights of 𝑜
that from 𝑛 selected pretrained ST-blocks. Then we calculate the
average of the transformed weights as the initial parameter weights
of the identified ST-block, formulated as follows.

𝑊 𝑖𝑛𝑖𝑡
𝑜 = (𝛼1𝑜𝑊 1

𝑜 + 𝛼2𝑜𝑊 2
𝑜 + ... + 𝛼𝑘𝑜𝑊 𝑘

𝑜)/𝑘, (10)

where𝑊 𝑖
𝑜 is the 𝑖-th parameter weight vector of 𝑜 , 𝑘 is the number

of 𝑜 contained in 𝑛 selected pretrained ST-blocks, and𝑊 init
𝑜 is the

initial parameter weights of 𝑜 of the identified ST-block. Figure 6
illustrates the proposed fast parameter adaptation strategy, where
operator 𝑜2 in the identified ST-block inherits parameter weights
𝑊 1

𝑜2 ,𝑊
2
𝑜2 , and𝑊

3
𝑜2 from ST-blocks 𝑏1 and 𝑏2, and the corresponding

coefficient vectors are 𝛼1𝑜2 , 𝛼
2
𝑜2 and 𝛼

3
𝑜2 , respectively. We further

divide𝑊 𝑖
𝑜 into groups based on the neural modules they belong to,

with the coefficients being shared within each group to reduce the
number of learnable parameters in 𝛼𝑖𝑜 .

The coefficient 𝛼 for all operators in the identified ST-block are
learned through the following objective, enabling adaptive inheri-
tance of knowledge from pretrained ST-blocks.

argmin𝛼E𝑥∼𝐷L(𝑥 ;𝑊 init (𝛼,𝑊)), (11)

where 𝑊 contains the parameter weights of the pretrained ST-
blocks, 𝐷 is the target task, and L is the MAE loss metric. The
idea behind this optimization objective is to learn a set of coeffi-
cients to linearly transform the pretrained weights to instantiate the
weights of the identified ST-block such that it achieves the highest
performance on the target dataset.

Figure 6: Inheriting parameters from pretrained ST-blocks.

After we obtain𝑊 init , we further finetune it on the target dataset
to get the final weights𝑊final of the identified ST-block as,

𝑊 final = argmin𝑊 𝑖𝑛𝑖𝑡E𝑥∼𝐷L(𝑥 ;𝑊 𝑖𝑛𝑖𝑡) (12)

Since we train the identified ST-block from a good starting point
𝑊 𝑖𝑛𝑖𝑡 , it converges much faster than when training it from scratch,
thus achieving the goal of reducing the training time.

4 EXPERIMENTS
We conduct comprehensive experiments on seven public CTS fore-
casting datasets to assess the effectiveness and efficiency of FACTS.

4.1 Experimental Setup
4.1.1 Tasks for Pretraining and Evaluating. We summarize the datasets
used for pretraining and evaluation below.
Datasets and tasks for pretraining: METR-LA [32], ETTh1 [65],
ETTh2 [65], ETTm1 [65], ETTm2 [65], Solar-Energy [27], Exchang-
eRate [27], PEMS03 [46], PEMS04 [46], PEMS07 [46], PEMS08 [46].
We form 200 CTS forecasting tasks based on these datasets by split-
ting them along the temporal or spatial dimensions and considering
the forecasting settings 𝑃-12/𝑄-12 and 𝑃-48/𝑄-48.
Datasets and tasks for evaluation: Electricity [27], NYC-TAXI [58],
NYC-BIKE [58], SZ-TAXI [63], Los-Loop [63], PEMS-BAY [32],
PEMSD7(M) [59].We create 28 unseen tasks by considering the fore-
casting settings 𝑃-12/𝑄-12, 𝑃-24/𝑄-24, 𝑃-48/𝑄-48, and 𝑃-168/𝑄-1
(3rd) for each of these datasets.

4.1.2 Baselines. We compare FACTS with three competitive man-
ually designed and three automated baselines. We reproduce the
baselines based on their released code.
• MTGNN: employs mix-hop graph convolution and dilated incep-

tion convolution to build ST-blocks [52].
• AGCRN: employs 1D GCNs and GRUs to build ST-blocks [1].
• PDFormer: employs spatial and temporal transformers to build

ST-blocks [20].
• AutoCTS: A gradient-based automated CTS forecasting frame-

work with a manually designed search space [50].
• AutoCTS+: A comparator-based automated CTS foreacasting

framework that jointly searches for ST-blocks and accompanying
hyperparameter settings [51].

• SimpleSTG: prunes the general search space manually using
sampling to remove bad design choices and employs random
search to find the optimal ST-block [55].

4.1.3 Evaluation Metrics. Following previous studies [1, 32, 52,
53, 59], we use mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE) as the
evaluation metrics for multi-step forecasting, and we use Root
Relative Squared Error (RRSE) and Empirical Correlation Coefficient
(CORR) as evaluation metrics for single-step forecasting. For MAE,
RMSE, MAPE, and RRSE, lower values are better, while for CORR,
higher values are better.

4.1.4 Implementation Details.
𝑐𝑜𝑚𝑏 predictor. The 𝑐𝑜𝑚𝑏 predictor is a GBDT model based on
LightGBM [22] with 100 trees and 31 leaves per tree. Standard
normalization is applied to normalize the EDF labels of 𝑐𝑜𝑚𝑏𝑠 . We
train the 𝑐𝑜𝑚𝑏 predictor with a learning rate of 0.05 and MSE loss.

151

TAP. For the structure of TAP, we set the number of layers of the
GCNs to 4, with 128 hidden units in each layer. To pretrain TAP,
we use the Adam [26] optimizer with a learning rate of 0.001 and a
weight decay of 0.0005. The batch size is set to 64. Moreover, the
hidden dimensions of the two-layer set-transformer are set to 256
and 128, respectively. We extract 128 commonly-used statistical fea-
tures. We apply min-max normalization to normalize the validation
MAE of ST-blocks from the same task and train TAP for 100 epochs
with an early stop patience of 5 epochs.
Pruning. We randomly sample 𝑐 = 100 𝑐𝑜𝑚𝑏𝑠 at each pruning
stage and collect 𝑟 = 100 ST-blocks for each 𝑐𝑜𝑚𝑏. The pruning
ends when the number of 𝑐𝑜𝑚𝑏𝑠 in the remaining search space is
less than 𝑀 = 2, 000. We then collect 𝑧 = 10, 000 ST-blocks in the
pruned search space.
Parameter adaptation. We select 𝑛 = 5 ST-blocks most similar to
the identified ST-block for parameter adaptation.
CTS forecasting models.We use MAE as the training objective
to train CTS forecasting models, and use Adam with a learning rate
of 0.001 and a weight decay of 0.0001 as the optimizer. We set the
batch size to 64. We train all CTS forecasting models for 100 epochs.

4.2 Experimental Results
4.2.1 Main Results. Tables 4 and 5 present the overall performance
of FACTS and the baselines on the seven unseen CTS forecasting
datasets with different forecasting settings. We run all evaluations
three times with different random seeds and report the mean num-
bers. For ease of observation, we use bold and underline to highlight
the best and second-best results, respectively. We observe that: 1)
FACTS consistently outperforms the existing manual and auto-
mated methods, although we never pretrain on the 𝑃-24/𝑄-24 and
𝑃-168/𝑄-1 (3rd) forecasting settings and the seven datasets. This
is evidence of the effectiveness of FACTS on arbitrary unseen CTS
forecasting tasks. 2) AutoCTS+ usually achieves the second best
accuracy because it supports joint search of ST-block and accompa-
nying hyperparameter values. However, FACTS still outperforms
AutoCTS+, although it does not search for hyperparameter val-
ues. Additionally, joint search can easily be integrated into FACTS,
which may further improve performance.

4.2.2 Effectiveness of Automated Search Space Pruning.
Pruning improves the quality of the search space. First, we
find that our pruning strategy can improve the quality of the search
space. We consider 6 variants of FACTS that perform only 0 to 5
pruning stages, resulting in 6 pruned search spaces: space-0, space-
1, space-2, space-3, space-4, and space-5. FACTS performs 6 pruning
stages. We also consider the manually designed search spaces of
AutoCTS and SimpleSTG. We randomly sample 200 ST-blocks from
each of the above search spaces and train them to obtain their
validation accuracy and EDF values.

We draw a scatter plot to show the results on Electricity under the
𝑃-12/𝑄-12 forecasting setting. Figure 7 shows that with the pruning
of the search space, the sampled ST-blocks show increasingly higher
accuracy, which is evidence that the proposed search space pruning
strategy can remove low-quality regions of the search space, thereby
improving the quality of the remaining search space. Further, the
quality of the search spaces of AutoCTS and SimpleSTG are higher
than that of FACTS in the early stages, but are surpassed after

4 iterations of the pruning, which indicates that the automated
pruning strategy can generate search spaces that are better than
the manually designed search spaces on unseen tasks.
Pruning helps search for high-performance ST-blocks. Sec-
ond, we demonstrate that our pruning strategy helps search for
high-performance ST-blocks. We compare FACTS with the variants
space-0 to space-5. For fair comparison, we randomly sample 𝑚
ST-blocks in each search space above, where𝑚 is the size of the
final pruned search space of FACTS, which in this case is equal to
28, 206, 080, and we predict them using the pretrained TAP to find
the optimal ST-block, and then we train it to obtain the accuracy.

We show the results on the Electricity dataset under the 𝑃-12/𝑄-
12 forecasting setting in Table 6.We see that the identified ST-blocks
show increasingly higher accuracy as the search space is pruned,
which indicates that the iterative pruning strategy gradually im-
proves the quality of the pruned search space, making it easier to
find high-performance ST-blocks.
Iterative pruning v.s. one-time pruning.We offer evidence that
iteratively pruning the search space yields better performance than
pruning the search space only once (see Section 3.1.3). We design
three variants 𝑜𝑛𝑒-𝑡𝑖𝑚𝑒-1, 𝑜𝑛𝑒-𝑡𝑖𝑚𝑒-2, 𝑜𝑛𝑒-𝑡𝑖𝑚𝑒-3, which prune the
search space only once, and sample the same number of (𝑐𝑜𝑚𝑏, EDF)
pairs as FACTS to train a 𝑐𝑜𝑚𝑏 predictor, and prune the search space
to𝑀 combs in one step. The EDF thresholds of the three variants are
set to the initial, intermediate and final values of the EDF thresholds
of FACTS, respectively.

Table 7 shows that although we set different EDF thresholds for
the three variants, they all perform worse than FACTS. This shows
the effectiveness of the proposed iterative pruning strategy.

Figure 7: Quality of the search spaces during pruning.

Performance comparison between EDF and mean MAE.
We compare FACTS and the variant that replaces EDF with the
mean MAE metric.

The results in Table 8 show that FACTS performs considerably
better than the variant on all CTS forecasting tasks, indicating that
EDF is the better metric when evaluating the quality of a 𝑐𝑜𝑚𝑏.

152

Table 4: Performance of P-12/Q-12 and P-24/Q-24 forecasting.

P-12/Q-12 forecasting P-24/Q-24 forecasting
Data Metric FACTS AutoCTS AutoCTS+ SimpleSTG MTGNN AGCRN PDFormer FACTS AutoCTS AutoCTS+ SimpleSTG MTGNN AGCRN PDFormer

PEMS-BAY
MAE 1.517 1.736 1.572 1.815 1.960 1.652 1.742 1.780 1.911 1.836 1.877 1.884 2.124 1.843
RMSE 3.287 3.935 3.531 4.281 4.461 3.815 3.920 3.986 4.435 4.017 4.291 4.331 4.612 4.112
MAPE 3.494% 3.822% 3.501% 4.316% 4.560% 3.843% 3.947% 4.102% 4.784% 4.236% 4.298% 4.405% 5.113% 4.139%

Electricity
MAE 225.814 240.65 238.513 262.815 306.331 611.08 247.982 193.786 204.333 205.401 207.185 211.913 1718.216 202.571
RMSE 1943.750 2177.910 2106.307 2329.154 2468.959 8288.991 2178.527 1676.211 1681.030 1784.313 1825.164 1871.110 16364.798 1724.646
MAPE 15.871% 17.275% 16.961% 21.165% 24.381% 42.628% 16.864% 15.468% 15.790% 16.085% 16.581% 17.136% 58.626% 15.993%

PEMSD7M
MAE 2.551 2.604 2.617 2.592 2.643 2.697 2.631 3.167 3.227 3.191 3.245 3.327 8.823 3.310
RMSE 4.863 5.195 5.166 5.018 5.217 5.401 5.261 6.078 6.171 6.221 6.316 6.315 14.674 6.208
MAPE 6.296% 6.592% 6.581% 6.471% 6.523% 6.782% 6.482% 8.112% 8.328% 8.323% 8.359% 8.493% 28.915% 8.251%

NYC-TAXI
MAE 5.334 5.576 5.536 5.625 5.847 5.818 6.259 5.550 5.621 5.591 5.774 5.889 5.735 5.760
RMSE 9.472 9.846 9.792 10.048 11.918 13.924 11.206 9.995 10.834 10.127 10.830 10.710 11.512 10.560
MAPE 37.780% 39.985% 41.235% 42.011% 40.271% 43.027% 43.194% 38.338% 38.452% 40.174% 42.915% 39.914% 44.264% 43.709%

NYC-BIKE
MAE 1.796 1.891 1.811 1.832 1.942 1.856 2.368 1.842 1.887 1.988 1.895 2.241 1.976 2.049
RMSE 2.732 2.992 2.794 2.815 3.265 3.019 3.625 2.867 3.140 3.232 3.274 3.310 3.101 3.147
MAPE 49.951% 52.389% 52.214% 52.281% 53.322% 56.128% 54.161% 50.675% 50.915% 51.313% 50.781% 54.015% 57.315% 52.648%

Los-Loop
MAE 3.578 3.677 3.652 3.668 3.640 8.912 3.980 4.101 4.179 4.244 4.375 4.271 4.452 4.282
RMSE 6.841 7.063 7.119 7.179 7.084 15.182 7.286 7.518 7.775 7.943 8.143 7.905 8.831 8.014
MAPE 10.006% 10.720% 10.443% 10.609% 10.212% 34.040% 10.668% 12.279% 12.857% 13.209% 13.591% 12.876% 13.720% 12.945%

SZ-TAXI MAE 3.178 3.250 3.254 3.218 3.229 4.510 3.719 2.892 3.171 3.056 3.154 3.215 2.905 3.237
RMSE 4.217 4.484 4.457 4.291 4.779 5.002 4.904 4.260 4.459 4.347 4.401 4.528 4.401 4.542

Table 5: Performance of P-48/Q-48 and P-168/Q-1(3rd) forecasting.

P-48/Q-48 forecasting P-168/Q-1(3rd) forecasting
Data Metric FACTS AutoCTS AutoCTS+ SimpleSTG MTGNN AGCRN PDFormer Metric FACTS AutoCTS AutoCTS+ SimpleSTG MTGNN AGCRN PDFormer

PEMS-BAY
MAE 1.963 1.988 1.974 2.011 2.198 2.831 2.064 RRSE 0.2887 0.2901 0.2931 0.3015 0.2947 0.4719 0.2940
RMSE 4.175 4.185 4.253 4.291 4.684 5.125 4.392 CORR 0.9366 0.9275 0.9241 0.8906 0.9116 0.8586 0.9245
MAPE 4.708% 4.715% 4.856% 4.913% 5.330% 5.013% 4.928%

Electricity
MAE 215.821 247.256 239.836 254.150 306.331 611.08 250.982 RRSE 0.0692 0.0741 0.0731 0.0815 0.0758 0.1033 0.0781
RMSE 1839.745 2144.362 2038.137 2249.158 2468.959 8288.991 2218.027 CORR 0.9785 0.9439 0.9516 0.8911 0.9412 0.8854 0.9273
MAPE 16.438% 16.845% 16.761% 16.853% 24.381% 42.628% 16.864%

PEMSD7M
MAE 3.454 3.522 3.510 3.471 3.585 3.606 3.559 RRSE 0.2867 0.3056 0.2895 0.2981 0.3105 0.5314 0.2995
RMSE 6.582 6.715 6.671 6.621 6.907 7.124 6.814 CORR 0.9375 0.9298 0.9338 0.9282 0.9278 0.8186 0.9336
MAPE 8.767% 9.236% 9.114% 8.991% 9.322% 9.375% 9.201%

NYC-TAXI
MAE 5.544 5.956 5.622 5.811 5.767 6.009 5.995 RRSE 0.2018 0.2324 0.2191 0.2571 0.2273 0.2709 0.2624
RMSE 9.931 11.154 10.174 10.781 10.568 18.049 11.963 CORR 0.8874 0.8689 0.8714 0.8491 0.8697 0.8473 0.8417
MAPE 37.964% 39.156% 38.235% 38.681% 39.011% 49.629% 39.894%

NYC-BIKE
MAE 1.990 1.998 2.026 2.184 2.097 2.105 2.096 RRSE 0.7478 0.7492 0.7515 0.7590 0.7581 0.7601 0.7531
RMSE 2.996 3.011 3.178 3.527 3.256 3.311 3.308 CORR 0.7850 0.7805 0.7773 0.7685 0.7691 0.7631 0.7669
MAPE 51.830% 52.146% 52.471% 55.107% 52.737% 53.481% 52.672%

Los-Loop
MAE 4.520 4.643 4.551 4.750 4.624 8.962 4.767 RRSE 0.4258 0.4311 0.4298 0.4307 0.4392 1.7565 0.4493
RMSE 8.327 8.785 8.536 8.681 8.549 14.956 9.003 CORR 0.7908 0.7797 0.7825 0.7783 0.7695 0.0203 0.7699
MAPE 14.873% 15.394% 15.015% 15.491% 17.417% 34.184% 15.961%

SZ-TAXI MAE 2.891 3.106 2.976 3.015 3.193 2.980 3.196 RRSE 0.2288 0.4815 0.4785 0.4916 0.4878 1.2367 0.4892
RMSE 4.394 4.471 4.403 4.455 4.486 4.397 4.496 CORR 0.5077 0.2206 0.2200 0.2003 0.2216 0.0345 0.2236

Table 6: Accuracy comparison in the pruning process.

Metric space-0 space-1 space-2 space-3 space-4 space-5 FACTS
MAE 258.540 250.515 242.858 235.870 231.231 227.410 225.814
RMSE 2077.255 2050.231 2016.333 1990.970 1976.011 1955.121 1943.750
MAPE 24.918% 22.442% 19.892% 17.932% 17.004% 16.115% 15.871%

Table 7: Iterative pruning v.s. one-time pruning.

variant metric PEMS-BAY NYC-TAXI Electricity

One-time-1
MAE 1.637 5.615 256.814
RMSE 3.725 10.347 2279.015
MAPE 3.712% 41.925% 18.517%

One-time-2
MAE 1.574 5.581 245.618
RMSE 3.549 9.991 2185.761
MAPE 3.682% 41.034% 16.880%

One-time-3
MAE 1.762 5.704 273.047
RMSE 4.113 10.675 2365.225
MAPE 4.042% 43.714% 23.027%

FACTS
MAE 1.517 5.334 225.814
RMSE 3.287 9.472 1943.750
MAPE 3.494% 37.780% 15.871%

4.2.3 Effectiveness of Zero-shot Search Strategy.
Search time comparison. We compare the search time of FACTS
and the automated baselines on seven unseen datasets under the

Table 8: Performance comparison of EDF vs. mean MAE.

P-12/Q-12 P-24/Q-24 P-48/Q-48 P-168/Q-1(3rd)
Data Metric EDF MAE EDF MAE EDF MAE Metric EDF MAE

PEMS-BAY
MAE 1.517 1.572 1.780 1.869 1.963 1.976 RRSE 0.2887 0.2933
RMSE 3.287 3.557 3.986 4.115 4.175 4.192 CORR 0.9366 0.9244
MAPE 3.494% 3.515% 4.102% 4.148% 4.708% 4.732%

Electricity
MAE 225.814 265.140 193.786 208.517 215.821 258.191 RRSE 0.0692 0.0744
RMSE 1943.750 2237.214 1676.211 1715.150 1839.745 2025.159 CORR 0.9785 0.9418
MAPE 15.871% 16.965% 15.468% 16.005% 16.438% 17.002%

PEMSD7M
MAE 2.551 2.602 3.167 3.341 3.454 3.498 RRSE 0.2867 0.2893
RMSE 4.863 5.025 6.078 6.371 6.582 6.628 CORR 0.9375 0.9326
MAPE 6.296% 6.482% 8.112% 8.419% 8.767% 8.994%

NYC-TAXI
MAE 5.334 5.558 5.550 5.701 5.544 5.629 RRSE 0.2018 0.2292
RMSE 9.472 9.801 9.995 10.332 9.931 10.255 CORR 0.8874 0.8709
MAPE 37.780% 40.112% 38.338% 40.156% 37.964% 38.414%

NYC-BIKE
MAE 1.796 1.821 1.842 1.908 1.990 2.004 RRSE 0.7478 0.7554
RMSE 2.732 2.835 2.867 3.185 2.996 3.143 CORR 0.7850 0.7785
MAPE 49.951% 52.281% 50.675% 53.161% 51.830% 52.315%

Los-Loop
MAE 3.578 3.637 4.101 4.298 4.520 4.582 RRSE 0.4258 0.4302
RMSE 6.841 7.091 7.518 7.801 8.327 8.522 CORR 0.7908 0.7798
MAPE 10.006% 10.285% 12.279% 13.055% 14.873% 15.296%

SZ-TAXI MAE 3.178 3.229 2.892 3.161 2.891 3.115 RRSE 0.2288 0.4382
RMSE 4.217 4.320 4.260 4.398 4.394 4.477 CORR 0.5077 0.2815

𝑃-24/𝑄-24 forecasting setting and report the results in Table 9. We
see that FACTS finds high-performance ST-blocks in less than 10
minutes on all CTS forecasting tasks, which is negligible compared
to the baselines. This indicates that FACTS is efficient enough for
deployment in practice.

153

Table 9: Searching time in GPU hours (h) or minutes (m).

dataset AutoSTG AutoCTS AutoCTS+ SimpleSTG FACTS
PEMS-BAY 278.1 h 405.7 h 88.6 h 324.5 h 9.2 m
Electricity 144.2 h 197.6 h 43.8 h 159.4 h 7.9 m
PEMSD7(M) 81.2 h 101.5 h 22.2 h 81.4 h 6.5 m
NYC-TAXI 13.3 h 20.2 h 4.8 h 16.8 h 6.0 m
NYC-BIKE 12.7 h 19.8 h 4.3 h 15.9 h 5.7 m
Los-Loop 6.8 h 11.2 h 2.5 h 7.6 h 5.5 m
SZ-TAXI 6.6 h 10.4 h 2.5 h 7.5 h 5.4 m

Ablation studies on the TFL module. We conduct ablation stud-
ies on the TFL module of TAP. We compare FACTS with the follow-
ing three variants.
• w/o task features: removes the TFLmodule from TAP and keeps

the rest unchanged.
• w/o semantic features: removes the semantic feature extraction

module from TAP and keeps the rest unchanged.
• w/o statistical features: removes the statistical feature extrac-

tion module from TAP and keeps the rest unchanged.
We first randomly sample 100 ST-blocks from the general search

space and train them to obtain validation accuracies. We then use
the pretrained TAP from each variant and FACTS to predict these
ST-blocks respectively to obtain the prediction accuracies. We use
MAE and Spearman’s rank correlation coefficient (𝜌) to quantify the
difference between the true validation accuracy and the prediction
accuracy of the ST-blocks.We show results on three unseen datasets
under the 𝑃-24/𝑄-24 forecasting setting in Table 10.

We observe that disabling the TFL module significantly reduces
the accuracy of the pretrained TAP on unseen tasks, indicating that
TFL is crucial for enabling TAP to generalize to unseen tasks. Next,
enabling either the semantic feature extraction module or the sta-
tistical feature extraction module can improve the accuracy of TAP,
and enabling both achieves the highest accuracy. This shows that
they both help identify CTS forecasting tasks and are functionally
complementary, so using both results in the best performance.
The trade-off between pretraining time and accuracy.

We study the trade-off between pretraining time and accuracy
by varying the number of 𝑐𝑜𝑚𝑏𝑠 𝑐 sampled in each iteration. Specif-
ically, we construct three variants of FACTS with 𝑐 equal to 60, 80,
and 120 and keep other settings as in FACTS. FACT uses 𝑐 = 100.

The results under the P-12/Q-12 forecasting setting are shown
in Table 12. We see that the final accuracy generally improves
gradually with an increase of the pretraining time, showing that
collecting more 𝑐𝑜𝑚𝑏𝑠 and ST-blocks to pretrain TAP can bring
higher performance. However, when 𝑐 exceeds 100, the performance
improvement is very limited, indicating that using 𝑐 = 100 strikes a
good balance between pretraining efficiency and final accuracy.

4.2.4 Effectiveness of Fast Parameter Adaptation.
Training time comparison.We first compare the training time
of the identified ST-blocks and and those of the baselines on seven
unseen tasks. We also consider a variant of FACTS without fast
parameter adaptation. Table 11 shows that FACTS takes the least
time to train the identified ST-blocks, while still achieving the
highest accuracy (see Tables 4 and 5). In particular, FACTS reduces
training time by 62% to 66% compared to the variant w/o adapt on
the seven unseen tasks, which is evidence of the effectiveness of
the proposed fast parameter adaptation strategy. Furthermore, the

total running time of FACTS, i.e., the sum of the search and training
time (see Table 9) is lower than the training times of the baselines,
which indicates that FACTS is efficient enough for deployment.
Ablation studies on fast parameter adaptation.We compare
the trend of the validation loss across increasing training epochs
for FACTS and two variants on PEMSD7(M). For the variant w/o
adapt, we disable fast parameter adaptation and train the identified
ST-block from scratch. For the variant simple_average, we use
simple averaging instead of fast parameter adaptation to inherit
the weights from pretrained ST-blocks. Figure 8 shows that the
proposed fast parameter adaptation strategy contributes to the
fast convergence of the ST-block without reducing the accuracy,
thus indicating the proposed fast parameter adaptation strategy is
effective. Next, the variant simple_average converges faster than
training from scratch, but significantly more slowly than FACTS,
indicating that the simple parameter inheritance strategy is not as
effective as the proposed fast parameter adaptation strategy.

Figure 8: Efficiency comparison of training strategies.

4.2.5 Case Study. We show the ST-blocks identified on Electric-
ity and PEMS-BAY in Figure 9. We can see that there are notable
differences in the architectures of the ST-blocks. In particular, the
ST-block identified on the Electricity dataset contains three NLinear,
which is because Electricity exhibits strong periodicity and weak
correlation between time series and because NLinear is good at cap-
turing such patterns [61]. For comparison, the ST-block identified
on the PEMS-BAY dataset contains four S-operators, i.e., two DGCN
and two Spatial-Informer (INF_S). As PEMS-BAY is a traffic speed
dataset with complex spatial correlations between time series, more
S-operators are needed to capture the spatial correlations.

5 RELATEDWORK
5.1 Manual CTS Forecasting
Manually designed CTS forecastingmethods [1, 10–13, 21, 27, 45, 48,
49, 52, 53] choose or design S/T operators, assemble them into ST-
blocks, and then train the ST-blocks from scratch to make forecasts.
MTGNN [52] stacks mix-hop GCNs and inception convolution op-
erators sequentially to build an ST-block. AGCRN [1] replace the

154

Table 10: Ablation studies on the TFL.

variant metric PEMS-BAY NYC-TAXI Electricity

w/o task MAE 0.1470 0.1108 0.0903
Spear 0.6401 0.6671 0.5915

w/o sem MAE 0.0851 0.0703 0.0652
Spear 0.7561 0.7255 0.6900

w/o stat MAE 0.0688 0.0581 0.0593
Spear 0.7641 0.7581 0.7290

FACTS MAE 0.0410 0.0328 0.0391
Spear 0.8414 0.8285 0.8151

Table 11: Training time comparison in GPU minutes.

task MTGNN AGCRN PDFormer AutoCTS AutoCTS+ SimpleSTG w/o adapt FACTS
PEMS-BAY 298.6 240.5 252.8 325.5 283.7 280.2 295.1 110.3
Electricity 240.6 193.8 261.2 273.5 255.7 260.0 271.2 94.9
PEMSD7(M) 46.3 39.1 50.4 62.4 53.3 51.7 47.3 16.4
NYC-TAXI 29.2 22.6 29.6 34.1 23.5 27.6 25.4 9.7
NYC-BIKE 27.2 19.9 29.0 31.2 21.0 26.2 23.7 8.3
Los-Loop 19.6 12.8 17.5 22.7 17.8 20.4 18.5 6.3
SZ-TAXI 19.3 11.9 17.1 22.9 30.2 31.0 15.8 5.4

Table 12: Trade-off between pretraining time and accuracy,
P-12/Q-12 forecasting.

Data Metric c=120
(208.9h)

c=100
(170.4h)

c=80
(139.8h)

c=60
(107.1h)

MAE 1.509 1.517 1.584 1.654
PEMS-BAY RMSE 3.287 3.292 3.488 3.891

MAPE 3.488% 3.494% 3.850% 4.491%
MAE 219.951 225.814 259.963 294.065

Electricity RMSE 1938.105 1943.750 2215.050 2494.129
MAPE 15.852% 15.871% 18.668% 22.913%
MAE 2.542 2.551 2.685 2.778

PEMSD7M RMSE 4.858 4.863 5.022 5.481
MAPE 6.296% 6.301% 6.645% 6.955%
MAE 5.327 5.334 5.582 5.690

NYC-TAXI RMSE 9.460 9.472 9.785 10.302
MAPE 37.788% 37.780% 39.918% 41.051%
MAE 1.774 1.796 1.953 2.079

NYC-BIKE RMSE 2.667 2.732 3.003 3.184
MAPE 49.681% 49.951% 51.391% 54.095%
MAE 3.563 3.578 4.125 4.195

Los-Loop RMSE 6.829 6.841 7.185 7.436
MAPE 9.993% 10.006% 10.496% 10.920%
MAE 3.168 3.178 3.219 3.552

SZ-TAXI RMSE 4.201 4.217 4.294 4.785

+
Output

Identity

NLinear GDCC

INF_T

DGCN NLinear

NLinear

(a) Electricity, 𝑃 -12/𝑄-12

+
Output

Identity

DGCN INF_T

INF_S

INF_S INF_T

DGCN

(b) PEMS-BAY, 𝑃 -24/𝑄-24

Figure 9: Case studies

MLP layers in GRUs by GCNs to build an ST-block. PDFormer [20]
combines semantic, geographic, and temporal self-attention opera-
tors in parallel to build an ST-block. We collect S/T operators and
summarize connection rules from these proposals.

5.2 Automated CTS Forecasting
Existing automated methods manually design a search space. Au-
toST (a) [31] and AutoSTG [38] empirically select a few S/T opera-
tors to construct a small search space. AutoCTS [50] compares the
accuracy of S/T operators on several CTS forecasting datasets and
selects a few S/T operators with the highest accuracy to construct
a search space. AutoST (b) [30] manually designs three S/T opera-
tors that consider the order between spatial and temporal modules
to construct a small search space. SimpleSTG [55] proposes three
pruning strategies, and for each strategy, it manually removes poor
design choices based on the accuracy of sampled ST-blocks. Con-
sidering search efficiency, AutoST (a), AutoSTG, AutoCTS, and
AutoST (b) employ a gradient-based search strategy, which requires
training a supernet. SimpleSTG employs random search to find
the optimal ST-block from a set of randomly sampled ST-blocks
through fully training. AutoCTS+ [51] proposes a comparator to
compare the accuracy of different ST-blocks, which necessitates the
training of many ST-blocks to obtain their validation accuracies.
Considering training efficiency, existing automated methods train
identified ST-blocks from scratch.

6 CONCLUSION
We propose FACTS, an efficient and fully automated CTS forecast-
ing framework that can find an ST-block that offers high-performance
accuracy on arbitrary unseen tasks and can make forecasts in min-
utes. Experimental results on seven commonly used CTS forecasting
datasets show that the FACTS framework is capable of state-of-the-
art accuracy and efficiency. FACTS includes several hyperparam-
eters, and methods exist that may reduce these hyperparameters,
such as reinforcement learning. However, introducing the black-
box optimization algorithm may also bring limitations to FACTS,
such as introducing additional complexity and requiring more com-
puting resources and time. This thus requires further research and
we leave it as future work.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China (62372179), Independent Research Fund Den-
mark (8022- 00246B and 8048-00038B), Villum Fonden (34328 and
40567), and the Innovation Fund Denmark center, DIREC.

155

REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph

Convolutional Recurrent Network for Traffic Forecasting. In NeurIPS, Vol. 33.
17804–17815.

[2] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S. Jensen. 2022. Unsupervised Time Series Outlier Detection with
Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15, 3 (2022),
611–623.

[3] David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, and Chris-
tian S. Jensen. 2024. QCore: Data-Efficient, On-Device Continual Calibration for
Quantized Models. Proc. VLDB Endow. 17, 11 (2024), 2708–2721.

[4] David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S.
Jensen. 2023. LightTS: Lightweight Time Series Classification with Adaptive
Ensemble Distillation. . Proc. ACM Manag. Data 1(2): 171:1-171:27 (2023) (2023).

[5] Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng, Yaowei Wang, and Mingkui
Tan. 2021. Contrastive neural architecture search with neural architecture
comparators. In Conference on Computer Vision and Pattern Recognition. 9502–
9511.

[6] Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang,
and Christian S. Jensen. 2024. Weakly Guided Adaptation for Robust Time Series
Forecasting. Proc. VLDB Endow. (2024).

[7] Yunyao Cheng, Chenjuan Guo, Bin Yang, Haomin Yu, Kai Zhao, and Christian S.
Jensen. 2024. A Memory Guided Transformer for Time Series Forecasting. Proc.
VLDB Endow. 18 (2024).

[8] Kyunghyun Cho. 2014. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[9] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018.
Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a
python package). Neurocomputing 307 (2018), 72–77.

[10] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and
Shirui Pan. 2022. Triangular, Variable-Specific Attentions for Long Sequence
Multivariate Time Series Forecasting. In IJCAI. 1994–2001.

[11] Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan.
2022. Towards Spatio-Temporal Aware Traffic Time Series Forecasting. In ICDE.
2900–2913.

[12] Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin
Pan. 2021. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time
Series Forecasting. In ICDE. 1739–1750.

[13] Razvan-Gabriel Cirstea, Bin Yang, and Chenjuan Guo. 2019. Graph Atten-
tion Recurrent Neural Networks for Correlated Time Series Forecasting.. In
MileTS19@KDD.

[14] Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan Gabrys, and
Quoc V Le. 2020. AutoHAS: Efficient hyperparameter and architecture search.
arXiv preprint arXiv:2006.03656 (2020).

[15] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[16] Pengfei Gu, Yejia Zhang, Chaoli Wang, and Danny Z Chen. 2023. ConvFormer:
Combining CNN and Transformer for Medical Image Segmentation. In 2023 IEEE
20th International Symposium on Biomedical Imaging (ISBI). IEEE, 1–5.

[17] Chenjuan Guo, Bin Yang, Jilin Hu, Christian S. Jensen, and Lu Chen. 2020.
Context-aware, preference-based vehicle routing. VLDB J. 29, 5 (2020), 1149–
1170.

[18] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the
state-of-the-art. Knowledge-based systems 212 (2021), 106622.

[19] S Hochreiter. 1997. Long Short-term Memory. Neural Computation MIT-Press
(1997).

[20] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023.
PDFormer: Propagation Delay-aware Dynamic Long-range Transformer for
Traffic Flow Prediction. arXiv preprint arXiv:2301.07945 (2023).

[21] Ming Jin, Yu Zheng, Yuan-Fang Li, Siheng Chen, Bin Yang, and Shirui Pan. 2023.
Multivariate Time Series Forecasting With Dynamic Graph Neural ODEs. IEEE
Trans. Knowl. Data Eng. 35, 9 (2023), 9168–9180.

[22] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[23] Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, and Bac Le. 2024.
TEAM: Topological Evolution-aware Framework for Traffic Forecasting. Proc.
VLDB Endow. 18 (2024).

[24] Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea, Yan Zhao, Yale
Song, and Christian S. Jensen. 2022. Anomaly Detection in Time Series with
Robust Variational Quasi-Recurrent Autoencoders. In ICDE. 1342–1354.

[25] Tung Kieu, Bin Yang, Chenjuan Guo, Christian S. Jensen, Yan Zhao, Feiteng
Huang, and Kai Zheng. 2022. Robust and Explainable Autoencoders for Unsu-
pervised Time Series Outlier Detection. In ICDE. 3038–3050.

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In SIGIR.
95–104.

[28] Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. 2021. Rapid neural ar-
chitecture search by learning to generate graphs from datasets. arXiv preprint
arXiv:2107.00860 (2021).

[29] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International conference on machine
learning. 3744–3753.

[30] Jianxin Li, Shuai Zhang, Hui Xiong, and Haoyi Zhou. 2022. AutoST: Towards the
universal modeling of spatio-temporal sequences. Advances in Neural Information
Processing Systems 35 (2022), 20498–20510.

[31] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. 2020.
Autost: Efficient neural architecture search for spatio-temporal prediction. In
SIGKDD. 794–802.

[32] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. In ICLR.

[34] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen
Tan. 2021. A survey on evolutionary neural architecture search. IEEE transactions
on neural networks and learning systems 34, 2 (2021), 550–570.

[35] Hao Miao, Ziqiao Liu, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and Chris-
tian S. Jensen. 2024. Less is More: Efficient Time Series Dataset Condensation
via Two-fold Modal Matching. Proc. VLDB Endow. 18 (2024).

[36] Hao Miao, Jiaxing Shen, Jiannong Cao, Jiangnan Xia, and Senzhang Wang. 2022.
MBA-STNet: Bayes-enhanced Discriminative Multi-task Learning for Flow Pre-
diction. IEEE Transactions on Knowledge and Data Engineering (2022).

[37] Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Zheng Kai, Feiteng Huang,
Jiandong Xie, and Christian S. Jensen. 2024. A Unified Replay-based Continuous
Learning Framework for Spatio-Temporal Prediction on Streaming Data. ICDE
(2024).

[38] Zheyi Pan, Songyu Ke, Xiaodu Yang, Yuxuan Liang, Yong Yu, Junbo Zhang,
and Yu Zheng. 2021. AutoSTG: Neural Architecture Search for Predictions of
Spatio-Temporal Graph. In Proceedings of the Web Conference 2021. 1846–1855.

[39] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555–
1567.

[40] Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang,
Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang.
2024. TFB: Towards Comprehensive and Fair Benchmarking of Time Series
Forecasting Methods. Proc. VLDB Endow. 17, 9 (2024), 2363–2377.

[41] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10428–10436.

[42] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-
physical systems: the next computing revolution. InDesign automation conference.
731–736.

[43] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. 2021. A comprehensive survey of neural architecture
search: Challenges and solutions. ACM Computing Surveys (CSUR) 54, 4 (2021),
1–34.

[44] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[45] Shun-Yao Shih, Fan-Keng Sun, and Hung-yi Lee. 2019. Temporal pattern attention
for multivariate time series forecasting. Machine Learning 108, 8 (2019), 1421–
1441.

[46] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-
temporal synchronous graph convolutional networks: A new framework for
spatial-temporal network data forecasting. In AAAI, Vol. 34. 914–921.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[48] Senzhang Wang, Hao Miao, Hao Chen, and Zhiqiu Huang. 2020. Multi-task
adversarial spatial-temporal networks for crowd flow prediction. In International
Conference on Information & Knowledge Management. 1555–1564.

[49] Senzhang Wang, Meiyue Zhang, Hao Miao, Zhaohui Peng, and Philip S Yu. 2022.
Multivariate correlation-aware spatio-temporal graph convolutional networks
for multi-scale traffic prediction. ACM Transactions on Intelligent Systems and
Technology (TIST) 13, 3 (2022), 1–22.

[50] Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Christian S
Jensen. 2022. AutoCTS: Automated correlated time series forecasting. Proc. VLDB
Endow 15, 4 (2022), 971–983.

[51] Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S
Jensen. 2023. AutoCTS+: Joint Neural Architecture and Hyperparameter Search
for Correlated Time Series Forecasting. Proceedings of the ACM on Management
of Data 1, 1 (2023), 1–26.

156

[52] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with
graph neural networks. In SIGKDD. 753–763.

[53] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI. 1907–
1913.

[54] Ronghui Xu, Hao Miao, Senzhang Wang, Philip S Yu, and Jianxin Wang. 2024.
PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly
Detection. In SIGKDD. 3621–3632.

[55] Zhen Xu, Yong Li, Qiang Yang, et al. 2022. Understanding and Simplifying
Architecture Search in Spatio-Temporal Graph Neural Networks. Transactions
on Machine Learning Research (2022).

[56] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Bin Yang, Jian Tang, and Christian S.
Jensen. 2022. Weakly-supervised Temporal Path Representation Learning with
Contrastive Curriculum Learning. In ICDE. 2873–2885.

[57] Sean Bin Yang, Chenjuan Guo, and Bin Yang. 2022. Context-Aware Path Ranking
in Road Networks. IEEE Trans. Knowl. Data Eng. 34, 7 (2022), 3153–3168.

[58] Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, and Hui Xiong. 2021. Coupled
layer-wise graph convolution for transportation demand prediction. In AAAI,
Vol. 35. 4617–4625.

[59] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convo-
lutional networks: a deep learning framework for traffic forecasting. In IJCAI.
3634–3640.

[60] Haomin Yu, Jilin Hu, Xinyuan Zhou, Chenjuan Guo, Bin Yang, and Qingyong Li.
2023. CGF: A Category Guidance Based PM2.5 Sequence Forecasting Training
Framework. IEEE Trans. Knowl. Data Eng. 35, 10 (2023), 10125–10139.

[61] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers
effective for time series forecasting?. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 37. 11121–11128.

[62] Kai Zhao, Chenjuan Guo, Peng Han, Miao Zhang, Yunyao Cheng, and Bin Yang.
2024. Multiple Time Series Forecasting with Dynamic Graph Modeling. Proc.
VLDB Endow. (2024).

[63] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEE transactions on intelligent transportation systems 21, 9 (2019),
3848–3858.

[64] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 11106–11115.

[65] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting. In AAAI, Vol. 35. 11106–11115.

[66] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforce-
ment Learning. In ICLR. OpenReview.net.

157

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Setting
	2.2 Existing Automated Forecasting Methods

	3 Methodology
	3.1 Automated Search Space Pruning
	3.2 Zero-Shot Search
	3.3 Fast Training with Parameter Adaptation

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	5.1 Manual CTS Forecasting
	5.2 Automated CTS Forecasting

	6 Conclusion
	Acknowledgments
	References

